
Some Object-Oriented
Programming (OOP) Review

Let!s practice writing some classes

!  Write an Employee class with methods that return
values for the following properties of employees at a
particular company:

"  Work week: 40 hours

"  Annual salary: $40,000

"  Paid time off: 2 weeks

"  Leave of absence form: Yellow form

2

3

Employee class

// A class to represent employees

public class Employee {
 public int getHours() {

 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form

 }

}

Shape classes

!  Write a class called Rectangle with a width, a
length, and a method for calculating the area.
Include a constructor.

!  Write a Square class with a width, a method
for calculating the area, and a constructor.

!  Write a Triangle class with lengths for each
side. Include a constructor, and a method for
calculating the angle between two sides.

!  Write an EquilateralTriangle class !

5

Inheritance

6

Writing more classes

!  Write a Secretary class with methods that return
values for the following properties of secretaries at a
particular company:

"  Work week: 40 hours
"  Annual salary: $40,000
"  Paid time off: 2 weeks
"  Leave of absence form: Yellow form

!  Add a method takeDictation that takes a string

as a parameter and prints out the string prefixed by
"Taking dictation of text: ".

7

Secretary class

// A class to represent secretaries
public class Secretary {
 public int getHours() {

 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);

 }
}

8

How are they similar?

// A class to represent employees
public class Employee {

 public int getHours() {

 return 40;

 }

 public double getSalary() {

 return 40000.0;

 }

 public int getVacationDays() {

 return 10;

 }

 public String getVacationForm() {

 return "yellow";

 }

}

// A class to represent secretaries
public class Secretary {

 public int getHours() {

 return 40;

 }

 public double getSalary() {

 return 40000.0;

 }

 public int getVacationDays() {

 return 10;

 }

 public String getVacationForm() {

 return "yellow";

 }

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: "

 + text);

 }

}

9

Is-a relationship

!  is-a relationship: A hierarchical connection where

one category can be treated as a specialized version

of another.

!  Examples:

"  Every secretary is an employee.

"  Every square is a rectangle.

"  Every dog is a mammal.

10

Reusing code: why re-invent the wheel?

!  code reuse: The practice of writing program code once and using it
in many contexts.

!  We'd like to be able to say the following:

// A class to represent secretaries

public class Secretary {

 <copy all the contents from Employee class>

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: "

 + text);

 }

}

!  That way we would be reusing the Employee code.

11

Inheritance

!  inheritance: A way to specify a relationship

between two classes where one class inherits the

state and behavior of another.

!  The child class (also called subclass) inherits from

the parent class (also called superclass).

!  The subclass receives a copy of every field and

method from the superclass.

12

Inheritance syntax

!  Creating a subclass, general syntax:

 public class <subclass name> extends <superclass name>

!  Example:

public class Secretary extends Employee

{

}

!  By extending Employee, each Secretary object
automatically has a getHours, getSalary,

getVacationDays, and getVacationForm method.

13

Improved Secretary class

// A class to represent secretaries
public class Secretary extends Employee

{

 public void takeDictation(String text) {

 System.out.println("Taking dictation of text: "
 + text);

 }

}

14

Writing even more classes

!  Write a Marketer class that represents marketers
who have the same properties as general employees,
but instead of making only a paltry $40,000, marketers
make $50,000!

!  Can we still leverage the Employee class or do we
have to re-write everything, because one method
(getSalary) is different?

!  If only Marketer could write a new version of the
getSalary method, but inherit everything else!

15

Overriding methods

!  override: To write a new version of a method in a

subclass to replace the superclass's version.

!  To override a superclass method, just write a new

version of it in the subclass. This will replace the

inherited version.

16

Marketer class

// A class to represent marketers

public class Marketer extends Employee {

 public void advertise() {

 System.out.println("Act now while supplies last!");

 }

 public double getSalary() {

 //Employee e = new Employee();

 return 50000.0

 // + e.getSalary(); // $50,000.00 / year

 }

}

17

Based in reality or too convenient?

!  At many companies, all new employees attend a
common orientation to learn general rules (e.g., what
forms to fill out when).

!  Each person receives a big manual of these rules.

!  Each employee also attends a subdivision-specific
orientation to learn rules specific to their subdivision
(e.g., marketing department).

!  Everyone receives a smaller manual of these rules.

18

Rules, rules, everywhere

!  The smaller manual adds some rules and also
changes (read: overrides) some rules from the large
manual (e.g., "use the pink form instead of the yellow
form")

19

Why bother with separate manuals?

!  Why not just have a 22-page manual for lawyers,

21-page manual for secretaries, 23-page manual for

marketers, etc!?

20

Advantages of separate manuals

!  maintenance: If a common rule changes, only the

common manual needs to be updated.

!  locality: A person can look at the manual for lawyers

and quickly discover all rules that are specific to

lawyers.

21

Key ideas

!  It is useful to be able to specify general rules that will

apply to many groups (the 20-page manual).

!  It is also useful to specify a smaller set of rules for a

particular group, including being able to replace

rules from the overall set (e.g., "use the pink form

instead of the yellow form").

22

Exercise: LegalSecretary

!  Write a LegalSecretary class that represents
legal secretaries—a special type of secretary that
can file legal briefs. Legal secretaries also earn
more money ($45,000).

23

Solution: LegalSecretary

// A class to represent legal secretaries

public class LegalSecretary extends Secretary {

 public void fileLegalBriefs() {

 System.out.println("I could file all day!");

 }

 public double getSalary() {

 return 45000.0; // $45,000.00 / year

 }

}

24

Inheritance hierarchies

!  Deep hierarchies can be created by multiple levels

of subclassing.

!  inheritance hierarchy: A set of classes connected

by is-a relationships that can share common code.

Direct
Subclass

Indirect
Subclass

25

Exercise: Lawyer

!  Lawyers are employees that know how to sue. They

get an extra week of paid vacation (a total of 3) and

have to use the pink form when applying for vacation

leave. Write the Lawyer class.

26

Solution: Lawyer

// A class to represent lawyers
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class

 public String getVacationForm() {
 return "pink";

 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {

 return 15; // 3 weeks vacation

 }

 public void sue() {
 System.out.println("I'll see you in court!");

 }
}

Object

28

Some Questions about Inheritance

!  All classes in Java are direct or indirect
subclasses of one class. What is it?
"  The Object class

!  Explain why the designers of Java decided
this was a good idea.
"  All classes share functionality! What is it?

The Object Class

Method Description

String toString() Returns a String description of the object.

boolean equals(Object other) Returns true if this and other point to the
same address.

Object clone() Returns a copy of this.

Class getClass() Returns a Class object representing the data
type (Class) of this.

Several others See Java API documentation !

29

Because every class automatically extends Object,
and because Object defines these methods,

! every class automatically has these methods!

A closer look at these methods

!  The Object class already defines toString()

!  And every class inherits from Object

!  So why do we ever define our own toString()?
"  Because the default Object methods are basically

placeholders!

"  They don’t do anything very useful.

Example: Course

public class Course {

 String [] students;

 public Course(String [] students)

 { this.students = students; }

 public static void main(String [] args)

 throws CloneNotSupportedException {

 String [] s1 = {“Jill”,”Jim”,”Joe”};

 String [] s2 = {“Jill”,”Jim”,”Joe”};

 Course c1 = new Course(s1);

 Course c2 = new Course(s2);

 System.out.println(c1.toString());

 System.out.println(“c1 equals c2: “ + c1.equals(c2));

 Course c3 = c1.clone();

 System.out.println(“c1 == c3: “ + (c1==c3));

 System.out.println(“c1 equals c3: “ + c1.equals(c3));

 }

}

Output of Course

> java Course

Course@187aeca

c1 equals c2: false

Exception in thread “main”
java.lang.CloneNotSupportedExcept
ion: Course

…

Overriding

!  It’s a good idea to override Object methods
for any new class!

!  Example: overriding toString()

import java.util.Arrays;

…

public String toString()

{

 return "Student list: " + Arrays.toString(students);

}

Overriding the equals method

!  toString() is the easy case. Let’s take a look
at equals()

!  Will this work?
public boolean equals(Course other)

{

 return this==other;

}

Overriding the equals method,
Take 2

!  Ok, how about this?

public boolean equals(Course other)

{

 if(other==null) {

 return false;

 }

 return this.students == other.students;

}

Overriding the equals method,
Take 3

!  Ok, how about this?
public boolean equals(Course other)

{

 if(other==null) {

 return false;

 }

 if(this.students==null && other.students==null) {

 return true;

 }

 if(this.students!=null) {

 return this.students.equals(other.students);

 }

 return false;

}

Deep vs. Shallow Comparisons

!  A shallow comparison
"  checks to see if two objects have fields with the

same references:

 this.students == other.students

!  A deep comparison
"  checks to see if two objects have fields with the

same contents:

 this.students.equals(other.students)

Exercise: Overriding clone()

!  First, override the clone() method for Course
so that if we call Course c2 = c1.clone(), then
c2.students == c1.students (shallow clone).

!  Now, override the clone() method for Course
so that if we call Course c2 = c1.clone(), then
c2.equals(c1), but c2.students != c1.students
(deep clone).

So super

Constructor for superclass
public class Employee {

 private double salary;

 public Employee(double initialSalary)

 {

 salary = initialSalary;

 }

 public int getHours() {

 return 40; // 40 hours per week

 }
 public double getSalary() {

 return salary;

 }

 public int getVacationDays() {

 return 10; // 2 weeks' paid vacation

 }

 public String getVacationForm() {

 return "yellow"; // use the yellow form

 }

}

40

Constructors of subclasses

Use the super() method to call the superclass!s constructor

public class Marketer extends Employee {
 // inherits double salary

 public Marketer(double initialSalary)

 {

 //construct superclass
 super(initialSalary);

 }

}

 - For every constructor of a subclass, the call to super() must be the
first statement in the subclass!s constructor.

 - Make sure to give the same number of arguments as there are
parameters in the definition of the superclass!s constructor.

Exercise: Subclass constructors

!  Write a new version of the Secretary
subclass that extends the new Employee
class. All Secretaries should make $40,000
per year, and they should all have a
takeDictation() method.

!  Write a new version of the Square class that
extends the Rectangle class. Make sure that
the length and width of a Square are always
equal!

protected

44

Do you have protection?

!  Recall: there are four access specifiers:
public private protected <default>

!  Question: If a method is declared private,
does a subclass inherit it?
"  Actually, yes. Subclasses inherit everything that

they don!t override.

!  If a method is declared private, can a subclass
call it?
"  NO! Only code inside the same class can call a

private method.

!  What if you want a subclass to be able to use
it?
"  Use the protected access level

45

Access Specifier Example

!  Recall our new Employee class
public class Employee {
 private double salary = 40000.00;

 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return salary;
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

46

Access Specifier Example, continued

!  Subclasses cannot see salary directly!

public class CEO extends Employee {

 public void giveMyselfRaise() {

 salary += 1000000.00; // Compile-time Error!

 }

 public static void main(String [] args)
 {
 CEO c = new CEO();
 // This is fine, no error here
 // Access to salary field is indirect
 // We!re accessing the public getSalary() method
 System.out.println("My salary is " + c.getSalary());
 }

}

47

Access Specifier Example, continued

!  If we want subclasses (and nothing else) to
see something, make it protected:

public class Employee {
 protected double salary = 40000.00;

 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return salary;
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

48

Access Specifier Example, continued

!  Subclasses can see protected variables
and methods just fine.

public class CEO extends Employee {
 public void giveMyselfRaise() {
 salary += 1000000.00; // No longer an error
 }

 public static void main(String [] args)
 {
 CEO c = new CEO();
 // This is fine, no error here
 // Access to salary field is indirect
 // We!re accessing the public getSalary() method
 System.out.println("My salary is " + c.getSalary());
 }

}

49

What would happen if
public class Employee {
 private double salary = 40000.00;

 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return salary;
 }

 public void addToSalary(double raise) {
 salary += raise;
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

50

What would happen if ... (continued)!

public class CEO extends Employee {

 public void giveMyselfRaise() {

 addToSalary(1000000.00); // Error??

 }
}

!  CEO still has its own copy of the salary field,
and this code will change the value of it
appropriately.

!  The fact that salary is private simply means

that CEO can't access it directly. It can still
call public (or protected) superclass methods
that can access it.

