The CS job market

160,000
= = 140,000
Building Java Programs 120,000
u
Chapter 1 2
80,000 O Bachelor's
E Projected Job
60,000 Openings
Introduction to Java Programming 40,000
20,000
Copyright (c) Pearson 2013.) Computer science Biological science

All rights reserved.

SOURCES: Tabulated by National Scien 1 f Science Resources Statistics; data from Depart /National

Center for Education Statistics:

ce Foundation/Division of Scien urces Sta ment of Education
Integrated Postsecondary Education Data System Completions Survey; and NSF/SRS: Sur

What is programming?

Programming languages

e program: A set of instructions r ¢ Some influential ones:
to be carried out by a computer. [|
Y= — FORTRAN
« program execution: The act of E—————*—‘ab science / engineering
i i ; — COBOL
carrying out the instructions :
contained in a program. * business data
— LISP
e programming language: A systematic set of rules used to * logic and Al o
describe computations in a format that is editable by humans. — BASIC e
— This textbook teaches programming in a language named Java. * a simple language

“large” units

Parts of a Computer

e CPU
— GHz for desktops, cell phones kilo 103 1.000
. D—RZ:/Imitive instructions mega 106 1 : 000,000
— GB for desktops giga 109 1,000,000,000
* Disk tera 10'2 1,000,000,000,000
— GB on phone, 100s GB laptop, TB desktop peta 10 1,000,000,000,000,000
* Input/Output devices exa 10 1,000,000,000,000,000,000

zetta 102! 1,000,000,000,000,000,000,000
yotta 1024 1,000,000,000,000,000,000,000,000

milli 1073 kilo thousand
micro 1076 mega 106 million
nano 1079 giga 10° billion

pico 10712 tera 10'? trillion
femto 1071° peta 10 quadrillion
atto 10718 exa 10'® quintillion
zepto 10721 zetta 10*! sextillion

yocto 10724 yotta 10** septillion

kilo: 1,000 or 1,024? proposed prefixes powers of 2

powers of 10 powers of 2 powers of 10 powers of 2
kilo 10° 1,000 210 1,024 kilo 103 kibi 210 1,024
mega 10 1,000,000 220 1,048,576 .
gign 10° 1,000,000,000 230 1,073,741,824 mega 10° mebi 220 1,048,576
tera 102 1,000,000,000,000 240 1,099,511,627,776 giga 109 gibi 230 1,073,741,824
peta 10** 1,000,000,000,000,000 250 1,125,899,906,842,624 12 . 40
exa 10’ 1,000,000,000,000,000,000 200 1,152,921,504,606,846,976 tera 10 tebi 27" 1,099,511,627,776
zetta 10 1,000,000,000,000,000,000,000 270 1,180,591,620,717,411,303,424 peta 10%° pebi 250 1,125,899,906,842,624
yotta 102% 1,000,000,000,000,000,000,000,000 280 1208,925,819,614,629,174,706,176 exa 1018 exbi 260]_,152,921,504,606,846,976
zetta 102! zebi 270 1,180,591,620,717,411,303,424
usually use: yotta 10% yobi 280 1,208,925,819,614,629,174,706,176
e powers of 2 for storage
e powers of 10 for just about everything else e haven't exactly taken the world by storm
9 10

Compile/run a program

1. Writeit.
— code or source code: The set of instructions in a program.
Basic Java programs with 2. Compilett.
pr intln statements o compile: Translate a program from one language to another.

— byte code: The Java compiler converts your code into a format
named byte code that runs on many computer types.

3. Run (execute) it.
— output: The messages printed to the user by a program.

source code byte code output

----3GRASP exec: java Hello

gy compile E run
E E Hello, World!
\é E] ----JGRASP: operation comple

Hello.java Hello.class

12

A Java program Structure of a Java program

public class Hello { public class name{/‘ class: a program ‘
public static void main(String[] args) { public static void main(String[] args) {
System.out .pr%ntln ("Hello, world!"); statement;
System.out.printin .) / statement; method: a named group

'This program produces");
System.out.println("four lines of output");

statement;
) "\
}
) } ’statement: a command to be executed
o Its output:

Hello, world!

(
. . i 1
System.out.print HE of statements

essages | JGRASP Messages | Run l/O |

This program prOduceS] ----JGRASP exec: java Hello .
four lines of output % * Every executable Java program consists of a class,
le: Text box into which T progran produces — that contains a method named main,
e console: |1ext box Into wnic .
the program's output is printed. || ~mrieRase: operation complete. » that contains the statements (commands) to be executed.

13 14

System.out.println Names and identifiers

« A statement that prints a line of output on the console. e You must give your program a name.
— pronounced "print-linn" .
) . public class GangstaRap {
— sometimes called a "println statement" for short
— Naming convention: capitalize each word (e.g. MyClassName)
 Two ways to use System.out.println : — Your program's file must match exactly (GangstaRap.java)

e includes capitalization (Java is "case-sensitive")
e System.out.println ("text") ;

Prints the given message as output. « identifier: A name given to an item in your program.

— must start with a letter or _or $

— subsequent characters can be any of those or a number
elegal: myName TheCure ANSWER IS 42 S$bling$
eillegal: me+u 49ers side-swipe Ph.D's

e System.out.println();
Prints a blank line of output.

15 16

Keywords

» keyword: An identifier that you cannot use because it already e syntax: The set of legal structures and commands that can be
has a reserved meaning in Java. used in a particular language.
abstract default it private this — Every basic Java statement ends with a semicolon ;
boolean do implements protected throw — The contents of a class or method occur between { and }
break double import public throws
byte else instanceof return transient]
case extends int short try e syntax error (compiler error): A problem in the structure of
catch final interface static void a program that causes the compiler to fail.
char finally long strictfp volatile Missi icol
class float native super while — Missing semicoion
const for new switch — Too many or too few { } braces
continue goto package synchronized

— Illegal identifier for class name
— Class and file names do not match

17 18

Syntax error example

1 public class Hello { H . H
. pooblic static void main(Stringl] args) | e string: A sequence_ of characters to be printed.
3 System.owt.println("Hello, world!") — Starts and ends with a " quote " character.
4 } The quotes do not appear in the output.
5)
. — Examples:
o Compiler output: P
Hello.java:2: <identifier> expected he]_'lol)
pooblic static void main(String[] args) { "This is a string. It's very long!"
Hello.java:3: ';' expected Lo
} e Restrictions:
2 errors — May not span multiple lines.
"This is not
— The compiler shows the line number where it found the error. a legal String."

— The error messages can be tough to understand! — May not contain a " character.

"This is not a "legal" String either."
19 20

Escape sequences

e escape sequence: A special sequence of characters used to
represent certain special characters in a string.

\t tab character

\n new line character

\" quotation mark character
AN\ backslash character

— Example:

System.out.println ("\\hello\nhow\tare \"you\"?\\\\");
— Output:

\hello

how are "you"?2\\

21

e Qutput of each print1n statement:

a b c
A\
C:
in he downward spiral

« print1n statement to produce the line of output:
System.out.println("/ \\ // \\\\ /// \\\\\\");

23

e What is the output of the following print1n statements?

System.out.println ("\ta\tb\tc");
System.out.println ("\\\\");
System.out.println("'");
System.out.println ("\"\"\"");

(

System.out.println ("C:\nin\the downward spiral");

e Write a print1n statement to produce this output:

/N /NN /77 N\

e What print1n statements will generate this output?

This program prints a
quote from the Gettysburg Address.

"Four score and seven years ago,
our 'fore fathers' brought forth on
this continent a new nation."

e What print1n statements will generate this output?

A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget: use \" instead of "™ !
''" is not the same as "

+ println statements to generate the output: e« comment: A note written in source code by the programmer
to describe or clarify the code.

System.out.println("This program prints a");

System.out.println("quote from the Gettysburg Address."); — Comments are not executed when your program runs.
System.out.println();
System.out.println ("\"Four score and seven years ago,"); ° Syntax:
System.out.println ("our 'fore fathers' brought forth on"); .
System.out.println("this continent a new nation.\""); // comment text, on one line
or,
» print1ln statements to generate the output: /* comment text; may span multiple lines */
System.out.println("A \"quoted\" String is"); ° .
System.out.println (" 'much' better if you learn"); ExarnFﬂ?s' . .
System.out.println("the rules of \"escape sequences.\""); // This is a one-line comment.

)i

(
(
(
System.out.println(
("Also, \"\" represents an empty String."); /* This is a very long
(
(

System.out.println :
’ multi-line comment. */

System.out.println("Don't forget: use \\\" instead of \" !");
System.out.println("'' is not the same as \"");

25 26

Using comments Comments example

/* Suzy Student, CS 101, Fall 2019
This program prints lyrics about ... something. */

e Where to place comments:

— at the top of each file (a "comment header") , ,
public class BaWitDaBa {

— at the start of every method (seen later) public static void main(String[] args) {
. . // first verse
— to explain complex pieces of code System.out.println ("Bawitdaba") ;

System.out.println("da bang a dang diggy diggy"):
System.out.println();

e Comments are useful for: /) second verse

— Understanding larger, more complex programs. System.out.println("diggy said the boogy");
System.out.println("said up jump the boogy");

— Multiple programmers working together, who must understand }
each other's code. }

27 28

e algorithm: A list of steps for solving a problem.

e Example algorithm: "Bake sugar cookies"
- — Mix the dry ingredients.
Statlc methOdS — Cream the butter and sugar.

— Beat in the eggs.
— Stir in the dry ingredients.
— Set the oven temperature.
— Set the timer.
— Place the cookies into the oven.
— Allow the cookies to bake.
— Spread frosting and sprinkles onto the cookies.

30

Problems with algorithms Structured algorithms

e lack of structure: Many tiny steps; tough to remember. o structured algorithm: Split into coherent tasks.
1 Make the cookie batter.

Mix the dry ingredients.

Cream the butter and sugar.

Beat in the eggs.

Stir in the dry ingredients.

e redundancy: Consider making a double batch...
— Mix the dry ingredients.
— Cream the butter and sugar.
— Beat in the eggs.
— Stir in the dry ingredients.
— Set the oven temperature.
— Set the timer.
— Place the first batch of cookies into the oven.
— Allow the cookies to bake.

2 Bake the cookies.

— Set the oven temperature.

Set the timer.

Place the cookies into the oven.
Allow the cookies to bake.

— Set the timer. -
— Place the second batch of cookies into the oven. 3 Add frosting and sprinkles.
— Allow the cookies to bake. - Mix the ingredients for the frosting.

Mix ingredients for frosting. — Spread frosting and sprinkles onto the cookies.

31 32

Removing redundancy A program with redundancy

public class BakeCookies {
public static void main(String[] args) {

¢ A well-structured algorithm can describe repeated tasks with

less redundancy. System.out.println ("Mix the dry ingredients.");
System.out.println ("Cream the butter and sugar.");
1 Make the cookie batter. System.out.println("Beat in the eggs.");

- MIX the dry Ingredlents' System.out.println("Set the oven temperature.");

= e System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");

2a Bake the cookies (first batch). System.out.println("Allow the cookies to bake.");

_ System.out.println("Set the oven temperature.");
Set the oven temperature' System.out.println("Set the timer.");

— Set the timer. System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");
System.out.println("Mix ingredients for frosting.");

2b Bake the COOkieS (Second batCh) System.out.println("Spread frosting and sprinkles.");

(
(
System.out.println("Stir in the dry ingredients.");
(
(
(

3 Decorate the cookies.

33 34

Static methods Using static methods

« static method: A named group of statements. 1. Design the algorithm.
« denotes the structure of a program class — Look at the structure, and which commands are repeated.
* eliminates redundancy by code reuse ethod A — Decide what are the important overall tasks.
= statement
— procedural decomposition: = statement 2. Declare (write down) the methods.
dividing a problem into methods = statement . .
— Arrange statements into groups and give each group a name.
method B
= statement Il (run) th hod
o . - = statement 3. Call (run) the methods.
e Writing a static method is like , ,
adding a new command to Java method C — The program's main method executes the other methods to
g ' = statement perform the overall task.
= statement
= statement

35 36

Design of an algorithm Declaring a method

// This program displays a delicious recipe for baking cookies. : .
Tublic crace BakeConkies? (F g Gives your method a name so it can be executed
public static void main(String[] args) {
// Step 1: Make the cake batter. ° .
System.out.println("Mix the dry ingredients."); Syntax'
System.out.println("Cream the butter and sugar."); , , ,
System.out.println("Beat in the eggs."); public static void name () {
System.out.println("Stir in the dry ingredients."); statement;
// Step 2a: Bake cookies (first batch). statement;

System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven."); statement;
System.out.println("Allow the cookies to bake."); }

// Step 2b: Bake cookies (second batch).
System.out.println("Set the oven temperature.");

System.out.println("Set the timer."); [Example:

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake."); public static void printWarning() {

// Step 3: Decorate the cookies. System.out.println("This product causes cancer");

System.out.println ("Mix ingredients for frosting.");

4 "3 " .
System.out.println("Spread frosting and sprinkles."); System.out.println("in lab rats and humans.");

37 38

Calling a method Program with static method

public class FreshPrince ({
public static void main(String[] args) {

Executes the method's code

rap(); // Calling (running) the rap method
° SyntaX: System.out.println();
rap(); // Calling the rap method again

name () ; }

// This method prints the lyrics to my favorite song.

public static void rap() {

System.out.println("Now this is the story all about how");
System.out.println("My life got flipped turned upside-down");

— You can call the same method many times if you like.

e Example: }
}
printWarning () ;
Output:
- Output: Now this is the story all about how

My life got flipped turned upside-down
This product causes cancer

in lab rats and humans. Now this is the story all about how
My life got flipped turned upside-down

39 40

Final cookie program

// This {rogram displays a delicious recipe for baking cookies.

public class BakeCookies3 {
public static void main(String[] args) {
makeBatter () ;
bake () ; // 1lst batch
bake () ; // 2nd batch
decorate() ;

}

// Step 1: Make the cake batter.

public static void makeBatter ()
System.out.println("Mix the dry ingredients.");
System.out.println ("Cream the butter and sugar.");
System.out.println ("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

// Step 2: Bake a batch of cookies.

public static void bake()
System.out.println ("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

// Step 3: Decorate the cookies.

public static void decorate() {
System.out.println("Mix ingredients for frosting.");
System.out.println ("Spread frosting and sprinkles.");

41

e When a method is called, the program's execution...
— "jumps" into that method, executing its statements, then
— "jumps" back to the point where the method was called.

public class MethodsExample {

c

public static void main (g public static void messagel() {

messagel () ;i *System.out.println("This is messagel.");
[}

message2 ()\ public static void message2 () {
[

System.out.println("This is message2.");
messagel() ;

yptem.out.println ("Done with message2.");

})

System.out.println("This is messagel.");

/]
7{:l¥c static void messagel () {

Methods calling methods

public class MethodsExample {
public static void main(String[] args) {
messagel () ;
message2 () ;
System.out.println("Done with main.");

}

public static void messagel () {
System.out.println("This is messagel.");

}

public static void message2 () {

System.out.println("This is message2.");
messagel () ;
System.out.println ("Done with message2.");

}
}

e Output:
This is messagel.
This is message?2.
This is messagel.
Done with message?.

Done with main.
42

When to use methods

e Place statements into a static method if:
— The statements are related structurally, and/or
— The statements are repeated.

« You should not create static methods for:
— An individual print1n statement.
— Only blank lines. (Put blank print1lnsin main.)

— Unrelated or weakly related statements.
(Consider splitting them into two smaller methods.)

44

Static methods question

e Write a program to print these figures using methods.

Drawing complex figures L
with static methods o

46

Development strategy

public class Figuresl {
public static void main(String[] args) {
- System.out.println (" ")

)/ " First version (unstructured): AU I RN
\ / System.out.println ("\\ /")
\ / = Create an empty program and main method. System.out.println(" \\ /™

System.out.println();
. . i System.out.println ("\\ ")
\\ // = Copy the expected output into it, surrounding System.out.println(" \\ /i
At each line with system.out.println syntax. System.out.println (*4-------- R
System.out.println();
. . System.out.println (" ")
- = Run it to verify the output. System.out.println(" / \\") 5
/ \ System.out.println("/ \\") ;
/ \ System.out.println("| STOP |[|");
| sToP | System.out.println ("\\ /")
\ / System.out.println (" \\ /")
\ / System.out.println();
E— System.out.println (" ")
System.out.println (" / \N\™) 5
I System.out.println("/ \\™M) ;
/ \ System.out.println("+-------- +")
/ \ }
Hommmm o + }

47 48

Development strategy 2 Output structure

,/ \\ Second version (structured, with redundancy): // \\ The structure of the output:
\ / . \ / initial "egg" figure
\ / » Identify the structure of the output. \ / - "gg d "o

= second "teacup" figure
\ / \ / g Lo e
_/ = Divide the main method into static methods A = third s"top"sgn figure
T i based on this structure. T " = fourth "hat" figure
// \\ // \\ This structure can be represented by methods:
| STOP | | STOP | = €99
\ / \ /
\ / \ y s teaCup

= stopSign
/ \ / \ = hat
/ \ / \
o + to—— +

49 50

Program version 2

public class Figures2 {
public static void main(String[] args) {

egg () ; public static void stopSign() {
teaCup() ; System.out.println (" ")
stopSign() ; System.out.println (" / ")
hat() ; System.out.println("/ \\") ;
} System.out.println("| STOP |[");
System.out.println ("\\ ")
public static void egg() { System.out.println (" \\ /")
System.out.println (" ") ; System.out.println();
System.out.println(" / \\M) }
System.out.println("/ \\") 5
System.out.println ("\\ /") public static void hat() {
System.out.println (" \\ /") System.out.println (" ")
System.out.println(); System.out.println (" / \\")
} System.out.println("/ \\");
System.out.println("+-—--—-—-—--- +")
public static void teaCup() { }
System.out.println ("\\ /") }
System.out.println (" \\ /")
System.out.println ("+---—-—--- +"y

System.out.println () ;

51 52

Development strategy 3 Output redundancy

,/ \\ Third version (structured, without redundancy): // \\

\ / .) \ / Th ndancy in th :

\ / = Identify redundancy in the output, and create \ / e redundancy in the output

\ / methods to eliminate as much as pOSSIb|e. \ / = egg top: reused on stop Sign, hat
A / = egg bottom: reused on teacup, stop sign
R + R +

= Add comments to the program. « divider line: used on teacup, hat

/ \ / \

/ \ / \ This redundancy can be fixed by methods:

| STOP | | STOP |

\ / \ / = eggTop

\ / A = eggBottom

s line

/ \ / \

/ \ / \
o + o +

53 54

Program version 3 Program version 3, cont'd.

// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {

public static void main(String[] args) {

// Draws a teacup figure.
public static void teaCup() {

2 eggBottom() ;
iggéﬁé(); line();)
stopSign () ;) System.out.println();
hat () ;

} // Draws a stop sign figure.

// Draws the top half of an an egg figure. publigg;g;%i? void stopSign() {

publ§§siznggt?g;gngggiﬁp() { " System.out.println("| STOP |[|");
System.out.println(" / ") 7 Sgggg;tgﬁé)'rintln().
System.out.println("/ \\")) y . e ;

// Draws the bottom half of an egg figure. // Draws a figure that looks sort of like a hat.
{

public static void eggBottom() public §§a§§? void hat ()
System.out.println ("\\ /") 1?ge(?- !
System.out.println ("™ \\ /™) } ’

// Draws a line of dashes.
public static void line()

// Draws a complete egg figure. {
System.out.println ("+-------- +") ;

public static void egg() {
eggTop () ;
eggBottom () ; }
System.out.println () ;

55 56

