
Chapter 14 

Proposed Systems 

14.1. Introduction 

The preceding two chapters have discussed the parameterization of 
queueing network models of existing systems and evolving systems. In 
this chapter we consider models of proposed systems: major new systems 
and subsystems that are undergoing design and implementation. 

The process of design and implementation involves continual tradeoffs 
between cost and performance. Quantifying the performance implications 
of various alternatives is central to this process. It also is extremely chal- 
lenging. In the case of existing systems, measurement data is available. 
In the case of evolving systems, contemplated modifications often are 
straightforward (e.g., a new CPU within a product line), and limited 
experimentation may be possible in validating a baseline model. In the 
case of proposed systems, these advantages do not exist. For this reason, 
it is tempting to rely on seat-of-the-pants performance projections, which 
all too often prove to be significantly in error. The consequences can be 
serious, for performance, like reliability, is best designed in, rather than 
added on. 

Recently, progress has been made in evolving a general framework for 
projecting the performance of proposed systems. There has been a 
confluence of ideas from software engineering and performance evalua- 
tion, with queueing network models playing a central role. The purpose 
of this chapter is to present the elements of this framework. In Section 
14.2 we review some early efforts. In Section 14.3 we discuss, in a gen- 
eral setting, some of the components necessary to achieve a good under- 
standing of the performance of a proposed system. In Section 14.4 we 
describe two specific approaches. 
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14.2. Background 

User satisfaction with a new application system depends to a significant 
extent on the system’s ability to deliver performance that is acceptable 
and consistent. In this section we describe several early attempts at 
assessing the performance of large systems during the design stage. Some 
common themes will be evident; these will be discussed in the next sec- 
tion. 

In the mid 1960s GECOS III was being designed by General Electric 
as an integrated batch and timesharing system. After the initial design 
was complete, two activities began in parallel: one team began the imple- 
mentation, while another developed a simulation model to project the 
effects of subsequent design and implementation decisions. 

The simulation modelling team came out second best. The model was 
not debugged until several months after a skeletal version of the actual 
system was operational. Thus, many of the design questions that might 
have been answered by the model were answered instead by the system. 
The model could not be kept current. The projections of the model were 
not trusted, because the system designers lacked confidence in the simu- 
lation methodology. 

This attempt to understand the interactions among design decisions 
throughout the project lifetime failed. Other attempts have been more 
successful. 

In the late 1960s TSO was being developed as a timesharing subsys- 
tem for IBM’s batch-oriented MVT operating system. During final design 
and initial implementation of the final system, an earlier prototype was 
measured in a test environment, and a queueing network model was 
parameterized from these measurements and from detailed specifications 
of the final design. 

The average response time projected by the model was- significantly 
lower than that measured for prototype. However, the design team had 
confidence in the model because a similar one had been used successfully 
for MIT’s CTSS system (see Section 6.3.1). The team checked the proto- 
type for conformance with specifications and detected a discrepancy: the 
scheduler had been implemented with an unnecessary locking mechanism 
that created a software bottleneck. When this was corrected, the projec- 
tions of the model and the behavior of the prototype were compatible. 
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In the early 1970s MVS was being designed and developed as a 
batch-oriented operating system for IBM’s new family of virtual memory 
machines. A simulation model was developed for an early version of this 
system, OS/VS2 Release 2. The model’s purpose was to provide perfor- 
mance information for system designers. 

Model validation was a problem. In the design stage, key model 
parameters were represented only as ranges of values. Performance pro- 
jections were checked for reasonableness, to ensure that the model 
represented the functional flow of work through the system. This type of 
sensitivity analysis compensated for the lack of precise parameter values. 
The system was changing constantly during design and implementation. 
To reduce this problem, the model builders maintained a close working 
relationship with the system designers and implementors. 

This modelling effort was considered to be a success, because several 
of its recommendations had direct, beneficial effects on the design of the 
system. 

In the mid 1970s the Advanced Logistics System (ALS) was under 
development for the U.S. Air Force. After the design was completed, 
during initial implementation, a modelling study was undertaken to deter- 
mine the bottlenecks in the design and to recommend alternate designs 
yielding better performance. Hierarchical modelling, as described in 
Chapter 8, was applied. Four major subsystems were identified in ALS: 
CPU and memory, system disks, databas? disks, and tapes. A hierarchi- 
cal model was structured along these lines, dividing the modelling task 
into manageable components. Parameter values came from a combina- 
tion of measurements and detailed specifications. 

Both analytic and simulation solutions of the model were obtained. 
Most ALS features could be captured in the analytic solution. Simulation 
was used to validate the analytic results and to explore certain system 
characteristics in more detail. 

The modelling study predicted that as the workload. increased, the first 
bottleneck would be encountered in the system disk subsystem, and the 
next in the CPU and memory subsystem. Both predictions were verified 
in early production operation, Thus, the study was judged a success. 

Each successful project that we have described used a different under- 
lying approach: an analytic model for TSO, a-simulation model for MVS, 
and hierarchical analytic and simulation models for ALS. However, these 
projects shared a number of underlying principles. In the next section, 
we include these and other principles in a general framework for studying 
the performance of proposed systems. 
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14.3. A General Framework 

Unfortunately, it is not common to attempt to quantify the perfor- 
mance of proposed systems. There are two major reasons for this: 
l Manpower devoted to performance projection is viewed as manpower 

that otherwise could be devoted to writing code and delivering the sys- 
tem on time. 

l There is no widely accepted approach to integrating performance pro- 
jections with a system design project. 

The first of these points is rendered invalid by the false sense of economy 
on which it is based: the implications of misguided design decisions for 
the ultimate cost of a system can be enormous. The second of these 
points is becoming less significant as aspects of a general framework begin 
to emerge. These are the subject of the present section. 

14.3.1. The Approach 

Performance is not the domain of a single group. Thus, performance 
projection is best done in a team environment, with representation from 
groups such as intended users, software designers, software implemen- 
tors, configuration planners, and performance analysts. By analogy to 
software engineering, the team would begin its task by conducting a per- 
formance walkthrough of a proposed design. A typical walkthrough would 
consist of the following steps: 

- The intended users would describe anticipated patterns of use of 
the system. In queueing network modelling terms, they would 
identify the workload components, and the workload intensities of 
the various components. 

- The software designers would identify, for a selected subset of the 
workload components, the path through the software modules of 
the system that would be followed in processing each component: 
which modules would be invoked, and how frequently. 

- The software implementors would specify the resource require- 
ments for each module in system-independent terms: software 
path lengths, I/O volume, etc. 

- The configuration planners would translate these system- 
independent resource requirements into configuration-dependent 
terms. 

- The performance analysts would synthesize the results of this pro- 
cess, constructing a queueing network model of the system. 
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Various parts of this process would be repeated as the performance 
analysts seek additional information, as the design evolves, and as the 
results of the analysis indicate specific areas of concern. An important 
aspect of any tool embodying this approach is the support that it provides 
for this sort of iteration and successive refinement. 

It should be clear that what has been outlined is a methodical 
approach to obtaining queueing network model inputs, an approach that 
could be of value in any modelling study, not just an evaluation of a pro- 
posed system. (For example, see the case study in Section 2.4.) 

It also should be clear that this approach, since it forces meaningful 
communication between various “interested parties”, can be a valuable 
aid in software project management. 

14.3.2. An Example 

Here is a simple example that illustrates the application of this general 
approach. A store-and-forward computer communication network is 
being designed. Our objective is to project the performance of this net- 
work, given information about the planned usage, the software design, 
and the supporting hardware. 

The topology (star> and the protocol (polling) of the network are 
known. The system is to support three kinds of messages: STORE, 
FORWARD, and FLASH. From the functional specifications, the arrival 
rate, priority, and response time requirement of each message type can be 
obtained. Each message type has different characteristics and represents a 
non-trivial portion of the workload, so it is natural to view each as a 
separate workload component and to assign each to a different class. 
Given knowledge of the intended protocol, a fourth class is formulated, 
representing polling overhead. Further refinements of this class structure 
are possible during project evolution. 

The software specifications for each class are imprecise in the initial 
stages, Only high-level information about software functionality, flow of 
control, and processing requirements are available. A gross estimate of 
CPU and I/O resource requirements for each class is obtained. The CPU 
requirement specifies an estimated number of instructions for each mes- 
sage of the type, and an estimated number of logical I/O operations. For 
STORE messages, as an example, the I/O consists of a read to an index 
to locate the message storage area, a write to store the message, and a 
write to update the index. No indication is given here about file place- 
ments or device characteristics, Instead, the logical properties of the 
software are emphasized, to serve as a basis for further refinement when 
the software design becomes more mature. 
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Physical device characteristics are identified: speed, capacity, file 
placement, etc. A CPU is characterized by its MIPS rate and its number 
of processors. A disk is characterized by its capacity, average seek time, 
rotation time, transfer rate, and the assignment of files to it. From con- 
sideration of the software specifications and the device characteristics, ser- 
vice demands can be estimated. As a simple example, a software 
designer may estimate 60,000 CPU instructions for a STORE message, 
and a hardware configuration analyst may estimate a CPU MIPS rate of 
.40. This leads to a STORE service demand for the CPU of .15 seconds. 
This admittedly is a crude estimate, but it serves as a basis, and more 
detail can be incorporated subsequently. 

At this point, a queueing network model of the design, incorporating 
classes, devices, and service demands, can be constructed and evaluated 
to give an initial assessment of performance. Alternatives can be 
evaluated to determine their effect on performance. Sensitivity analyses 
can be used to identify potential trouble spots, even at this early stage of 
the project. 

One of the strengths of this approach is the ability to handle easily 
changes in the workload, software, and hardware. In the example, no 
internal module flow of control was specified and processing requirements 
were gross approximations. As the design progresses, the individual 
modules begin to acquire a finer structure, as reflected in Figure 14.1. 
This can be reflected by modifying the software specifications. This struc- 
ture acquires multiple levels of detail as the design matures. The sub- 
modules at the leaves of the tree represent detailed information about a 
particular operation; the software designer has more confidence in the 
resource estimates specified for these types of modules. The total 
resource requirements for a workload are found by appropriately sum- 
ming the resource requirements at the various levels in the detailed 
module structure. Software specifications thus can be updated as more 
information becomes available. 

The important features we have illustrated in this example include the 
identification of workload, software, and hardware at the appropriate level 
of detail, the transformation of these high-level components into queue- 
ing network model parameters, and the ability to represent changes in the 
basic components. 

14.3.3. Other Considerations 

The design stage of a proposed system has received most of our atten- 
tion. This is where the greatest leverage exists to change plans. How- 
ever, it is important to continue the performance projection effort during 
the life of the project. Implementation, testing, and 
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Figure 14.1 - Refinement of Software Specifications 

maintenance/evolution follow design. Estimates indicate that the largest 
proportion of the cost of software comes from the maintenance/evolution 
stage. 

Given the desirability of tracking performance over the software life- 
time, it is useful to maintain a repository of current information about 
important aspects of the project (e.g., procedure structure within software 
modules). If the repository is automated in database form, software 
designers and implementors are more likely to keep it current. 

A prerequisite for the success of the approach we have outlined is that 
management be prepared to listen to the recommendations rather than 
adopting an expedient approach. Budgeting time and manpower for per- 
formance projection may lengthen the development schedule somewhat, 
but the benefits can be significant. 
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A final important factor is the ability to turn this general framework 
into specific working strategies. In the next section, we describe two 
recent tools that are examples of attempts to do so. 

14.4. Tools and Techniques 

14.4.1. CRYSTAL 

CRYSTAL is a software package developed in the late 1970s to facili- 
tate the performance modelling of proposed and evolving application sys- 
tems. 

A CRYSTAL user describes a system in three components: the 
module spe#cation, the workload spec$cation, and the conjguration 
specl$?ation. These specifications are inter-related, and are developed in 
parallel. They are stated in a high-level system description language. 

l The module spe@cation describes the CPU and I/O requirements of 
each software module of the system in machine-independent terms: 
path lengths for the CPU, and operation counts to various files for 
I/O. 

l The workload specljication identifies the various components of the 
workload, and, for each component, gives its type (i.e., transaction, 
batch, or terminal), its workload intensity, and the modules that it 
uses. 

l The configuration spe@ation states the characteristics of hardware 
devices and of files. 

From these specifications, CRYSTAL calculates queueing network model 
inputs. These are supplied to an internal queueing network evaluation 
algorithm, which calculates performance measures. 

We illustrate some of the important aspects of CRYSTAL by describ- 
ing its use in modelling a proposed application software system. An 
insurance company is replacing its claims processing system. CRYSTAL 
is used to determine the most cost-effective equipment configuration to 
support the application. 

As a first step, the workload components are identified in the work- 
load specification. Many functions are planned for the proposed system, 
but the analyst determines that five will account for more than 80% of the 
transactions. These include, for example, Claims Registration. (This 
information comes from administrative records.) 

Since the planning of this system is in its preliminary stages, it is not 
possible to say with certainty how the system will be structured into 
modules. The analyst decides initially to define one module 
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corresponding to each of the five workload components. This informa- 
tion is represented in both the workload and the module specification. 
(Naturally, this is an area where the appropriate level of detail will vary as 
knowledge of the system evolves.) 

For each module, resource requirements are stated in the module 
specification. The units of CPU usage are instructions executed. There 
are two components: application path length and support system path 
length. In the case of the example, benchmarks of similar modules 
currently in use provide information for application path length. Where 
no benchmark exists, the logical flow of the software is used to provide 
estimates. For support system path length, major system routines are 
examined in detail to provide estimates; some benchmarks also are done. 
The units of I/O usage are number of physical I/O operations. The 
analyst determines these, beginning from a logical view of each module, 
and taking into account the file structure to be used. 

The major application files and their sizes are part of the configuration 
specification. (These files correspond to those referred to in the I/O com- 
ponent of the module specification.) Initially, a simple file structure is 
proposed, but eventually file indices and database software will be intro- 
duced. In addition, a series of entries describe the devices of the system, 
e.g., for a disk, its transfer rate, seek time, rotation time, and a list of its 
files. 

When the system description is complete, CRYSTAL can calculate 
queueing network model inputs and obtain performance measures. For 
example, response times can be projected for the baseline transaction 
volume and hardware configuration. If the results are satisfactory when 
compared to the response time requirement stipulated for the application, 
projections can be obtained for increased transaction volume by adjusting 
the arrival rates of the relevant workloads in the workload specification. 
Hardware alternatives can be investigated in a similar manner. 

This concludes our description of CRYSTAL. The major activities in 
using this tool are completing the module specification, the workload 
specification, and the configuration specification. The study described 
here occurred during the initial stages of a project. As noted before, 
additional benefits would arise if the study were extended through the 
lifetime of the project. Better resource estimates would be available from 
module implementation, and the ability of the configuration to meet the 
response time requirement could be re-evaluated periodically. 
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14.4.2. ADEPT 

The second technique to be discussed is ADEPT (A Design-based 
Evaluation and Prediction Technique), developed in the late 1970s. 

Using ADEPT, resource requirements are specified both as average 
values and as maximum (upper bound) values. The project design is 
likely to be suitable if the performance specifications are satisfied for the 
upper bounds. Sensitivity analyses can show the system components for 
which more accurate resource requirements must be specified. These 
components should be implemented first, to provide early feedback and 
allow more accurate forecasts. 

The software structure of the proposed application is determined 
through performance walkthroughs and is described using a graph 
representation, with software components represented as nodes, and links 
between these components represented as arcs. Because the software 
design usually results from a top-down successive refinement process, 
these graphs are tree-structured, with greater detail towards the leaves. 
An example is found in Figure 14.2, where three design levels are shown. 
Each component that is not further decomposed has a CPU time estimate 
and a number of I/O accesses associated with it. 

The graphs are analyzed to determine elapsed time and resource 
requirements for the entire design by a bottom-up procedure. The time 
and resource requirements of the leaf nodes are used to calculate the 
requirements of the nodes one level up, and so on up to the root node. 
A static analysis, assuming no interference between modules, is per- 
formed to derive best case, average case, and worst case behavior. The 
visual nature of the execution graphs can help to point out design optimi- 
zations, such as moving invariant components out of loops. 

Additional techniques handle other software and hardware characteris- 
tics introduced as the design matures. These characteristics include data 
dependencies (for which counting parameters are introduced), competi- 
tion for resources (for which queueing network analysis software is used), 
and concurrent processing (in which locking and synchronization are 
important). 

ADEPT was used to project the performance of a database component 
of a proposed CAD/CAM system. Only preliminary design specifications 
were available, including a high-level description of the major functional 
modules. ~A small example from that study will be discussed. A transac- 
tion builds a list of record occurrences that satisfy given qualifications, 
and returns the first qualified occurrences to the user at a terminal. It 



330 Parameterization: Proposed Systems 

Top level: 
QUERY 

parser 

I 
Send 
message 

DB control 
system 

-1 
LOCATE 
descriptive 
data 

I 
Retrieve 
descriptive 
data 

Second level: 
FETCH 

internal parts 

Third level: 
LOCATE 

subassembly 

I- 

Retrxve 
subassembly i 

LOCATE 
pieces j of 
subassembly i 

I 

Sort 
lists 

+ 

Figure 14.2 - Example Execution Graphs 



14.4. Tools and Techniques 331 

issues FIND FIRST commands to qualify record occurrences and FIND 
NEXT commands to return the occurrences. The execution graphs for 
the FIND commands have the structure shown in Figure 14.3. 

The performance goal for processing this transaction was an average 
response time of under 5 seconds, when the computing environment was 
a Cyber 170 computer running the NOS operating system. A perfor- 
mance walkthrough produced a typical usage scenario from an engineer- 
ing user and descriptions of the processing steps for the FIND commands 
from a software designer. Resource estimates for the transaction com- 
ponents were based on the walkthrough information. Many optimistic 
assumptions were made, but the best case response time was predicted to 
be 6.1 seconds, not meeting the goal (see Figure 14.3). About 43% of 
this elapsed time (2.6 seconds) was actual CPU requirement. Thus, it 
was clear at the design stage that response times would be unacceptably 
long because of excessive CPU requirements. 
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The application system has been implemented. Although actual 
parameter values were different in the running system than in the design, 
CPU bottlenecking still was present, more than a year after it was 
predicted. This demonstrates the success of the ADEPT approach. (The 
specific corrective advice provided by the performance analysts using 
ADEPT was not acted on, because it would have caused slippage in the 
,delivery schedule for the system. However, the performance problems 
that arose resulted in delay and dissatisfaction anyway.) 

This study shows that it is possible to predict with reasonable accuracy 
resource usage patterns and system performance of a large software sys- 
tem in the early design stage, before code is written. It also is possible to 
achieve these benefits without incurring significant personnel costs. This 
example was part of a project staffed by a half-time performance analyst 
and took approximately one person-month of work. 

14.5. Summary 

The process of design and implementation involves continual tradeoffs 
between cost and performance. Quantifying the performance implications 
of various alternatives is central to this process. Because doing so is chal- 
lenging and requires resources, it is tempting to rely on seat-of-the-pants 
performance projections. The consequences of doing so can be serious, 
for user satisfaction with a system depends to a significant extent on the 
system’s ability to deliver acceptable performance. 

We began this chapter with a description of several early experiences 
in projecting the performance of proposed systems. We then discussed 
various aspects of a general approach to the problem. Finally, we studied 
two recent attempts to devise and support this general approach. We 
noted that projecting the performance of proposed systems requires a 
methodical approach to obtaining queueing network model inputs, an 
approach that could be of value in any modelling study. We also noted 
that the process of performance projection can be a valuable project 
management aid, because it serves to structure and focus communication 
among various members of the project team. 
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