
Chapter 14

Proposed Systems

14.1. Introduction

The preceding two chapters have discussed the parameterization of
queueing network models of existing systems and evolving systems. In
this chapter we consider models of proposed systems: major new systems
and subsystems that are undergoing design and implementation.

The process of design and implementation involves continual tradeoffs
between cost and performance. Quantifying the performance implications
of various alternatives is central to this process. It also is extremely chal-
lenging. In the case of existing systems, measurement data is available.
In the case of evolving systems, contemplated modifications often are
straightforward (e.g., a new CPU within a product line), and limited
experimentation may be possible in validating a baseline model. In the
case of proposed systems, these advantages do not exist. For this reason,
it is tempting to rely on seat-of-the-pants performance projections, which
all too often prove to be significantly in error. The consequences can be
serious, for performance, like reliability, is best designed in, rather than
added on.

Recently, progress has been made in evolving a general framework for
projecting the performance of proposed systems. There has been a
confluence of ideas from software engineering and performance evalua-
tion, with queueing network models playing a central role. The purpose
of this chapter is to present the elements of this framework. In Section
14.2 we review some early efforts. In Section 14.3 we discuss, in a gen-
eral setting, some of the components necessary to achieve a good under-
standing of the performance of a proposed system. In Section 14.4 we
describe two specific approaches.

320

14.2. Background 321

14.2. Background

User satisfaction with a new application system depends to a significant
extent on the system’s ability to deliver performance that is acceptable
and consistent. In this section we describe several early attempts at
assessing the performance of large systems during the design stage. Some
common themes will be evident; these will be discussed in the next sec-
tion.

In the mid 1960s GECOS III was being designed by General Electric
as an integrated batch and timesharing system. After the initial design
was complete, two activities began in parallel: one team began the imple-
mentation, while another developed a simulation model to project the
effects of subsequent design and implementation decisions.

The simulation modelling team came out second best. The model was
not debugged until several months after a skeletal version of the actual
system was operational. Thus, many of the design questions that might
have been answered by the model were answered instead by the system.
The model could not be kept current. The projections of the model were
not trusted, because the system designers lacked confidence in the simu-
lation methodology.

This attempt to understand the interactions among design decisions
throughout the project lifetime failed. Other attempts have been more
successful.

In the late 1960s TSO was being developed as a timesharing subsys-
tem for IBM’s batch-oriented MVT operating system. During final design
and initial implementation of the final system, an earlier prototype was
measured in a test environment, and a queueing network model was
parameterized from these measurements and from detailed specifications
of the final design.

The average response time projected by the model was- significantly
lower than that measured for prototype. However, the design team had
confidence in the model because a similar one had been used successfully
for MIT’s CTSS system (see Section 6.3.1). The team checked the proto-
type for conformance with specifications and detected a discrepancy: the
scheduler had been implemented with an unnecessary locking mechanism
that created a software bottleneck. When this was corrected, the projec-
tions of the model and the behavior of the prototype were compatible.

322 Parameterization: Proposed Systems

In the early 1970s MVS was being designed and developed as a
batch-oriented operating system for IBM’s new family of virtual memory
machines. A simulation model was developed for an early version of this
system, OS/VS2 Release 2. The model’s purpose was to provide perfor-
mance information for system designers.

Model validation was a problem. In the design stage, key model
parameters were represented only as ranges of values. Performance pro-
jections were checked for reasonableness, to ensure that the model
represented the functional flow of work through the system. This type of
sensitivity analysis compensated for the lack of precise parameter values.
The system was changing constantly during design and implementation.
To reduce this problem, the model builders maintained a close working
relationship with the system designers and implementors.

This modelling effort was considered to be a success, because several
of its recommendations had direct, beneficial effects on the design of the
system.

In the mid 1970s the Advanced Logistics System (ALS) was under
development for the U.S. Air Force. After the design was completed,
during initial implementation, a modelling study was undertaken to deter-
mine the bottlenecks in the design and to recommend alternate designs
yielding better performance. Hierarchical modelling, as described in
Chapter 8, was applied. Four major subsystems were identified in ALS:
CPU and memory, system disks, databas? disks, and tapes. A hierarchi-
cal model was structured along these lines, dividing the modelling task
into manageable components. Parameter values came from a combina-
tion of measurements and detailed specifications.

Both analytic and simulation solutions of the model were obtained.
Most ALS features could be captured in the analytic solution. Simulation
was used to validate the analytic results and to explore certain system
characteristics in more detail.

The modelling study predicted that as the workload. increased, the first
bottleneck would be encountered in the system disk subsystem, and the
next in the CPU and memory subsystem. Both predictions were verified
in early production operation, Thus, the study was judged a success.

Each successful project that we have described used a different under-
lying approach: an analytic model for TSO, a-simulation model for MVS,
and hierarchical analytic and simulation models for ALS. However, these
projects shared a number of underlying principles. In the next section,
we include these and other principles in a general framework for studying
the performance of proposed systems.

14.3. A General Framework 323

14.3. A General Framework

Unfortunately, it is not common to attempt to quantify the perfor-
mance of proposed systems. There are two major reasons for this:
l Manpower devoted to performance projection is viewed as manpower

that otherwise could be devoted to writing code and delivering the sys-
tem on time.

l There is no widely accepted approach to integrating performance pro-
jections with a system design project.

The first of these points is rendered invalid by the false sense of economy
on which it is based: the implications of misguided design decisions for
the ultimate cost of a system can be enormous. The second of these
points is becoming less significant as aspects of a general framework begin
to emerge. These are the subject of the present section.

14.3.1. The Approach

Performance is not the domain of a single group. Thus, performance
projection is best done in a team environment, with representation from
groups such as intended users, software designers, software implemen-
tors, configuration planners, and performance analysts. By analogy to
software engineering, the team would begin its task by conducting a per-
formance walkthrough of a proposed design. A typical walkthrough would
consist of the following steps:

- The intended users would describe anticipated patterns of use of
the system. In queueing network modelling terms, they would
identify the workload components, and the workload intensities of
the various components.

- The software designers would identify, for a selected subset of the
workload components, the path through the software modules of
the system that would be followed in processing each component:
which modules would be invoked, and how frequently.

- The software implementors would specify the resource require-
ments for each module in system-independent terms: software
path lengths, I/O volume, etc.

- The configuration planners would translate these system-
independent resource requirements into configuration-dependent
terms.

- The performance analysts would synthesize the results of this pro-
cess, constructing a queueing network model of the system.

324 Parameterization: Proposed Systems

Various parts of this process would be repeated as the performance
analysts seek additional information, as the design evolves, and as the
results of the analysis indicate specific areas of concern. An important
aspect of any tool embodying this approach is the support that it provides
for this sort of iteration and successive refinement.

It should be clear that what has been outlined is a methodical
approach to obtaining queueing network model inputs, an approach that
could be of value in any modelling study, not just an evaluation of a pro-
posed system. (For example, see the case study in Section 2.4.)

It also should be clear that this approach, since it forces meaningful
communication between various “interested parties”, can be a valuable
aid in software project management.

14.3.2. An Example

Here is a simple example that illustrates the application of this general
approach. A store-and-forward computer communication network is
being designed. Our objective is to project the performance of this net-
work, given information about the planned usage, the software design,
and the supporting hardware.

The topology (star> and the protocol (polling) of the network are
known. The system is to support three kinds of messages: STORE,
FORWARD, and FLASH. From the functional specifications, the arrival
rate, priority, and response time requirement of each message type can be
obtained. Each message type has different characteristics and represents a
non-trivial portion of the workload, so it is natural to view each as a
separate workload component and to assign each to a different class.
Given knowledge of the intended protocol, a fourth class is formulated,
representing polling overhead. Further refinements of this class structure
are possible during project evolution.

The software specifications for each class are imprecise in the initial
stages, Only high-level information about software functionality, flow of
control, and processing requirements are available. A gross estimate of
CPU and I/O resource requirements for each class is obtained. The CPU
requirement specifies an estimated number of instructions for each mes-
sage of the type, and an estimated number of logical I/O operations. For
STORE messages, as an example, the I/O consists of a read to an index
to locate the message storage area, a write to store the message, and a
write to update the index. No indication is given here about file place-
ments or device characteristics, Instead, the logical properties of the
software are emphasized, to serve as a basis for further refinement when
the software design becomes more mature.

14.3. A General Framework 325

Physical device characteristics are identified: speed, capacity, file
placement, etc. A CPU is characterized by its MIPS rate and its number
of processors. A disk is characterized by its capacity, average seek time,
rotation time, transfer rate, and the assignment of files to it. From con-
sideration of the software specifications and the device characteristics, ser-
vice demands can be estimated. As a simple example, a software
designer may estimate 60,000 CPU instructions for a STORE message,
and a hardware configuration analyst may estimate a CPU MIPS rate of
.40. This leads to a STORE service demand for the CPU of .15 seconds.
This admittedly is a crude estimate, but it serves as a basis, and more
detail can be incorporated subsequently.

At this point, a queueing network model of the design, incorporating
classes, devices, and service demands, can be constructed and evaluated
to give an initial assessment of performance. Alternatives can be
evaluated to determine their effect on performance. Sensitivity analyses
can be used to identify potential trouble spots, even at this early stage of
the project.

One of the strengths of this approach is the ability to handle easily
changes in the workload, software, and hardware. In the example, no
internal module flow of control was specified and processing requirements
were gross approximations. As the design progresses, the individual
modules begin to acquire a finer structure, as reflected in Figure 14.1.
This can be reflected by modifying the software specifications. This struc-
ture acquires multiple levels of detail as the design matures. The sub-
modules at the leaves of the tree represent detailed information about a
particular operation; the software designer has more confidence in the
resource estimates specified for these types of modules. The total
resource requirements for a workload are found by appropriately sum-
ming the resource requirements at the various levels in the detailed
module structure. Software specifications thus can be updated as more
information becomes available.

The important features we have illustrated in this example include the
identification of workload, software, and hardware at the appropriate level
of detail, the transformation of these high-level components into queue-
ing network model parameters, and the ability to represent changes in the
basic components.

14.3.3. Other Considerations

The design stage of a proposed system has received most of our atten-
tion. This is where the greatest leverage exists to change plans. How-
ever, it is important to continue the performance projection effort during
the life of the project. Implementation, testing, and

326 Parameterization: Proposed Systems

FETCH-INDEX
DETERMINE-MSG-DESTINATION

STORE WRITE-MSG

STORE-MSG
UPDATE-INDEX

WRITE-INDEX

FLASH

FETCH-INDEX
DETERMINE-MSG-DESTINATION

WRITE-MSG

UPDATE-INDEX

ALERT-DESTINATION
WRITE-INDEX

DETERMINE-MSG-DESTINATION FETCH-INDEX
FORWARD

READ-MSGS

UPDATE-INDEX

WRLTE-LNDEX

Figure 14.1 - Refinement of Software Specifications

maintenance/evolution follow design. Estimates indicate that the largest
proportion of the cost of software comes from the maintenance/evolution
stage.

Given the desirability of tracking performance over the software life-
time, it is useful to maintain a repository of current information about
important aspects of the project (e.g., procedure structure within software
modules). If the repository is automated in database form, software
designers and implementors are more likely to keep it current.

A prerequisite for the success of the approach we have outlined is that
management be prepared to listen to the recommendations rather than
adopting an expedient approach. Budgeting time and manpower for per-
formance projection may lengthen the development schedule somewhat,
but the benefits can be significant.

14.4. Tools and Techniques 327

A final important factor is the ability to turn this general framework
into specific working strategies. In the next section, we describe two
recent tools that are examples of attempts to do so.

14.4. Tools and Techniques

14.4.1. CRYSTAL

CRYSTAL is a software package developed in the late 1970s to facili-
tate the performance modelling of proposed and evolving application sys-
tems.

A CRYSTAL user describes a system in three components: the
module spe#cation, the workload spec$cation, and the conjguration
specl$?ation. These specifications are inter-related, and are developed in
parallel. They are stated in a high-level system description language.

l The module spe@cation describes the CPU and I/O requirements of
each software module of the system in machine-independent terms:
path lengths for the CPU, and operation counts to various files for
I/O.

l The workload specljication identifies the various components of the
workload, and, for each component, gives its type (i.e., transaction,
batch, or terminal), its workload intensity, and the modules that it
uses.

l The configuration spe@ation states the characteristics of hardware
devices and of files.

From these specifications, CRYSTAL calculates queueing network model
inputs. These are supplied to an internal queueing network evaluation
algorithm, which calculates performance measures.

We illustrate some of the important aspects of CRYSTAL by describ-
ing its use in modelling a proposed application software system. An
insurance company is replacing its claims processing system. CRYSTAL
is used to determine the most cost-effective equipment configuration to
support the application.

As a first step, the workload components are identified in the work-
load specification. Many functions are planned for the proposed system,
but the analyst determines that five will account for more than 80% of the
transactions. These include, for example, Claims Registration. (This
information comes from administrative records.)

Since the planning of this system is in its preliminary stages, it is not
possible to say with certainty how the system will be structured into
modules. The analyst decides initially to define one module

328 Parameterization: Proposed Systems

corresponding to each of the five workload components. This informa-
tion is represented in both the workload and the module specification.
(Naturally, this is an area where the appropriate level of detail will vary as
knowledge of the system evolves.)

For each module, resource requirements are stated in the module
specification. The units of CPU usage are instructions executed. There
are two components: application path length and support system path
length. In the case of the example, benchmarks of similar modules
currently in use provide information for application path length. Where
no benchmark exists, the logical flow of the software is used to provide
estimates. For support system path length, major system routines are
examined in detail to provide estimates; some benchmarks also are done.
The units of I/O usage are number of physical I/O operations. The
analyst determines these, beginning from a logical view of each module,
and taking into account the file structure to be used.

The major application files and their sizes are part of the configuration
specification. (These files correspond to those referred to in the I/O com-
ponent of the module specification.) Initially, a simple file structure is
proposed, but eventually file indices and database software will be intro-
duced. In addition, a series of entries describe the devices of the system,
e.g., for a disk, its transfer rate, seek time, rotation time, and a list of its
files.

When the system description is complete, CRYSTAL can calculate
queueing network model inputs and obtain performance measures. For
example, response times can be projected for the baseline transaction
volume and hardware configuration. If the results are satisfactory when
compared to the response time requirement stipulated for the application,
projections can be obtained for increased transaction volume by adjusting
the arrival rates of the relevant workloads in the workload specification.
Hardware alternatives can be investigated in a similar manner.

This concludes our description of CRYSTAL. The major activities in
using this tool are completing the module specification, the workload
specification, and the configuration specification. The study described
here occurred during the initial stages of a project. As noted before,
additional benefits would arise if the study were extended through the
lifetime of the project. Better resource estimates would be available from
module implementation, and the ability of the configuration to meet the
response time requirement could be re-evaluated periodically.

14.4. Tools and Techniques 329

14.4.2. ADEPT

The second technique to be discussed is ADEPT (A Design-based
Evaluation and Prediction Technique), developed in the late 1970s.

Using ADEPT, resource requirements are specified both as average
values and as maximum (upper bound) values. The project design is
likely to be suitable if the performance specifications are satisfied for the
upper bounds. Sensitivity analyses can show the system components for
which more accurate resource requirements must be specified. These
components should be implemented first, to provide early feedback and
allow more accurate forecasts.

The software structure of the proposed application is determined
through performance walkthroughs and is described using a graph
representation, with software components represented as nodes, and links
between these components represented as arcs. Because the software
design usually results from a top-down successive refinement process,
these graphs are tree-structured, with greater detail towards the leaves.
An example is found in Figure 14.2, where three design levels are shown.
Each component that is not further decomposed has a CPU time estimate
and a number of I/O accesses associated with it.

The graphs are analyzed to determine elapsed time and resource
requirements for the entire design by a bottom-up procedure. The time
and resource requirements of the leaf nodes are used to calculate the
requirements of the nodes one level up, and so on up to the root node.
A static analysis, assuming no interference between modules, is per-
formed to derive best case, average case, and worst case behavior. The
visual nature of the execution graphs can help to point out design optimi-
zations, such as moving invariant components out of loops.

Additional techniques handle other software and hardware characteris-
tics introduced as the design matures. These characteristics include data
dependencies (for which counting parameters are introduced), competi-
tion for resources (for which queueing network analysis software is used),
and concurrent processing (in which locking and synchronization are
important).

ADEPT was used to project the performance of a database component
of a proposed CAD/CAM system. Only preliminary design specifications
were available, including a high-level description of the major functional
modules. ~A small example from that study will be discussed. A transac-
tion builds a list of record occurrences that satisfy given qualifications,
and returns the first qualified occurrences to the user at a terminal. It

330 Parameterization: Proposed Systems

Top level:
QUERY

parser

I
Send
message

DB control
system

-1
LOCATE
descriptive
data

I
Retrieve
descriptive
data

Second level:
FETCH

internal parts

Third level:
LOCATE

subassembly

I-

Retrxve
subassembly i

LOCATE
pieces j of
subassembly i

I

Sort
lists

+

Figure 14.2 - Example Execution Graphs

14.4. Tools and Techniques 331

issues FIND FIRST commands to qualify record occurrences and FIND
NEXT commands to return the occurrences. The execution graphs for
the FIND commands have the structure shown in Figure 14.3.

The performance goal for processing this transaction was an average
response time of under 5 seconds, when the computing environment was
a Cyber 170 computer running the NOS operating system. A perfor-
mance walkthrough produced a typical usage scenario from an engineer-
ing user and descriptions of the processing steps for the FIND commands
from a software designer. Resource estimates for the transaction com-
ponents were based on the walkthrough information. Many optimistic
assumptions were made, but the best case response time was predicted to
be 6.1 seconds, not meeting the goal (see Figure 14.3). About 43% of
this elapsed time (2.6 seconds) was actual CPU requirement. Thus, it
was clear at the design stage that response times would be unacceptably
long because of excessive CPU requirements.

Fetch first ret 1 where
assembly = 43 120

t
Fetch first ret 2 where
assembly = 43 120

t
Fetch first ret 3 where
assembly = 43 120

t
Fetch next ret 1

+

Fetch next ret 3

CPU
(sets)

0.488

0.488

0.488

0.116

Average 0.116
Total 0.464

Average 0.116
Total 0.580

2.624

I/OS Elapsed
(sets)

27

27

27

1

1
4

1
5 -

91

1.514

1.514

1.514

0.154

0.154
0.616

0.154
0.770

6.082

Figure 14.3 - Transaction Steps and Projections

332 Parameterization: Proposed Systems

The application system has been implemented. Although actual
parameter values were different in the running system than in the design,
CPU bottlenecking still was present, more than a year after it was
predicted. This demonstrates the success of the ADEPT approach. (The
specific corrective advice provided by the performance analysts using
ADEPT was not acted on, because it would have caused slippage in the
,delivery schedule for the system. However, the performance problems
that arose resulted in delay and dissatisfaction anyway.)

This study shows that it is possible to predict with reasonable accuracy
resource usage patterns and system performance of a large software sys-
tem in the early design stage, before code is written. It also is possible to
achieve these benefits without incurring significant personnel costs. This
example was part of a project staffed by a half-time performance analyst
and took approximately one person-month of work.

14.5. Summary

The process of design and implementation involves continual tradeoffs
between cost and performance. Quantifying the performance implications
of various alternatives is central to this process. Because doing so is chal-
lenging and requires resources, it is tempting to rely on seat-of-the-pants
performance projections. The consequences of doing so can be serious,
for user satisfaction with a system depends to a significant extent on the
system’s ability to deliver acceptable performance.

We began this chapter with a description of several early experiences
in projecting the performance of proposed systems. We then discussed
various aspects of a general approach to the problem. Finally, we studied
two recent attempts to devise and support this general approach. We
noted that projecting the performance of proposed systems requires a
methodical approach to obtaining queueing network model inputs, an
approach that could be of value in any modelling study. We also noted
that the process of performance projection can be a valuable project
management aid, because it serves to structure and focus communication
among various members of the project team.

14.6. References

The early attempts at projecting the performance of proposed systems,
discussed in Section 14.2, were directed not towards devising general
approaches, but rather towards addressing the particular problems of
specific systems. The study of GECOS III was described by Campbell and

14.6. References 333

Heffner [19681. The study of TSO was described by Lassettre and Scherr
119721. The study of OS/VS2 Release 2 was described by Beretvas
[19741. The study of ALS was described by Browne et al. [19751. A
good summary of these attempts appears in [Weleschuk 19811.

We have described two recent attempts at devising and supporting
general approaches. CRYSTAL was developed by BGS Systems, Inc.
[BGS 1982a, 1982b, 19831. The examples in Sections 14.3.2 and 14.4.1
come from internal BGS Systems reports, as does Figure 14.1. ADEPT
was developed by Connie U. Smith and J.C. Browne. The case study in
14.4.2 was conducted by Smith and Browne [19821; Figure 14.3 comes
from this paper. Other good sources on ADEPT include [Smith 19811
(the source of Figure 14.21, and [Smith & Browne 19831.

[Beretvas 19741
T. Beretvas. A Simulation Model Representing the OS/VS2 Release 2
Control Program. Lecture Notes in Computer Science 16. Springer-
Verlag, 1974, 15-29.

[BGS 1982al
CR YSTAL/IMS Modeling Support Library User’s Guide. BGS Systems,
Inc., Waltham, MA, 1982.

[BGS 1982bl
CR YSTALKICS Modeling Support Library User’s Guide. BGS Systems,
Inc., Waltham, MA, 1982.

tBGS 19831
CRYSTAL Release 2.0 User’s Guide. BGS Systems, Inc., Waltham,
MA, 1983.

[Browne et al. 19751
J.C. Browne, K.M. Chandy, R.M. Brown, T.W. Keller, D.F. Towsley,
and C.W. Dissley. Hierarchical Techniques for Development of Real-
istic Models of Complex Computer Systems. Proc. IEEE 63,4 (June
19751, 966-975.

[Campbell & Heffner 19681
D.J. Campbell and W.J. Heffner. Measurement and Analysis of Large
Operating Systems During System Development. 1968 Fall Joint Com-
puter Conference Proceedings, AFIPS Volume 37 (1968)) AFIPS Press,
903-914.

[Lassettre & Scherr 19721
Edwin R. Lassettre and Allan L. Scherr. Modeling the Performance of
the OS/360 Time-Sharing Option (TSO). In Walter Freiberger (ed.),
Statistical Computer Performance Evaluation. Academic Press, 1972,
57-72.

334 Parameterization: Proposed Systems

[Smith 19811
Connie Smith. Increasing Information Systems Productivity by
Software Performance Engineering. Proc. CMG XII International
Conference (1981).

[Smith & Browne 19821
Connie Smith and J.C. Browne. Performance Engineering of Software
Systems: A Case Study. 1982 National Computer Conference Proceed-
ings, AFIPS Volume 51 (1982), AFIPS Press, 217-244.

[Smith & Browne 19831
Connie Smith and J.C. Browne. Performance Engineering of Software
Systems: A Design-Based Approach. To be published, 1983.

[Weleschuk 198 11
B.M. Weleschuk. Designing Operating Systems with Performance in
Mind. MSc. Thesis, Department of Computer Science, University of
Toronto. 198 1.

