Some Subnetting Practice Problem Solutions

practice problem

1. What is 23.183.62.51 in binary?

Solution:		
	dec	bin
	23	0001 0111
	183	$1011 \ 0111$
	62	$0011\ 1110$
	51	$0011 \ 0011$

2. What class address is this?

Solution: It begins with a 0, so it's an A.

3. If no subnetting has been done, on what network is it (in CIDR notation)?

Solution: It's an A, so if no subnetting has been done, the first byte is used for the network part of the address. The network is: 23.0.0.0/8

4. How many hosts can be put on a network of this class?

Solution: 8 bits are used for the network part. This leaves 24 bits for the host part. With 24 bits, we can specify about 2^{24} hosts.

5. How many networks of this class are possible?

Solution: 8 bits are used for the network part, but the first bit must be a 0. There are 2^7 possibilities.

6. What is the natural netmask of a network of this class?

Solution: 8 bits are used for the network part. The netmask is the IP address with 8 1s and 24 0s. This is 255.0.0.0

7. Break this network into 8 subnets:

(a) What is the address of each subnet (in CIDR notation)?

Solution: We have	ve:				
	23	0	0	0	
	$0001 \ 0111$	0000 0000	0000 0000	000 000	
To form the 8 subr	nets we steal	the first thr	e bits of the	host part (i e	the first 3

To form the 8 subnets, we steal the first three bits of the host part (*i.e.*, the first 3 bits of the 2nd byte), and give it to the network part. The 8 possibilities for these three bits are:

000	
001	
010	
011	
100	
101	
110	
111	

These first three bits are in the 128s, 64s, and 32s column of the 2nd byte, so they represent the values:

000	0
001	32
010	64
011	64 + 32 = 96
100	128
101	128 + 32 = 160
110	128 + 64 = 192
111	128 + 64 + 32 = 224
_	22 0 0 0 /11
	23.0.0.0/11

The 8 subnets are therefore:

23.0.0/11
23.32.0.0/11
23.64.0.0/11
23.96.0.0/11
23.128.0.0/11
23.160.0.0/11
23.192.0.0/11
23.224.0.0/11

They're all /11s because we're now using 11 bits for the network part and not 8.

(b) How many hosts can be put on each subnet?

Solution: 11 bits are used for the network part. This leaves 21 bits for the host part, so there's roughly 2^{21} possible hosts.

(c) What is the netmask of each subnet?

Solution: We're using 11 bits for the network part. The netmask is the IP address that consists of 11 1s on the left hand side and 21 0s on the right hand side. This is:					
-	255	224	0	0	
-	1111 1111	1110 0000	0000 0000	0000 0000	

another practice problem

8. What is 207.245.83.199 in binary?

Solution:		
	dec	bin
	207	1100 1111
	245	$1111\ 0101$
	83	$0101 \ 0011$
	199	1100 0111
	199	1100 0111

9. What class address is this?

Solution: It begins with a 110, so it's a C.

10. If no subnetting has been done, on what network is it (in CIDR notation)?

Solution: It's a C, so if no subnetting has been done, the first three bytes are used for the network part of the address. The network is: 207.245.83.0/24

11. How many hosts can be put on a network of this class?

Solution: 24 bits are used for the network part. This leaves 8 bits for the host part. With 8 bits, we can specify about 2^8 hosts.

12. How many networks of this class are possible?

Solution: 24 bits are used for the network part, but the first three bits must be 110. There are 2^{21} possibilities.

13. What is the natural netmask of a network of this class?

Solution: 24 bits are used for the network part. The netmask is the IP address with 24 1s and 8 0s. This is 255.255.255.0

- 14. Break this network into 4 subnets:
 - (a) What is the address of each subnet (in CIDR notation)?

Solution: We	have:			
	207	245	83	0
	1100 1111	1111 0101	0101 0011	0000 0000
	network part			host part

To form the 4 subnets, we steal the first two bits of the host part (*i.e.*, the first 2 bits of the 2nd byte), and give it to the network part. The 4 possibilities for these two bits are:

These first two bits are in the 128s and 64s column of the 2nd byte, so they represent the values:

00	0
01	64
10	128
11	128 + 64 = 192

The 8 subnets are therefore:

They're all /11s because we're now using 11 bits for the network part and not 8.

• How many hosts can be put on each subnet?

207.245.83.0/26
207.245.83.64/26
207.245.83.128/26
207.245.83.192/26

26 bits are used for the network part. This leaves 6 bits for the host part, so there's roughly $2^6 = 64$ possible hosts.

(b) What is the netmask of each subnet?

Solution: We're that consists of 26	using 26 bits 1s on the le	for the net ft hand side	work part. 7 and 6 0s on	The netmask i the right han	is the IP address d side. This is:
	255 1111 1111	255 1111 1111	255 1111 1111	192 1100 0000	

still another practice problem.

To show that we don't always start at the left-most bits of each byte. Consider the network 23.160.0.0/12.

15. How many hosts can be put on this network?

Solution: 12 bits are used for the network part. This leaves 20 bits for the host part, so approximately 2^{20} hosts.

16. What is the mask for this network?

Solution: It's the IP address with 12 1s on the left hand side and 20 0s on the right hand side, so:

255	240	0	0
1111 1111	1111 0000	0000 0000	0000 0000

- 17. Break the network into 8 subnets:
 - (a) What is the address of each subnet (in CIDR notation)?

Solution: To break it into 8 subnets, we need to steal 3 bits from the host part and give it to the network part. These bits are in the 13th, 14th, and 15th position, *i.e.*, the 5th, 6th, and 7th bits of the 2nd byte.

The 8 possibilities for the three bits are:

000
001
010
011
100
101
110
111

These three bits are in the 8s, 4s, and 2s column, so they represent:

000	0
001	2
010	4
011	4+2=6
100	8
101	8+2=10
110	8 + 4 = 12
111	8 + 4 + 2 = 14

We started out with the address 23.160.0.0/12, so the full 2nd byte of each subnet will then be:

	1010 000 0 0
	1010 001 0 162
	1010 010 0 164
	1010 011 0 166
	1010 100 0 168
	1010 101 0 170
	1010 110 0 172
	1010 111 0 174
o the subnets are:	
	$\overline{23.160.0.0/15}$
	$\overline{23.162.0.0/15}$
	$\overline{23.164.0.0/15}$
	23.166.0.0/15
	23.168.0.0/15
	23.170.0.0/15
	23.172.0.0/15
	23.174.0.0/15

(b) How many hosts can be put on each subnet?

Solution: 15 bits are used for the network part, so 17 bits are used for the host part. This gives us approximately 2^{17} hosts per subnet.

(c) What is the netmask of each subnet?

Solution: The mask is the IP address with 15 1s on the left hand side and 17 0s on the right hand side, so:

1111 1111	$1111 \ 1110$	0000 0000	0000 0000
255	254	0	0