Building Java Programs
Chapter 5

Program Logic and Indefinite Loops

Copyright (c) Pearson 2013.
All rights reserved.

Flawed solutions

e public static void printNumbers (int max) {

for (int 1 = 1; i <= max; i++) {
System.out.print(i + ", ");
}
System.out.println(); // to end the line of output

}

— Output from printNumbers (5): 1, 2, 3, 4, 5,

e public static void printNumbers (int max) {

}

for (int i = 1; 1 <= max; i++) {
System.out.print (", " + 1i);

}

System.out.println(); // to end the line of output

— Output from printNumbers (5): , 1, 2, 3, 4, 5

e Write a method printNumbers that prints each number from

A deceptive problem...

1 to a given maximum, separated by commas.

For example, the call:
printNumbers (5)

should print:

1,

2, 3, 4, 5

Dost analog

e We print n numbers but need only n- 1 commas.

e Similar to building a fence with wires separated by posts:
— If we use a flawed algorithm that repeatedly places a post + wire,

the last post will have an extra dangling wire.

for (length of fence) {

/

place a post.
place some wire.

Fencepost loop

¢ Add a statement outside the loop to place the initial "post."
— Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for (length of fence - 1) {
place some wire.
place a post.

}

ost method solution

public static void printNumbers (int max) {
System.out.print (1) ;
for (int 1 = 2; 1 <= max; 1++) {
System.out.print (", " + 1i);
}
System.out.println () ; // to end the line
}

¢ Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers (int max) {
for (int i = 1; 1 <= max - 1; i++) {
System.out.print (i + ", ");
}
System.out.println(max); // to end the line

ost question

¢ Modify your method printNumbers into a new method
printPrimes that prints all prime numbers up to a max.

— Example: printPrimes (50) prints

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47

— If the maximum is less than 2, print no output.

e To help you, write a method countFactors which returns the
number of factors of a given integer.
- countFactors (20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

Fencepost answer

// Prints all prime numbers up to the given max.
public static void printPrimes (int max) {
if (max >= 2) {
System.out.print ("2");

for (int 1 = 3; 1 <= max; 1i++) {
if (countFactors (i) == 2) {
System.out.print (", " + 1i);

}
}
System.out.println();
}
}

// Returns how many factors the given number has.
public static int countFactors (int number) {

int count = 0;
for (int i = 1; i <= number; i++) {
if (number % i == 0) {
count++; // i is a factor of number

}
}

return count;

Categories of loops

e definite loop: Executes a known number of times.
— The for loops we have seen are definite loops.

while IOOPS Print "hello" 10 times.

¢ Find all the prime numbers up to an integer n.
¢ Print each odd number between 5 and 127.

« indefinite loop: One where the number of times its body
repeats is not known in advance.

e Prompt the user until they type a non-negative number.
e Print random numbers until a prime number is printed.
¢ Repeat until the user has types "q" to quit.

The while loog le while loOp

// f£inds the first factor of 91, other than 1
int n = 91;

int factor = 2;

while (n % factor !'= 0) {

- while loop: Repeatedly executes its
body as long as a logical test is true.

while (test) {

statement(s); factor++;
} }
System.out.println ("First factor is " + factor);
// output: First factor is 7
e Example: P
int num = 1; // initialization - while is better than for because we don't know how many
while (num <= 200) { /1 test times we will need to increment to find the factor.
System.out.print (num + " ");
num = num * 2; // update

}
// output: 1 2 4 8 16 32 64 128

11 12

Flawed sentinel solution

Sentinel values

« sentinel: A value that signals the end of user input. e What's wrong with this solution?
— sentinel loop: Repeats until a sentinel value is seen. Scanner console = new Scanner (System.in);
int sum = 0;
. int ber = 1; " dumm lue", thing but 0
o Example: Write a program that prompts the user for numbers T nHmhes // v vatue . snymhing bu
until the user types 0, then outputs their sum. while (number != 0) {
— (In this case, 0 is the sentinel value.) System.out.print ("Enter a number (0 to quit): ");
number = console.nextInt();
Enter a number (0 to quit): 10 sum = sum + number;
Enter a number (0 to quit): 20)
Enter a number (0 to qu%t): §2 System.out.println("The total is " + sum);
Enter a number (0 to quit): Q

The sum is 60

13 14

Changing the sentinel value

¢ Modify your program to use a sentinel value of -1. * To see the problem, change the sentinel's value to -1:
— Example log of execution: Scanner console = new Scanner (System.in);
, int sum = 0;
Enter a number (-1 to quit): 15 int number = 1; // "dummy value", anything but -1
Enter a number (-1 to quit): 25
Enter a number (-1 to quit): 10 while (number != -1) ({
Enter a number (-1 to quit): 30 System.out.print ("Enter a number (-1 to quit): ");
Enter a number (-1 to quit) -1 number = console.nextInt();
The total is 80 - sum = sum + number;

}

System.out.println("The total is " + sum);

* Now the solution produces the wrong output. Why?
The total was 79

15 16

The problem with our code

e Our code uses a pattern like this:
sum = 0.
while (input is not the sentinel) {
prompt for input; read input.
add input to the sum.

4
¢ On the last pass, the sentinel -1 is added to the sum:
prompt for input; read input (-1).
add input (-1) to the sum.

e This is a fencepost problem.
— Must read N numbers, but only sum the first N-1 of them.

Correct sentinel code

Scanner console =
int sum = 0;

new Scanner (System.in) ;

// pull one prompt/read ("post") out
System.out.print ("Enter a number (-1

of the loop
to quit): ");

int number = console.nextInt():;
while (number != -1) {
sum = sum + number; // moved to top of loop

System.out.print ("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println ("The total is " + sum);

17

19

A fencepost solution

sum = 0.
prompt for input; read input. // place a "post”
while (input is not the sentinel) {
add input to the sum.
prompt for input; read input.

/

// place a "wire"
// pblace a "post”

« Sentinel loops often utilize a fencepost "loop-and-a-half" style
solution by pulling some code out of the loop.

Sentinel as a constant

public static final int SENTINEL =

Scanner console =
int sum = 0;

new Scanner (System.in);

// pull one prompt/read ("post") out of the loop
System.out.print ("Enter a number (" + SENTINEL +
" to quit): ");

int number = console.nextInt ();
while (number != SENTINEL) {
sum = sum + number; // moved
System.out.print ("Enter a number
" to quit): "),
console.nextInt () ;

to top of loop
(" + SENTINEL +

number =

}

System.out.println("The total is " + sum);

18

20

Random numbers

Generating random numbers

The Random class

e A Random object generates pseudo-random numbers.
— Class Random is found in the java.util package.
import java.util.*;

Method name | Description

nextInt () returns a random integer

nextInt (Max) |returns a random integer in the range [0, max)
in other words, 0 to max-1 inclusive

nextDouble () | returns a random real number in the range [0.0, 1.0)

— Example:

Random rand = new Random() ;
int randomNumber = rand.nextInt(10);

// 0-9

22

Random questions

e Common usage: to get a random number from 1 to NV

int n = rand.nextInt(20) + 1; // 1-20 inclusive

¢ To get a number in arbitrary range [min, max] inclusive:

name.nextInt (size of range) + min

» where (size of range) is (max - min + 1)

— Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;
23

 Given the following declaration, how would you get:
Random rand = new Random() ;

— A random number between 1 and 47 inclusive?
int randoml = rand.nextInt(47) + 1;

— A random number between 23 and 30 inclusive?
int random?2 = rand.nextInt(8) + 23;

— A random even number between 4 and 12 inclusive?

int random3 = rand.nextInt(5) * 2 + 4;
24

Random and other

Random question

» nextDouble method returns a double between 0.0 - 1.0 e Write a program that simulates rolling of two 6-sided dice until

their combined result comes up as 7.
— Example: Get a random GPA value between 1.5 and 4.0: P

double randomGpa = rand.nextDouble() * 2.5 + 1.5; 2 +4 =0
3 +5 =28
. . 5+ 6 =11
¢ Any set of possible values can be mapped to integers 1+ 1 =2
— code to randomly play Rock-Paper-Scissors: 4+ 3 = 7
int r = rand.nextInt (3); You won after 5 tries!
if (r == 0) {
System.out.println ("Rock");
} else if (r == 1) {
System.out.println ("Paper");
} else { // r ==
System.out.println ("Scissors");
}
25 26

Random answer Random question

// Rolls two dice until a sum of 7 is reached.

import java.util.*; Write a program that plays an adding game.
public class Dice { — Ask user to solve random adding problems with 2-5 numbers.
public static vold main(String[] args) { — The user gets 1 point for a correct answer, 0 for incorrect.
Random rand = new Random() ; i
int tries = 0; — The program stops after 3 incorrect answers.
int sum = 0;
while (sum != 7) { 4 + 10 + 3 + 10 = 27
// roll the dice once 9+ 2 =11
int rolll = rand.nextInt(6) + 1; S + 6+ 7 +9 = 25
int roll2 = rand.nextInt(6) + 1; | -
sum = rolll 4 rollz: ?rong._T?; answer was 30
System.out.println(rolll + " + " + roll2 + " = " + sum); +9 =13
tries++; Wrong! The answer was 14
} 4+ 9+ 9 =22
System.out.println("You won after " + tries + " tries!"); S+ 1+ 7+ 2= E
} 4 + 2 + 10 + 9 + 7 = 42

} Wrong! The answer was 32
You earned 4 total points.

27 28

Random answer Random answer 2

// Asks the user to do adding problems and scores them.

1 1 1 * .
import java.util.*; // Builds one addition problem and presents it to the user.

// Returns 1 point if you get it right, 0 if wrong.
public static int play(Scanner console, Random rand) {
// print the operands being added, and sum them
int operands = rand.nextInt (4) + 2;

int sum = rand.nextInt (10) + 1;
System.out.print (sum) ;

public class AddingGame {
public static void main (String[] args) {
Scanner console = new Scanner (System.in);
Random rand = new Random() ;

// play until user gets 3 wrong

int points = 0; for (int i = 2; i <= operands; i++) {
int wrong = 0; int n = rand.nextInt (10) + 1;
while (wrong < 3) { sum += n;
int result = play(console, rand); // play one game System.out.print (" + " + n);
if (result > 0) { }
points++; System.out.print (" = ");
} else {

// read user's guess and report whether it was correct

++;
} WLongTTy int guess = console.nextInt();
} if (guess == sum) {

return 1;

. . . } else {

. . " " + + " . " ,. X
} System.out.println("You earned points total points.") System.out.println ("Wrong! The answer was " + total);
return 0;
}
29 } 30

The do/while loop

- do/while loop: Performs its test at the end of each repetition.
— Guarantees that the loop's {} body will run at least once. 2 + 4 =6

Ilﬁﬁﬁll 3+ 5 =238
. s h - 11
statement(s); d le : ; _ 5

} while (test); 0 You won after 5 tries!

execute statement
after domwhile loop

// Example: prompt until correct password is typed e Is do/while a good fit for our past Ssentinel program?
String phrase;
do {

System.out.print ("Type your password: ");
phrase = console.next () ;
} while (!phrase.equals("abracadabra"))
31 32

do/while answer

// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Dice {
public static void main(String[] args) {

randen zend e manden) Type boolean

int sum;

do {
int rolll = rand.nextInt(6) + 1; // one roll
int roll2 = rand.nextInt(6) + 1;

sum = rolll + roll2;
System.out.println(rolll + "™ + " + roll2 + " =" + sum);
tries++;

} while (sum !'= 7);

System.out.println("You won after " + tries + " tries!");

33

Methods that are tests

e Some methods return logical values. Method Description

test methods

— A call to such a method is used as a test in a loop or if. equals (str) whether two strings contain the same characters

equalsIgnoreCase (Str) |whether two strings contain the same characters,

Scanner console = new Scanner (System.in); ignoﬁnguppervslowercase

System.out.print ("Type your first name: ");

, startsWith (str) whether one contains other's characters at start
String name = console.next();
endsWith (str) whether one contains other's characters at end
if (name.startsWith("Dr.")) { contains (str) whether the given string is found within this one

System.out.println("Will you marry me?");
} else if (name.endsWith("Esq.")) {
System.out.println("And I am Ted 'Theodore' Logan!");
} if (name.contains("Prof")) {

String name = console.next();

System.out.println ("When are your office hours?");
} else if (name.equalsIgnoreCase ("STUART")) ({
System.out.println("Let's talk about meta!");

35 36

Deé boolean

» boolean: A logical type whose values are true and false.
— A logical test is actually a boolean expression.
— Itis legal to:
e create a boolean variable
e pass a boolean Value as a parameter
e return a boolean value from methods
e call a method that returns a boolean and use it as a test

boolean minor (age < 21);
boolean isProf = name.contains ("Prof");
boolean lovesCSE = true;

// allow only CSE-loving students over 21
if (minor || isProf || 'lovesCSE) {

System.out.println("Can't enter the club!");

}

Returning

public static boolean isPrime (int n)

boolean
{

int factors
for (int 1 = 1;
if (n $ 1 == 0)
factors++;

i <= n;

{

i++) |

o

}
}
if (factors == 2)
return true;
} else {

return false;

{

}
}

e Calls to methods returning boolean can be used as tests:
if (isPrime(57)) {

}

boolean

e Why is type boolean useful?
— Can capture a complex logical test result and use it later
— Can write a method that does a complex test and returns it
— Makes code more readable
— Can pass around the result of a logical test (as param/return)

boolean goodAge = age >= 12 && age < 29;
boolean goodHeight = height >= 78 && height < 84;
boolean rich = salary >= 100000.0;

if ((goodAge && goodHeight) || rich) {

System.out.println ("Okay,
} else {
System.out.println("It's not you,

let's go out!");

it's me...");

}

14

37 38

Boolean question

e Improve our "rhyme" / "alliterate" program to use boolean
methods to test for rhyming and alliteration.

Type two words:
They rhyme!
They alliterate!

Bare blare

39 40

Boolean answer

if (rhyme (wordl, word2)) {
System.out.println("They rhyme!");

if (alliterate(wordl, word2)) ({
System.out.println("They alliterate!");

// Returns true if sl and s2 end with the same two letters.

public static boolean rhyme (String sl, String s2) {
if (s2.length{()
return true;
} else {
return false;
}
}

// Returns true if sl and s2 start with the same letter.
public static boolean alliterate (String sl, String s2) {
if (sl.startsWith(s2.substring(0, 1))) {
return true;
} else {
return false;

}

>= 2 && sl.endsWith(s2.substring(s2.length() - 2)))

{

"Boolean Zen"

e Students new to boolean often test if a result is t rue:

if (isPrime (57) == true) /{ // bad

e But this is unnecessary and redundant. Preferred:
if (isPrime (57)) { // good

A similar pattern can be used for a false test:

if (isPrime (57) == false) { // bad
if ('isPrime (57)) { // good

41 42

"Boolean Zen"

¢ Methods that return boolean often have an

if/else that returns true or false:

public static boolean bothOdd (int nl
if (n1 $ 2 '=0 & n2 $ 2 '= 0)
return true;
} else {
return false;

}

— But the code above is unnecessarily verbose.

14

{

int n2)

{

Solution w/ boolean var

» We could store the result of the logical test.

public static boolean bothOdd (int nl, int n2) {
boolean test = (nl1 $ 2 !'= 0 && n2 $ 2 != 0);

if (test) { // test == true
return true;

} else { // test == false
return false;

}

— Notice: Whatever test is, we want to return that.
o If test is true , we want to return true.
o If test is false, we want to return false.

43 a4

Solution w/ "Boolean Zen" "Boolean Zen" temblate

e Observation: The if/else is unnecessary. * Replace
— The variable test stores a boolean value; public static boolean name (parameters) {
its value is exactly what you want to return. So return that! if (test) {
return true;
public static boolean bothOdd (int nl, int n2) { } else {
boolean test = (n1 % 2 !'= 0 && n2 % 2 !'= 0); return false;
return test; }
} }
e An even shorter version: * with
— We don't even need the variable test. public static boolean name (parameters)

We can just perform the test and return its result in one step. : return test;
public static boolean bothOdd (int nl, int n2) {

return (nl1 $ 2 '= 0 & n2 $ 2 '= 0);

Improved isPrime method Boolean Zen answer

public static void main(String[] args) {

® The fOIIOW|ng VerSIOI’\ UtI|IZGS BOOlean Zen: Scanner console = new Scanner (System.in);
. , , . , System.out.print ("Type two words: ");
public static boolean isPrime (int n) { String wordl = console.next ().toLowerCase();
int factors = O,- String word2 = console.next () .toLowerCase();
for _(lnt 1 :'l’. 1 <=n; l++) { if (rhyme (wordl, word2)) {
if (D. $ 1 == O) { System.out.println ("They rhyme!");
factors++; }
if (alliterate (wordl, word2)) {
} System.out.println ("They alliterate!");
} }
return factors == 2; // if n has 2 factors, true }
} // Returns true if sl and s2 end with the same two letters.

public static boolean rhyme (String sl, String s2) {
return s2.length() >= 2 && sl.endsWith(s2.substring(s2.length() - 2));

¢ Modify our Rhyme program to use Boolean Zen. }

// Returns true if sl and s2 start with the same letter.

public static boolean alliterate(String sl, String s2) {
return sl.startsWith(s2.substring(0, 1));

}

47 48

"Short-circuit” evaluation De Morgan's Law

e Java stops evaluating a test if it knows the answer. e De Morgan's Law: Rules used to negate boolean tests.

- && stops early if any part of the test is false — Useful when you want the opposite of an existing test.
- || stops early if any part of the test is true

Original Expression Negated Expression | Alternative
a && b la || 'b l'(a && Db)
e The following test will crash if s2's length is less than 2: a |l b 'a && 'b '(a || b)

// Returns true if sl and s2 end with the same two letters.
public static boolean rhyme (String sl, String s2) {
return sl.endsWith(s2.substring(s2.length() - 2)) &&
sl.length() >= 2 && s2.length() >= 2; — Example:
}

Original Code Negated Code
» The following test will not crash; it stops if length < 2: if (x == 7 &8y > 3) | if (x =711y <=3){

// Returns true if sl and s2 end with the same two letters. } }
public static boolean rhyme (String sl, String s2) {
return sl.length() >= 2 && s2.length() >= 2 &&

sl.endsWith(s2.substring(s2.length() - 2));

Boolean practice questions Boolean practice answers

e Write a method named isvowel that returns whether a // Enlightened version. I have seen the true way (and false way)
. B N . . public static boolean isVowel (String s) {
StringlSa vowel (a, el 0, 0r U), Case-lnsenSItlver. return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||
. s.equalsIgnoreCase ("i") || s.equalsIgnoreCase("o") ||
- lSVOWGl ("q") returns false s .equalsIgnoreCase ("u");

- isVowel ("A") returns true }

— isVowel ("e") returns true
// Enlightened "Boolean Zen" version
public static boolean isNonVowel (String s) {

 Change the above method into an isNonvowel that returns return ls.equalslgnorecCase("a’) && !s.equalslgnoreCase(Ve”) &&
. . !'s.equalsIgnoreCase ("i") && !s.equalsIgnoreCase("o") &&
whether a string is any character except a vowel. I's.equalsIgnoreCase ("u");
— isNonVowel ("g") returns true

// or, return !'isVowel (s);

— isNonVowel ("A") returns false }
— isNonVowel ("e") returns false

51 52

When to return? Flawed solution

// Draws 10 lotto numbers; returns true if one is 7.

e Methods with loops and return values can be tricky. public static boolean seven (Random rand)
— When and where should the method return its result? for (int i =1; 1 <= 10; i+4) |
int num = rand.nextInt(30) + 1;
System.out.print (num + " ");
e Write a method seven that accepts a Random parameter and if (2:: - ZL é
. u ue;
uses it to draw up to ten lotto numbers from 1-30. } else {

return false;
— If any of the numbers is a lucky 7, the method should stop and }

return true. If none of the ten are 7 it should return false. } }

— The method should print each number as it is drawn.
P — The method always returns immediately after the first roll.

15 29 18 29 11 3 30 17 19 22 (first call) — This is wrong if that roll isn't a 7; we need to keep rolling.
29 5 29 4 7 (second call)

53 54

while loop question

Returning at the right time

// Draws 10 lotto numbers; returns true if one is 7. ; - ;
bublic static boolean seven (Random rand) { e Write a method dlgltS.um Fh.at accepts an integer parameter
for (int i = 1; i <= 10; i++) and returns the sum of its digits.
int num = rand.nextInt(30) + 1;
System.out.print (num + " ") ; — Assume that the number is non-negative.
if (num == 7) { // found lucky 7; can exit now
} return true; — Example: digitSum(29107) returns 24+9+1+0+7 or 19
}
return false; // if we get here, there was no 7

} — Hint: Use the % operator to extract a digit from a number.

— Returns true immediately if 7 is found.

— If 7 isn't found, the loop continues drawing lotto numbers.
— If all ten aren't 7, the loop ends and we return false.

55 56

while loop answer

Boolean return questions

public static int digitSum(int n) { « hasAnOddDigit : returns true if any digit of an integer is odd.

n = Math.abs(n); // handle negatives
- 0 - hasAnOddDigit (4822116) returns true
in sum = ; _ . .
while (n > 0) { hasAnOddDigit (2448) returns false
sum = sum + (n % 10); // add last digit
n=n/ 10; // remove last digit
} * allDigitsOdd : returns true if every digit of an integer is odd.
return sum; - allDigits0dd (135319) returns true

- allDigits0dd (9174529) returns false

« isAllVowels : returns true if every char in a String is a vowel.

— isAllVowels ("eIeIo") returns true
— isAllVowels ("oink") returns false

57

» These problems are available in our Practice-It! system under 5.x. %

Boolean return answers

public static boolean hasAnOddDigit (int n) {
while (n != 0) {
if (n $ 2 '= 0) { // check whether last digit is odd
return true;

}
n=mn/ 10;

Logical Assertions

public static boolean allDigitsOdd(int n) {
while (n != 0) {
if (n $ 2 == 0) { // check whether last digit is even
return false;

}
n=n/ 10;

return true;

}

public static boolean isAllVowels (String
for (int i = 0; 1 < s.length(); i++)
i

)

s

{
String letter = s.substring(i, + 1);
if (!isVowel (letter)) {

return false;
}
}
return true;

59 60

Logical assertions

¢ assertion: A statement that is either true or false.

Examples:

— Java was created in 1995.

— The sky is purple.

— 23 is a prime number.

— 10 is greater than 20.

— x divided by 2 equals 7. (depends on the value of x)

¢ An assertion might be false ("The sky is purple" above), but it
is still an assertion because it is a true/false statement.

61

Assertions in code

» We can make assertions about our code and ask whether they are
true at various points in the code.

— Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print ("Type a nonnegative number: ");
double number = console.nextDouble();
// Point A: is number < 0.0 here? (SOMETIMES)
while (number < 0.0) {
// Point B: is number < 0.0 here? (ALWAYS)
System.out.print ("Negative; try again: ");

number = console.nextDouble();
// Point C: is number < 0.0 here? (SOMETIMES)

}

// Point D: is number < 0.0 here? (NEVER) .

Reasoning about assertions
e Suppose you have the following code:
if (x > 3) {
// Point A
X==;
} else {
// Point B
X+t+;
// Point C
}
// Point D

e What do you know about x's value at the three points?
—Isx > 3? Always? Sometimes? Never?

62

Reasoning about assertions

e Right after a variable is initialized, its value is known:
int x = 3;

// is x > 0? ALWAYS

e In general you know nothing about parameters' values:

public static void mystery(int a, int b) {
// is a == 10? SOMETIMES

e But inside an if, while, etc., you may know something:
public static void mystery(int a, int b) {
if (a < 0) {

// is a == 10? NEVER

64

"Sometimes"

Assertions and loops

Whll‘j , (3i’s<y12) . c{)o SR (often leads to "sometimes" answers):

— reading from a Scanner
J — reading a number from a Random object

« After a loop, the loop's test must be false: — a parameter's initial value to a method
while (y < 10) {
} e If you can reach a part of the program both with the answer
// is y < 102 NEVER being Yes,'l and the a|'1'swer being "no", then the correct
answer is "sometimes".

» Inside a loop's body, the loop's test may become false: — If you're unsure, "Sometimes" is a good guess.
while (y < 10) {
yt+;
// is y < 10? SOMETIMES
} 65 66

Assertion examg Assertion example 2

public static void mystery(int x, int y) { public static int mystery(Scanner console) {
int z = 0; int prev = 0;
int count = 0;
// Point A int next = console.nextInt();
while (x >= y) { // Point A
// Point B Which of the following assertions are while (next != 0) { Which of the following assertions are
X=X -y true at which point(s) in the code? // Point B true at which point(s) in the code?
2t Choose ALWAYS, NEVER, or SOMETIMES. if (next == prev) { Choose ALWAYS, NEVER, or SOMETIMES.
if (x !'=vy) | // Point C
// POl?tZC x <y X ==y z == 0 count++; next == 0 | prev == 0 | next == prev
z =z ;
} Point A | SOMETIMES | SOMETIMES | ALWAYS) Point A | SOMETIMES | ALWAYS SOMETIMES
prev = next;
. Point B | NEVER SOMETIMES | SOMETIMES next = console.nextInt(); |PointB |NEVER SOMETIMES | SOMETIMES
// Point D .
) Point C | SOMETIMES | NEVER NEVER // Point D Point C | NEVER NEVER ALWAYS
Point D | SOMETIMES | SOMETIMES | NEVER } Point D | SOMETIMES | NEVER SOMETIMES
// Point E i ALWAYS NEVER SOMETIMES // Point E i ALWAYS SOMETIMES | SOMETIMES
System.out.println(z); Point E return count; Point E

67 68

Assertion examg

// Assumes y >= 0, and returns x’y
public static int pow(int x, int y) {

int prod = 1;

Which of the following assertions are

// Point A .) .
while (y > 0) { true at which point(s) in the code?
// Point B Choose ALWAYS, NEVER, or SOMETIMES.
if (y 32 == 0) {
// Point C y >0 y%$2==0
X = X * xX; .
Point A | SOMETIMES | SOMETIMES
y=y/ 2;
// Point D Point B | ALWAYS SOMETIMES
} else {
// Point E Point C | ALWAYS ALWAYS
55?@ = prod * x; Point D | ALWAYS SOMETIMES
// Point F Point E | ALWAYS NEVER
}
} Point F | SOMETIMES | ALWAYS
// Point G

return prod;

Point G | NEVER ALWAYS

69

