2168.02 – Quiz #3

Name______________________________

1. To remove the last node of a single-linked list, you must:

(a) Not possible, you can only add nodes since there’s no easy way to remove them from a single-linked list.

(b) Create a new list, and use the add() method to copy all but the last node to this new list.

(c) Set the 2nd to last node’s “next” to equal “null”.

(d) Erase the last node from memory with a memory clear method.

2. A double-linked list contains nodes that point forwards (“next”) and backwards (“previous”). There is a pointer to both the “head” and “tail” from outside the list. Note that the first node’s “previous” points to “null”.

[image: image1]
Write a removeLast() method for this class, DoubleLinkedList that removes the last node from the list (hmm question 1 might help) and returns the node that was removed.
public class DoubleLinkedList

{
 Node head, tail = null;

 public DoubleLinkedList(){

 }
 public static void main(String[] args){

 DoubleLinkedList newList = new DoubleLinkedList();

 //assume things were added to the list here…

 Node lastNode = newList.removeLast();

 }
 public Node removeLast()
 {

 //Hint: you don’t necessarily need a loop for this method
 } //end of method: remove()

} //end of class: DoubleLinkedList

3. The add() method for the single-linked list has a performance time of O(n) because you must loop through all “n” elements to complete the operation (since that is the only way to get to the end of the list). What is the runtime of add() for a double-linked list, and why?

Choices:

(a) O(n)

(b) O(1)

(c) O(n2)

(d) O(1/n)

Explanation:

Extra Credit: The add(i) method for the single-linked list allows you to insert the element at a specified location “i”. Assuming you don’t have an outside pointer to this location, what is the runtime of this method, and why?
Choices:

(e) O(n)

(f) O(1)

(g) O(n2)

(h) O(1/n)

Explanation:

“previous”

“next”

null

null

“head”

“tail”

(2 pts)

(5 pts)

(3 pts)

“next”

