
Building Java Programs
Chapter 1

Introduction to Java Programming

Copyright (c) Pearson 2013.
All rights reserved.

2

The CS job market

Computer science Biological science
 -

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

PhD
Master's
Bachelor's
Projected Job
Openings

SOURCES: Tabulated by National Science Foundation/Division of Science Resources Statistics; data from Department of Education/National Center for Education Statistics:
Integrated Postsecondary Education Data System Completions Survey; and NSF/SRS: Sur

3

What is programming?
• program: A set of instructions

to be carried out by a computer.

• program execution: The act of
carrying out the instructions
contained in a program.

• programming language: A systematic set of rules used to
describe computations in a format that is editable by humans.
– This textbook teaches programming in a language named Java.

4

Programming languages
• Some influential ones:

– FORTRAN
• science / engineering

– COBOL
• business data

– LISP
• logic and AI

– BASIC
• a simple language

5

Parts of a Computer
• CPU

– GHz for desktops, cell phones
– Primitive instructions

• DRAM
– GB for desktops

• Disk
– GB on phone, 100s GB laptop, TB desktop

• Input/Output devices

6

kilo 103 1,000
mega 106 1,000,000
giga 109 1,000,000,000
tera 1012 1,000,000,000,000
peta 1015 1,000,000,000,000,000
exa 1018 1,000,000,000,000,000,000
zetta 1021 1,000,000,000,000,000,000,000
yotta 1024 1,000,000,000,000,000,000,000,000

“large” units

7

milli 10�3

micro 10�6

nano 10�9

pico 10�12

femto 10�15

atto 10�18

zepto 10�21

yocto 10�24

units < 1

8

names for large numbers

kilo 103 thousand
mega 106 million
giga 109 billion
tera 1012 trillion
peta 1015 quadrillion
exa 1018 quintillion
zetta 1021 sextillion
yotta 1024 septillion

9

powers of 10 powers of 2

kilo 103 1,000 210 1,024
mega 106 1,000,000 220 1,048,576
giga 109 1,000,000,000 230 1,073,741,824
tera 1012 1,000,000,000,000 240 1,099,511,627,776
peta 1015 1,000,000,000,000,000 250 1,125,899,906,842,624
exa 1018 1,000,000,000,000,000,000 260 1,152,921,504,606,846,976
zetta 1021 1,000,000,000,000,000,000,000 270 1,180,591,620,717,411,303,424
yotta 1024 1,000,000,000,000,000,000,000,000 280 1,208,925,819,614,629,174,706,176

kilo: 1,000 or 1,024?

usually use:
• powers of 2 for storage
• powers of 10 for just about everything else

10

proposed prefixes powers of 2

• haven’t exactly taken the world by storm

powers of 10 powers of 2

kilo 103 kibi 210 1,024
mega 106 mebi 220 1,048,576
giga 109 gibi 230 1,073,741,824
tera 1012 tebi 240 1,099,511,627,776
peta 1015 pebi 250 1,125,899,906,842,624
exa 1018 exbi 260 1,152,921,504,606,846,976
zetta 1021 zebi 270 1,180,591,620,717,411,303,424
yotta 1024 yobi 280 1,208,925,819,614,629,174,706,176

Basic Java programs with
println statements

12

Compile/run a program
1. Write it.

– code or source code: The set of instructions in a program.

2. Compile it.
• compile: Translate a program from one language to another.
– byte code: The Java compiler converts your code into a format

named byte code that runs on many computer types.

3. Run (execute) it.
– output: The messages printed to the user by a program.

source code
compile

byte code
run

output

13

A Java program
public class Hello {

public static void main(String[] args) {
System.out.println("Hello, world!");
System.out.println();
System.out.println("This program produces");
System.out.println("four lines of output");

}
}
• Its output:

Hello, world!

This program produces
four lines of output

• console: Text box into which
the program's output is printed.

14

Structure of a Java program
public class name {

public static void main(String[] args) {
statement;
statement;
...
statement;

}
}

• Every executable Java program consists of a class,
– that contains a method named main,

• that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

15

System.out.println

• A statement that prints a line of output on the console.
– pronounced "print-linn"
– sometimes called a "println statement" for short

• Two ways to use System.out.println :

• System.out.println("text");
Prints the given message as output.

• System.out.println();

Prints a blank line of output.

16

Names and identifiers
• You must give your program a name.

public class GangstaRap {

– Naming convention: capitalize each word (e.g. MyClassName)
– Your program's file must match exactly (GangstaRap.java)

• includes capitalization (Java is "case-sensitive")

• identifier: A name given to an item in your program.
– must start with a letter or _ or $
– subsequent characters can be any of those or a number

• legal: _myName TheCure ANSWER_IS_42 $bling$

• illegal: me+u 49ers side-swipe Ph.D's

17

Keywords
• keyword: An identifier that you cannot use because it already

has a reserved meaning in Java.
abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

18

Syntax
• syntax: The set of legal structures and commands that can be

used in a particular language.
– Every basic Java statement ends with a semicolon ;
– The contents of a class or method occur between { and }

• syntax error (compiler error): A problem in the structure of
a program that causes the compiler to fail.
– Missing semicolon
– Too many or too few { } braces
– Illegal identifier for class name
– Class and file names do not match

...

19

Syntax error example
1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")_
4 }
5 }

• Compiler output:
Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {
^

Hello.java:3: ';' expected
}
^
2 errors

– The compiler shows the line number where it found the error.
– The error messages can be tough to understand!

20

Strings
• string: A sequence of characters to be printed.

– Starts and ends with a " quote " character.
• The quotes do not appear in the output.

– Examples:
"hello"
"This is a string. It's very long!"

• Restrictions:
– May not span multiple lines.
"This is not
a legal String."

– May not contain a " character.
"This is not a "legal" String either."

21

Escape sequences
• escape sequence: A special sequence of characters used to

represent certain special characters in a string.
\t tab character
\n new line character
\" quotation mark character
\\ backslash character

– Example:
System.out.println("\\hello\nhow\tare \"you\"?\\\\");

– Output:
\hello
how are "you"?\\

22

Questions
• What is the output of the following println statements?

System.out.println("\ta\tb\tc");
System.out.println("\\\\");
System.out.println("'");
System.out.println("\"\"\"");
System.out.println("C:\nin\the downward spiral");

• Write a println statement to produce this output:
/ \ // \\ /// \\\

23

Answers
• Output of each println statement:

a b c
\\
'
"""
C:
in he downward spiral

•println statement to produce the line of output:
System.out.println("/ \\ // \\\\ /// \\\\\\");

24

Questions
• What println statements will generate this output?

This program prints a
quote from the Gettysburg Address.

"Four score and seven years ago,
our 'fore fathers' brought forth on
this continent a new nation."

• What println statements will generate this output?
A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget: use \" instead of " !
'' is not the same as "

25

Answers
•println statements to generate the output:

System.out.println("This program prints a");
System.out.println("quote from the Gettysburg Address.");
System.out.println();
System.out.println("\"Four score and seven years ago,");
System.out.println("our 'fore fathers' brought forth on");
System.out.println("this continent a new nation.\"");

•println statements to generate the output:
System.out.println("A \"quoted\" String is");
System.out.println("'much' better if you learn");
System.out.println("the rules of \"escape sequences.\"");
System.out.println();
System.out.println("Also, \"\" represents an empty String.");
System.out.println("Don't forget: use \\\" instead of \" !");
System.out.println("'' is not the same as \"");

26

Comments
• comment: A note written in source code by the programmer

to describe or clarify the code.
– Comments are not executed when your program runs.

• Syntax:
// comment text, on one line

or,
/* comment text; may span multiple lines */

• Examples:
// This is a one-line comment.

/* This is a very long
multi-line comment. */

27

Using comments
• Where to place comments:

– at the top of each file (a "comment header")
– at the start of every method (seen later)
– to explain complex pieces of code

• Comments are useful for:
– Understanding larger, more complex programs.
– Multiple programmers working together, who must understand

each other's code.

28

Comments example
/* Suzy Student, CS 101, Fall 2019

This program prints lyrics about ... something. */

public class BaWitDaBa {
public static void main(String[] args) {

// first verse
System.out.println("Bawitdaba");
System.out.println("da bang a dang diggy diggy");
System.out.println();

// second verse
System.out.println("diggy said the boogy");
System.out.println("said up jump the boogy");

}
}

Static methods

30

Algorithms
• algorithm: A list of steps for solving a problem.

• Example algorithm: "Bake sugar cookies"
– Mix the dry ingredients.
– Cream the butter and sugar.
– Beat in the eggs.
– Stir in the dry ingredients.
– Set the oven temperature.
– Set the timer.
– Place the cookies into the oven.
– Allow the cookies to bake.
– Spread frosting and sprinkles onto the cookies.
– ...

31

Problems with algorithms
• lack of structure: Many tiny steps; tough to remember.

• redundancy: Consider making a double batch...
– Mix the dry ingredients.
– Cream the butter and sugar.
– Beat in the eggs.
– Stir in the dry ingredients.
– Set the oven temperature.
– Set the timer.
– Place the first batch of cookies into the oven.
– Allow the cookies to bake.
– Set the timer.
– Place the second batch of cookies into the oven.
– Allow the cookies to bake.
– Mix ingredients for frosting.
– ... 32

Structured algorithms
• structured algorithm: Split into coherent tasks.

1 Make the cookie batter.
– Mix the dry ingredients.
– Cream the butter and sugar.
– Beat in the eggs.
– Stir in the dry ingredients.

2 Bake the cookies.
– Set the oven temperature.
– Set the timer.
– Place the cookies into the oven.
– Allow the cookies to bake.

3 Add frosting and sprinkles.
– Mix the ingredients for the frosting.
– Spread frosting and sprinkles onto the cookies.
...

33

Removing redundancy
• A well-structured algorithm can describe repeated tasks with

less redundancy.

1 Make the cookie batter.
– Mix the dry ingredients.
– ...

2a Bake the cookies (first batch).
– Set the oven temperature.
– Set the timer.
– ...

2b Bake the cookies (second batch).

3 Decorate the cookies.
– ...

34

A program with redundancy
public class BakeCookies {

public static void main(String[] args) {
System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");
System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");
System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");
System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

35

Static methods
• static method: A named group of statements.

• denotes the structure of a program
• eliminates redundancy by code reuse

– procedural decomposition:
dividing a problem into methods

• Writing a static method is like
adding a new command to Java.

class
method A

n statement
n statement
n statement

method B
n statement
n statement

method C
n statement
n statement
n statement

36

Using static methods
1. Design the algorithm.

– Look at the structure, and which commands are repeated.
– Decide what are the important overall tasks.

2. Declare (write down) the methods.
– Arrange statements into groups and give each group a name.

3. Call (run) the methods.
– The program's main method executes the other methods to

perform the overall task.

37

Design of an algorithm
// This program displays a delicious recipe for baking cookies.
public class BakeCookies2 {

public static void main(String[] args) {
// Step 1: Make the cake batter.
System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

// Step 2a: Bake cookies (first batch).
System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

// Step 2b: Bake cookies (second batch).
System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

// Step 3: Decorate the cookies.
System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

38

Gives your method a name so it can be executed

• Syntax:
public static void name() {

statement;
statement;
...
statement;

}

• Example:
public static void printWarning() {

System.out.println("This product causes cancer");
System.out.println("in lab rats and humans.");

}

Declaring a method

39

Calling a method
Executes the method's code

• Syntax:
name();

– You can call the same method many times if you like.

• Example:
printWarning();

– Output:

This product causes cancer
in lab rats and humans.

40

Program with static method
public class FreshPrince {

public static void main(String[] args) {
rap(); // Calling (running) the rap method
System.out.println();
rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.
public static void rap() {

System.out.println("Now this is the story all about how");
System.out.println("My life got flipped turned upside-down");

}
}

Output:
Now this is the story all about how
My life got flipped turned upside-down

Now this is the story all about how
My life got flipped turned upside-down

41

Final cookie program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {

public static void main(String[] args) {
makeBatter();
bake(); // 1st batch
bake(); // 2nd batch
decorate();

}

// Step 1: Make the cake batter.
public static void makeBatter() {

System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

}
// Step 2: Bake a batch of cookies.
public static void bake() {

System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

}
// Step 3: Decorate the cookies.
public static void decorate() {

System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

42

Methods calling methods
public class MethodsExample {

public static void main(String[] args) {
message1();
message2();
System.out.println("Done with main.");

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}
}

• Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

43

• When a method is called, the program's execution...
– "jumps" into that method, executing its statements, then
– "jumps" back to the point where the method was called.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();

System.out.println("Done with message2.");
}

public static void message1() {
System.out.println("This is message1.");

}

Control flow

44

When to use methods
• Place statements into a static method if:

– The statements are related structurally, and/or
– The statements are repeated.

• You should not create static methods for:
– An individual println statement.
– Only blank lines. (Put blank printlns in main.)
– Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

Drawing complex figures
with static methods

46

Static methods question
• Write a program to print these figures using methods.

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

47

Development strategy

/ \
/ \
\ /
______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /
______/

/ \

/ \
+--------+

First version (unstructured):

n Create an empty program and main method.

n Copy the expected output into it, surrounding
each line with System.out.println syntax.

n Run it to verify the output.

48

Program version 1
public class Figures1 {

public static void main(String[] args) {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

49

Development strategy 2

/ \

/ \
\ /
______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /
______/

/ \

/ \
+--------+

Second version (structured, with redundancy):

n Identify the structure of the output.

n Divide the main method into static methods
based on this structure.

50

Output structure

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

The structure of the output:
n initial "egg" figure
n second "teacup" figure
n third "stop sign" figure
n fourth "hat" figure

This structure can be represented by methods:
n egg

n teaCup

n stopSign

n hat

51

Program version 2
public class Figures2 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}

public static void egg() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void teaCup() {
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();

}
...

52

Program version 2, cont'd.
...

public static void stopSign() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void hat() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

53

Development strategy 3

/ \

/ \
\ /
______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /
______/

/ \

/ \
+--------+

Third version (structured, without redundancy):

n Identify redundancy in the output, and create
methods to eliminate as much as possible.

n Add comments to the program.

54

Output redundancy

The redundancy in the output:

n egg top: reused on stop sign, hat
n egg bottom: reused on teacup, stop sign
n divider line: used on teacup, hat

This redundancy can be fixed by methods:
n eggTop

n eggBottom

n line

/ \
/ \
\ /
______/

\ /
______/
+--------+

/ \
/ \
| STOP |
\ /
______/

/ \
/ \
+--------+

55

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}
// Draws the top half of an an egg figure.
public static void eggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}
// Draws the bottom half of an egg figure.
public static void eggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}
// Draws a complete egg figure.
public static void egg() {

eggTop();
eggBottom();
System.out.println();

}
...

56

Program version 3, cont'd.
...
// Draws a teacup figure.
public static void teaCup() {

eggBottom();
line();
System.out.println();

}
// Draws a stop sign figure.
public static void stopSign() {

eggTop();
System.out.println("| STOP |");
eggBottom();
System.out.println();

}
// Draws a figure that looks sort of like a hat.
public static void hat() {

eggTop();
line();

}
// Draws a line of dashes.
public static void line() {

System.out.println("+--------+");
}

}

