
Chapter 10 

Disk I/O 

10.1. Introduction 

Processor and primary memory technology has moved forward rapidly 
in recent years. Comparable advances have not occurred in the design of 
I/O subsystems. As a result, I/O subsystems are playing an increasingly 
critical role in computer system performance. Queueing network models 
of disk I/O subsystems are the subject of the present chapter. 

In any study involving queueing network models, the analyst must 
begin by determining which system devices should be represented as ser- 
vice centers in the model, and what the service demands at these centers 
should be. With these parameters as input, the computational algorithms 
described in Part II use Little’s law to calculate the effect of resource con- 
tention, yielding performance measures such as utilizations, throughputs, 
residence times, and queue lengths. Most postulated modifications to the 
system or to the workload are represented in the model as modifications 
to the service demands. 

The “canonical” queueing network model that we have used 
throughout the book consists of service centers representing the CPU and 
the individual disk devices. Such a model is a very abstract representa- 
tion of the contemporary IBM disk I/O subsystem configuration illus- 
trated in Figure 10.1. The architectural complexity of this subsystem 
results from difficult compromises between cost and performance. At one 
extreme, requiring the CPU to monitor directly all phases of I/O activity 
would lead to poor performance (although low cost>. At the other 
extreme, endowing each disk with sufficient intelligence to transfer data 
in a fully independent manner would lead to high cost (although good 
performance). The obvious approach is to introduce some number of 
shared devices of varying intelligence (channels, controllers, string heads, 
etc.> on the path between the CPU and the disks. 

How is it that a simple model, which does not represent explicitly the 
many I/O path elements, can validate ? The answer is that, typically, the 
effects of these “details” are captured in the disk service demands 
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Figure 10.1 - A Contemporary IBM I/O Subsystem 



224 Representing Specific Subsystems: Disk I/O 

obtained from measurement data. There are three intrinsic components 
of disk service time: seek (the time required to position the arm to the 
correct cylinder), latency (the time required for the start of the data 
record of interest to rotate under the heads) and transfer (the time 
required for the actual transfer of data). In addition, though, a disk is 
“held” by a customer during a contention period when data cannot be 
transferred due to the absence of a path back to the CPU. Thus, the 
result of I/O path contention is an efSective disk service time (the sum of 
seek, latency, transfer, and contention times) that is longer than the 
intrinsic disk service time (the sum of seek, latency, and transfer times). 
Disk busy times increase correspondingly, and so the effect of I/O path 
contention is reflected in the disk service demand parameter of the 
queueing network model, which is calculated as Ddjsk = Bdisk/C (C here 
is the number of system completions). 

How can our canonical model be used to project performance for 
modified environments? The answer to this question is at once very sim- 
ple and very complex. On the one hand, many postulated system and 
workload modifications can be represented by appropriate adjustments to 
the service demand parameters of the model. For example, the primary 
effect of a 50% CPU upgrade can be represented by dividing all CPU ser- 
vice demands by 1.5: a customer that required six seconds of service on 
a 2 MIPS (million instructions per second) CPU will require four seconds 
of service on a 3 MIPS CPU. Similarly, the primary effect of adding I/O 
paths and reallocating disks can be represented by reducing the disk ser- 
vice demands, because I/O path contention can be expected to decrease. 
Unfortunately, it is difficult to quantify the amount of this reduction. 
The purpose of the I/O modelling techniques to be discussed in this 
chapter is to allow the analyst to deal with parameters that are meaning- 
ful: channels, controllers, strings, paths, disks, intrinsic I/O service 
requirements, etc. These techniques serve to translate a modification 
expressed in terms of these parameters into an appropriate modification 
of the disk service demands. 

Our study will progress by introducing ever greater levels of detail into 
our models. Before proceeding, two remarks: 
l For concreteness we will use terminology derived from IBM systems 

in this chapter. The architectural characteristics that we address and 
the modelling techniques that we develop, however, are equally appli- 
cable to systems of other manufacturers. 

l The fact that the computer system under study has a complex I/O sub- 
system, such as that illustrated in Figure 10.1, does not mean that 
sophisticated I/O subsystem modelling techniques are required. In 
undertaking any study, the analyst must think carefully about the 
questions under consideration. If the primary effects of the postulated 
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modifications can be represented by straightforward adjustments of 
disk service demands (or by no adjustment, as might be the case for a 
CPU upgrade), then sophisticated I/O subsystem modelling techniques 
are not called for. 

10.2. Channel Contention in Non-RPS I/O Subsystems 

In this section we develop a technique to represent the effect of chan- 
nel contention in an I/O subsystem with disks that do not perform rota- 
tional position sensing (RPS). (RPS will be explained in the next sec- 
tion.) Customers cycle through such a system (illustrated in Figure 10.2) 
as follows: 

- queue for the CPU 
- when the CPU is available, use it 
- queue for access to a specific disk 
- when that disk is available, seek 
- still holding the disk, queue for access to the channel (contention) 
- when the channel is available, use both it and the disk to search for 

(latency) and transfer data. 
Two preliminary remarks: 
l In fact, momentary access to elements of the I/O path is required to 

initiate a disk seek. It is customary (and justified, based on experi- 
ence> to ignore this in modelling disk I/O subsystems; we will do so 
throughout this chapter. 

l Recall that topology is irrelevant in separable queueing networks; the 
crucial issue is our choice of service demands, not our placement of 
the channel relative to the disks in our figures. 

CPU Channel Disks 

Figure 10.2 - A Highly Simplified I/O Subsystem 
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As noted in the previous section, it is a straightforward matter to con- 
struct a queueing network model of a non-RPS disk I/O subsystem that, 
given parameters derived from measurements over a specific interval, 
accurately reproduces the performance observed during that same inter- 
val. Each disk should be represented individually, with service demand 
equal to measured disk busy time divided by measured system comple- 
tions (in the single class case>. The relative contributions of seek, 
latency, transfer, and contention times are unimportant. 

In using the model to project performance for modified environments, 
it may be necessary to adjust not only the intrinsic service demands at the 
disks (for example, the substitution of a disk with a higher data transfer 
rate would result in a smaller transfer time component), but also the 
channel contention component (this same substitution would result in a 
decrease in channel holding times, and thus in channel contention). 
Note that conducting such a modification analysis imposes two require- 
ments beyond those imposed by validating a baseline model: 
l It may be necessary to deduce the relative contributions of seek, 

latency, transfer, and contention times in the measured disk busy 
times. 

l It may be necessary to estimate the changes in each of these com- 
ponents that will result from the proposed modifications. 
The emphasis in this section, and in the chapter as a whole, is on the 

most interesting aspect of these requirements: we will develop tech- 
niques that, given information about the intrinsic service requirements of 
requests at each disk (the seek, latency, and transfer times), will estimate 
the contention times experienced by requests associated with the various 
disks, and thus the effective service demands at the disks. In developing 
our techniques, we will assume that seek, latency, and transfer times are 
known. (A later section will discuss how to deduce these values from 
typical measurement data.) In using these techniques to project perfor- 
mance for a modified environment, the analyst would adjust the intrinsic 
service demands (e.g., transfer times) directly, relying on the algorithms 
to estimate revised contention components, and thus revised effective 
service demands. (Chapter 13 discusses modification analysis in more 
detail.) 

Although it is the effective service demand at each disk k, Dk, that we 
require, it will be convenient to think of Dk as the product of I$, the 
number of visits to disk k made by a customer, and Sk, the effective ser- 
vice requirement per visit. S,, in turn, can be thought of as the sum of 
seek,, latency,, transferk, and contentio+, each of which are expressed on 
a per-visit basis. In other words: 
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Dk = V, S, 

= V, seekk + latencyi, + transferk + contentionk 
[ 1 

We assume that all of these quantities except for contentionk are known. 
We must estimate contentionk, the time spent awaiting access to the 

channel by a request associated with disk k. In the spirit of mean value 
analysis, this can be viewed as the product of the channel holding time of 
a request associated with disk k and the number of requests encountered 
by a disk k request upon arrival at the channel. The channel holding 
time of a request associated with disk k is simply latency, f transfeli,. 
To estimate the arrival instant channel queue length, we (falsely) view 
the channel as a center in an open system. Recall from Chapter 6 that 
the arrival instant queue length at any center in an open system is equal 

u 
to 1-u 

~ where U is the utilization of the center. In the present case, 

we know that any requests ahead of a disk k request at the the channel 
must be associated with some disk other than k, so we modify this equa- 
tion to be: 

u,h - urh (k) 

where U,, is the utilization of the channel, and U,, (k) is the contribu- 
tion to this utilization of requests associated with disk k. Thus, if we 
knew U,, and U,, (k) we could estimate the effective service demand of 
disk k as: 

Dk = V, seekk + latencyk + transferk f contentionk 
[ 1 

= V, seekk + latencyk + transferk + 
I 

latency, + transferk X 1 u,, - L’&(k) 
l- u,h 

1 i- 
u,, - u,, (k) 

1 - &I, 11 
= V, seekk + 1 (latencyk + transferi,) (1 - i&h (k)) 

1 - v,h 

Unfortunately, the various u,h (k) required to parameterize the model are 
known only after the model has been evaluated. This suggests the itera- 
tive scheme shown as Algorithm 10.1. 

As an example, consider a batch computer system with an average 
multiprogramming level of 10, a CPU at which jobs have an average total 
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1. Define a queueing network model of the system in which the 
I/O subsystem is represented only by the disks. Initially, as- 
sume that system throughput, X, is zero. (This will cause 
the contention component of the disks’ effective service 
demands to be set to zero during the first iteration.) 

2. Iterate as follows: 
2.1. For each disk k, estimate the contribution to channel 

utilization of requests associated with that disk as: 

UC,, (k ) = X V, 
I 
latencyk + transfer, 

I 
where X is obtained from the previous iteration. 

2.2. Estimate channel utilization: &h = 2 v,, (k) 
a// disks k 

2.3. For each disk k, estimate its effective service demand 
23: 

Dk = V, seekk + 
I 

(latency, + transferk > (1 - L$., (k )> 

1 - 4, 1 
2.4. Evaluate the queueing network model using MVA. 
Repeat Step 2 until successive estimates of system 
throughput, X, are sufficiently close. 

3. Obtain performance measures from the final iteration. 

Algorithm 10.1 - Non-RPS Disks 

service requirement of 15 seconds, a single channel, and five equally 
loaded non-RPS disks at each of which jobs have average total service 
requirements of 8 seconds seeking (i.e., V,seekk = S>, 1 second search- 
ing (latency), and 2 seconds transferring data. (Note that it is not neces- 
sary to descend to the “visit” level in order to apply Algorithm 10.1; we 
did so in our development for consistency with forthcoming sections.) 
We analyze this system using a queueing network with 10 customers and 
six service centers, corresponding to the CPU and the five disks. The 
service demand at the CPU is 15 seconds. The initial service demand at 
each disk is 11 seconds. (The equally loaded disks are not essential, but 
are used to simplify the example; they allow single calculations of u,h (k) 
and Dk to be used for all disks.) Table 10.1 displays the iteration. 

The parameter values used in the first iteration correspond to an 
analysis in which channel contention is ignored. The results (throughput 
of .056, channel utilization of 84%) differ considerably from those 
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iter. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

input ca! ulatioi 
X U, (k) v, 

.oooo .ooo .ooo 

.0557 ,167 .836 

.0299 .090 .449 

.0499 .150 ,749 

.0376 .113 ,564 

.0467 ,140 .701 

.0408 ,122 .611 

.0449 .135 .674 

.0423 .127 .635 

.0439 ,132 .659 

.0430 ,129 .645 

.0434 .130 .651 

n , output 
Dk X 

11.00 .0557 
23.24 90299 
12.96 .0499 
18.16 .0376 
14.10 .0467 
16.63 .0408 
14.77 .0449 
15.96 .0423 
15.18 .0439 
15.63 .0430 
15.36 .0434 
15.48 .0434 
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Table 10.1 - Execution of Algorithm 10.1 

obtained at the end of the iteration (throughput of .044, channel utiliza- 
tion of 65%), when channel contention has been accounted for. 

Algorithm 10.1 can be applied to computer systems with multiple 
channels, each connecting the CPU to a specific set of disks. Each chan- 
nel subsystem must be considered separately in the algorithm. In Steps 
2.1 and 2.2, a separate utilization is calculated for each channel. In Step 
2.3, the effective service demand of each disk is estimated using the utili- 
zation of the channel to which it is attached. 

Two simple modifications are required to generalize the algorithm to 
multiple class queueing networks. Ln Step 2.1 the channel utilization due 
to requests associated with disk k must be estimated as: 

U,h (k) = 2 b K,h-[(atencyc,h + tran.$erc,,]] 
c=l 

In Step 2.3 revised effective service demands must be estimated on a 
per-class basis as: 

D = V,,, seek,>k + 
I 

(latencyc,k + trarZSfer,,k) (1 - &h(k)) 
c,k 

1 - u, 1 
Algorithm 10.1 is simple, efficient, and sufficiently accurate. Further, 

the situations in which its accuracy might be questioned are easily 
identified: those in which the utilization of the channel is high - cer- 
tainly greater than 50%, a higher utilization than would be encountered in 
most applications. The source of this error is our view of the channel as 
a center in an open system, which we used in calculating the expected 
queue length encountered at the channel by arriving requests from disk 
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k. In reality, the number of requests queued at the channel is bounded, 
rather than unbounded as implied by the open system approximation. 
For a given utilization, a service center in an open queueing network will 
have a greater queue length than a service center in a closed network. 
The open system approximation therefore will tend to overestimate the 
queue length at the channel, and thus to overestimate channel residence 
times. 

10.3. Channel Contention in RPS I/O Subsystems 

Rotational position sensing (RI’S) increases concurrency in the I/O sub- 
system by allowing disks to search for data (the latency period) indepen- 
dently of each other and of the channel. When the data record of interest 
rotates under the heads, the disk attempts to reconnect. (Reconnect 
rather than connect because momentary access to elements of the I/O path 
was required to initiate the seek and the search; we shall continue to 
ignore this in our models.) If the path is free, this reconnect succeeds 
and the data transfer takes place. If not, another reconnect is attempted 
when the data next rotates under the heads, one disk revolution later. 
Reconnect attempts are continued in this manner until success is 
achieved. We refer to all reconnect attempts after the first as retries. 

As in the previous section, we wish to estimate the effective service 
demand for each disk k: 

seekk + latencyk + transferk + contentionk 1 
We assume that all of these quantities except for contentionk are known. 
In the case of RPS disks, we have: 

contentionk = retriesk X rotationk 

where retriq is the number of retries required by disk k before a suc- 
cessful reconnect, on average, and rotatio+ is the rotation time of disk k. 
The latter quantity is known from device characteristics; our objective 
thus is to estimate retriesk. 

We assume that for any particular disk k, the probabilities of failure 
on various reconnect attempts are independent. (This assumption is not 
strictly correct, but at most a small error is introduced.) We let 
Pk [reconnect fails] denote this probability of failure. Then: 
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retrie+ = 0 X (1 - Px [reconnect fails11 + 

1 X (l- Pk [reconnect fails]) X Pk [reconnect fails] + 

2 X (l- Pk [reconnect fails]) X (Pk [reconnect fails])2 -t 

= 2 [ i (l-Pi, [reconnect fails]) X (Pk [reconnect faiisl)‘] 
i=l 

Pk [reconnect fails1 = 
1 - Px [reconnect fails1 

(a standard transformation) 

A reconnect attempt succeeds if the path back to the CPU is free, and 
fails otherwise. In other words, Pk [reconnect fails1 is equal to 
Pk [path busy], the probability that disk k finds the path busy when it 
attempts to reconnect. Presently the channel is the only path element 
that we are considering, so Pk [path busy1 is equal to Pk [channel busy], 
the probability that disk k finds the channel busy when it attempts to 
reconnect. At first glance, we might guess that Pk [channel busy1 is equal 
to u,.,. In fact, though, disk k will not “see” its own contribution to 
channel utilization. Thus: 

Pk [reconnect fails1 

= Pk [path busy] 

= Pk[channel busy1 

= PIchannel busy I disk k not transferring] 

= PLchannel busy & disk k not transferring] 
P[disk k not transferring] 

(Bayes’s rule) 

&I, - &I, (k) 
= 1 - U, (transfer) 

where U, (transfer) is the utilization of disk k due to data transfers. This 
quantity is equal to the utilization of the channel due to requests associ- 
ated with disk k, U,,(k). Making this substitution and using the result 
in the expression for retriesk, we obtain: 

retries, = UC, - uch(k> 

1 - UC/i 

Since these utilizations are known only once the model has been 
evaluated, we employ an iterative scheme, shown in Algorithm 10.2. 
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1. Define a queueing network model of the system in which the 
I/O subsystem is represented only by the disks. Initially, as- 
sume that system throughput, X, is zero. (This will cause 
the contention component of the disks’ effective service 
demands to be set to zero during the first iteration.) 

2. Iterate as follows: 
2.1. For each disk k, estimate the contribution to channel 

utilization of requests associated with that disk as: 

UC,, (k) = X V, transferk 

where X is obtained from the previous iteration. 
2.2. Estimate channel utilization: UC, = z UC/f (k) 

a// disks k 

2.3. For each disk k: 

- Estimate the average number of retries required 
before a successful reconnect as: 

retrie+ = u,, - uch (k) 

1 - uch 

- Estimate an effective service demand as: 

Dk = V, seekk + latencyk + transferk + 
[ 

(retries, x rotationk > 1 
2.4. Evaluate the queueing network model. 
Repeat Step 2 until successive estimates of system 
throughput, X, are sufficiently close. 

3. Obtain performance measures from the final iteration. 

Algorithm 10.2 - RPS Disks 

As an example we return to the system considered in Section 10.2, 
but assume that the disks are capable of rotational position sensing. Let 
the rotation time of each disk be 17 msec., and let the number of opera- 
tions per disk be 120. Table 10.2 displays the iteration. In comparison to 
the non-RI+ case, we note that system throughput has increased by 17% 
while channel utilization has decreased by 23%. 
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iter. 
input calculations output 

X u,h(k) &i, retriesk Dk X 
1 .oooo ,000 .ooo ,000 11.00 .0557 
2 .0557 .111 .557 1.006 13.05 .0496 
3 .0496 .099 .496 .788 12.61 .0509 
4 .0509 ,102 .509 ,830 12.69 .0507 
5 .0507 .101- .507 ,822 12.68 .0507 

Table 10.2 - Execution of Algorithm 10.2 

Like its non-RPS predecessor, this algorithm can be applied to com- 
puter systems with multiple channels each connecting the CPU to a 
specific set of disks, by considering each channel subsystem separately in 
Steps 2.1 to 2.3. It also can be generalized to multiple classes by means 
of two simple modifications. The equation in Step 2.1 becomes: 

and the second equation in Step 2.3 becomes: 

D c,k + iatencyc,k + transferc,k + 

(retriq x rotatio$) 
I 

(The rotation time of the disk and the average number of retries required 
before a successful reconnect are independent of the customer class.) 

10.4. Additional Path Elements 

The path between the CPU and a disk in a contemporary I/O subsys- 
tem contains several elements in addition to a channel. The contention 
component of the effective disk service demands is influenced by each of 
these path elements. Algorithm 10.2 estimates only the channel’s contri- 
bution to the contention component. This algorithm can be used in 
modelling I/O subsystems with additional path elements, provided that a 
change in the channel’s contribution will be the primary effect on the 
contention component of any contemplated modification. If this is not 
the case - if significant variations in the contributions to the contention 
component of other path elements are anticipated - then the algorithm 
must be extended to estimate these contributions. Such extensions are 
the subject of the present section. 
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10.4.1. Controllers 

Figure 10.3 illustrates the interposition of a controller on the path 
between the CPU and a disk. Several controllers are attached to a chan- 
nel, and several disks are attached to a controller. A controller is occu- 
pied when any of its associated disks are transferring data. 

. . . 
Controllers Disks 

Figure 10.3 - Controllers 

As in Section 10.3, our objective is to estimate Dk for each disk k. 
This requires that we estimate conrentionn. To do so, we must estimate 
retriesk . This, in turn, requires that we estimate Pk [reconnect fails], 
which is equal to Pk [path busyl. This quantity can be expressed as: 

Pk [path busy] = Pk[controller busy] + 

Pk [controller free & channel busy1 

By analogy to the derivation in the previous section, the probability that 
disk k finds its controller busy when attempting to reconnect is: 

Pk [controller busy1 = 
u crlr - Ucr,r UC) 

1 - U, (transfer) 

The probability that disk k finds its controller free and its channel busy 
when attempting to reconnect is: 
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Pk [controller free & channel busy1 

= P[controller free d channel busy I disk k not transferring] 

= PLcontroller free & channel busy & disk k not transferring] 
P[disk k not transferring] 

U,h - U,h (ctlr> 
= 1 - U, (transfer) 

(In a generalization of our earlier notation, UC,, (ctlr> is the utilization of 
the channel by requests associated with the controller to which disk k is 
attached.) To make our notation more compact, we replace 
U ctlr - Ucrlr (k), which is the utilization of thesontroller due to requests 
associated with disks other than k, by U,,,(k). Similarly, we replace 
UC, - UC, (ctlr), which is the utilization of the channel due to requests 
routed through controllers other than the one of interest, with UC,, (ctlr>. 
We obtain: 

P,[path busy1 = 
U&(E) + Uch (ctrr) 

1 - U, (transfer) 

and: 

retrie+ = 
U& (E) + UC,, Er) 

1 - u,, 

An iterative solution can be obtained, in a manner analogous to Algo- 
rithm 10.2. 

10.4.2. Heads of String 

Some architectures introduce one further path element: a collection of 
disks constitutes a string, which is connected to a controller through a 
head of string (has). Figure 10.4 illustrates this situation. 

Like the controller and the channel, the head of string is occupied 
when any of its associated disks are transferring data. Thus: 

Pk [path busy] = P,[hos busy1 -I- 

Pk [has free & controller busy1 + 

Pk [has free & controller free & channel busy] 
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Controllers 

Heads of 
string 

Disks 

Figure 10.4 - Heads of String 

Evaluating these terms yields: 

P,[hos busy] = 
fJ/ms (2) 

1 - U, (transfer> 

Pk [has free & controller busy] = 1 _ 
Ucro (KS) 

U (transfer1 
k 

Pk [has free & controller free & channel busy] = 
UC, (cm 

1 - u Ctransferj 
k 

As a result: 

P,lpath busy] = 
u,,, (k) + U& (has) + UC,, m 

1 - uk (transfer) 

and: 

retriesk = 
u,,, (k) + U& G-d + u,, m 

1 - u,,,~ 
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10.5. Multipathing 

The architectures just described are single path architectures: each disk 
is connected to a single head of string, each head of string to a single con- 
troller, and each controller to a single channel, with the result that there 
is only one path from the CPU to any disk - a particular channel, con- 
troller, and head of string must be used. This imposes limitations in 
several respects: 
l reliability - The failure of any path element will cause all disks 

“beneath it” to become inaccessible. 
l performance - A disk may be unable to transfer data because, for 

example, although its head of string and its controller are free, its 
channel is busy transferring data for another disk associated with a 
different controller. There is no way to utilize another channel that 
may be free at the time. 

l sharing - In a single path architecture it is not possible to organize 
several CPUs as a loosely-coupled multiprocessor coordinated by means 
of shared I/O devices. 
Multipathing attempts to overcome these limitations. Figure 10.1 in 

the introduction to this chapter illustrates a multipathing I/O subsystem. 
In general, a disk. may be connected to several heads of string, a head of 
string to several controllers, and a controller to several channels, perhaps 
attached to different CPUs. Each different combination of {channel, con- 
troller, head of string) that can be used to access a particular disk consti- 
tutes a unique path. The system includes an algorithm that selects a path 
for each data transfer. Existing algorithms fall into two general classes. 
In static reconnection algorithms, any free path is used to initiate an I/O 
sequence, but the disk must reconnect over this same path to transfer 
data. In dynamic reconnection algorithms, the reconnect may occur over 
any free path. (Interestingly, multipathing with static reconnection typi- 
cally results in a performance degradation relative to the single path case, 
which is tolerated for the sake of reliability and sharing.) 

In modelling multipathing, our basic approach remains unchanged, but 
the process of estimating the probabilities of reconnect failure for the 
various disks (the Pk[reconnect fails]) becomes more involved. Three 
factors contribute to this complexity: 
l To estimate the utilizations of the various path elements, the path 

selection algorithm must be considered, because at any “level” of the 
I/O subsystem hierarchy (i.e., at the level of the channels, the con- 
troller;, or the heads of string) the utilization due to requests associ- 
ated with a particular disk is divided among several path elements in a 
manner determined by this algorithm. This problem is discussed in 
Section 10.5.1. 
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l Once the utilizations of the various path elements are known, it still is 
not straightforward to estimate the probability of reconnect failure for 
a particular disk. This is the case because several paths are available 
to each disk. The probability that each of these paths is found busy 
must be estimated. Then, the path selection algorithm must be con- 
sidered to determine probability of reconnect failure given these path 
busy probabilities. This problem is discussed in Section 10.5.2. 

l In the expression for the probability that a particular disk finds a par- 
ticular path busy, additional terms must be introduced due to mul- 
tipathing. This problem is discussed in Section 10.5.3. 

Algorithm 10.3 shows the general structure of a technique for represent- 
ing multipathing in queueing network models. 

1.0.5.1. Estimating the Utilizations of Path Elements 

In a single path architecture, the utilization of any particular path ele- 
ment (any channel, controller, or head of string) is equal to the sum of 
the data transfer utilizations of all disks “beneath it”. In the case of mul- 
tipathing, though, it may be possible to route the data transfers of any 
particular disk through several different {channel, controller, head of 
string} paths. Thus, the utilization of any path element is the sum of por- 
tions of the data transfer utilizations of a number of disks. 

Even if we “know” the utilization of each disk due to data transfer 
(an improved estimate is obtained each time we iterate through all of 
Step 2 of Algorithm 10.31, the proportion routed through each path ele- 
ment can be estimated only once we have represented the behavior of the 
path selection algorithm. And, in order to represent the behavior of the 
path selection algorithm, we must know the utilizations of the path ele- 
ments, because the path selection algorithm is driven by the probabilities 
that the various paths are found busy. In other words, estimating the 
utilizations of path elements, Step 2.2 of Algorithm 10.3, itself is an itera- 
tive process. 

This iterative process would be relatively straightforward if I/O subsys- 
tems were fully interconnected - if every disk could use every head of 
string, controller, and channel. Unfortunately this is not the case. Both 
physical and logical constraints exist. These constraints could turn the 
estimation of the utilizations of path elements into a nasty combinatorial 
problem. Fortunately, though, interconnection structures tend to be 
quite limited and quite regular in practice, and various simplifying 
approximations can be introduced without significant loss of accuracy. 

One possible approach (there are several) is suggested by the fact that 
in handling I/O operations for any particular disk k, the path selection 
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1. Define a queueing network model of the system in which the 
I/O subsystem is represented only by the disks. Make an in- 
itial estimate of system throughput, X. 

2. Iterate as follows: 
2.1. Estimate the utilization of each disk k due to data 

transfer: 

U, (transfer) = X V, transferk 

2.2. Estimate the utilizations of the various path elements, 
by apportioning the data transfer utilizations of the disks 
among these path elements in a way that is consistent 
with the system’s path structure and with the path selec- 
tion algorithm. (See Section 10.5.1.) 

2.3. Estimate the effective service demand of each disk k: 

- For each path that can be used by disk k, estimate 
Pk [path busy I, the probability that disk k finds this 
path busy when it attempts to reconnect. (See Sec- 
tion 105.2.) 

- Considering these probabilities along with the 
system’s path selection algorithm, estimate 
Pk [reconnect fails], the probability that disk k fails 
to reconnect. (See Section 10.5.3.) 

- Given this probability, estimate retrie+ and Dk in 
the usual manner: 

retriesk = 
Pk [reconnect fails1 

1 - Pk [reconnect fails1 

Dk = V, seekk -I- latencyk i- transfeii, -I- 
L 

(retrie+ X rotationk > 
I 

2.4. Evaluate the queueing network model. 
Repeat Step 2 until successive estimates of system 
throughput, X, are sufficiently close. 

3. Obtain performance measures from the final iteration. 

Algorithm 10.3 - Multipathing in the Rough 
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algorithm will choose among the possible paths in proportion to the pro- 
bability that it finds them free. Thus: 

- Establish initial estimates (say, zero> for the utilization of each path 
element. 

- Iterate as follows: 
- Treat each disk k in turn: 

- For each path i to disk k, let Pk [path i selected denote the 
proportion of disk k’s transfers that use path i. Set the 
Pk [path i selected to be proportional to the probabilities that 
disk k finds each path i free: (1 - Pk [path i busy]), where 
Pk[path i busy1 is calculated as in Section 10.5.2, using the 
current estimates for path element utilizations. 

- Update the estimates of the utilizations of the various path 
elements to include the new assignment of disk k’s transfers. 

Once each disk has been considered, iterate, modifying previous 
values. 

This procedure will not reproduce exactly the behavior of the path selec- 
tion algorithm, but will provide a reasonable approximation, 

10.5.2. Estimating the Path Busy Probabilities 

As in the case of single path architectures, the probability that disk k 
finds any particular path busy when it attempts to reconnect is: 

Pk [path busy1 = Pk[hos busy1 + 

Pk [has free & controller busy1 + 

Pk [has free & controller >ree & channel busy] 

where hos, controller, and channel refer to the particular head of string, 
controller, and channel of interest - those that constitute the path in 
question. 

In the multipathing case, additional terms are involved in expressing 
these probabilities in terms of the utilizations of path elements. The pro- 
bability that disk k finds the path’s head of string busy is unchanged: 

Pk[hos busy] = 
u has - u,o, (k) 

1 - U, (transfer) 

The probability that disk k finds the path’s head of string free but its con- 
troller busy has one additional term: 

Pk lhos free & controller busy] = 
U crlr - UC,,r(hos) - UC,,r(k-h%) 

1 - U, (transfer) 
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where UC,,r(k-hos) is the utilization of the controller of interest due to 
requests associated with disk k routed through heads of string other than 
the one of interest. The probability that disk k finds the path’s head of 
string and controller free but its channel busy has two additional terms: 

Pk [has free & controller free & channel busy] 

UC, - U,,, (ctlr) - U,,,(hos-+c%) - U,,,(k+hos+cz) 
= 

1 - U, (transfer) 

where UCjz (hos+cT) is the utilization of the channel of interest due to 
requests routed through the head of string of interest but through con- 
trollers other than the one of interest, and UC, (k-h%--,& is the utili- 
zation of the channel of interest due to requests associated with disk k 
routed through heads of string and controllers other than the ones of 
interest. 

10.5.3. Estimating the Probability of Reconnect Failure 

In a single path architecture, Pk [reconnect fails] is equal to 
Pk [path busy]. This simple relationship does not hold in the case of mul- 
tipathing. Each disk k now has a number of paths to choose from. In 
determining the probability of reconnect failure, the busy probabilities of 
each possible path must be considered, along with the strategy used by 
the path selection algorithm. 

With a static reconnection algorithm, the reconnection is attempted 
over whichever path was chosen for the initiation of the I/O sequence. 
Thus: 

Pk [reconnect fails1 = 2 Pk [path i selected] x Pk [path i busy1 
possible 

i ’ paths 

where Pk [path i selected] is the proportion of disk k transfers that use 
path i (from Section 10.5.1) and Pk[path i busy1 is the probability that 
disk k finds path i busy when attempting to reconnect (from Section 
10.5.2). 

With a dynamic reconnection algorithm, the reconnection can take 
place over any free path. Thus: 

Pk [reconnect fails1 = Pk [all possible paths busy1 

= n P,[path i busy1 

iE 
possible 
paths 

(This equation assumes that the probabilities of various paths being busy 
are independent of one another. This assumption is not strictly correct, 
but any error introduced is apt not to be substantial.) 
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10.6. Other Architectural Characteristics 

In this section we provide brief treatments of two additional architec- 
tural characteristics: shared disks and cached devices. 

10.6.1. Shared Disks 

As noted in Section 10.5, one virtue of multipathing is that it allows 
disks to be shared among several systems. Such a configuration often is 
referred to as a loosely-coupled multiprocessor. In principle the systems 
could be joined at any level in the I/O subsystem hierarchy. Figure 10.5 
illustrates a typical case, in which a single controller is attached to two 
channels connected to different CPUs. 

CPUS Disks 

Figure 10.5 - Shared Disks 

A loosely-coupled multiprocessor can be viewed in two ways: as a sin- 
gle system that happens to have multiple CPUs, or as a collection of 
separate systems that happen to share disks, The distinction is important, 
for the two views lead to different modelling approaches. The choice of 
view depends upon the way in which a particular processing complex 
actually is used, and the nature of the performance questions under con- 
sideration 
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The first view, that of a single system that happens to have multiple 
CPUs, leads to a single large queueing network model that includes all 
devices and all workload components. The advantage of this modelling 
approach is its conceptual simplicity: no new ideas are involved. For this 
reason we will discuss this view no further. 

The second view, that of a collection of separate systems that happen 
to share disks, leads to a collection of small queueing network models, 
one corresponding to each system. The advantage of this modelling 
approach is its modularity: a modification whose primary effect will be 
felt by one system can be investigated by defining, parameterizing, and 
evaluating one relatively small model. Conducting such an analysis is the 
subject of the remainder of this subsection. 

Consider the queueing network model of any of the systems. The I/O 
subsystem component of this model will include service centers 
corresponding to all disks used by customers on that system, whether 
those disks are dedicated or shared. Certainly, contention in the I/O sub- 
system due to requests associated with other systems must be 
represented. If not, throughput of requests associated with the system of 
interest would be over-estimated. We will represent this contention in 
our model, but will do so in a way that is determined from measurement 
data. In modifying the model for purposes of performance projection, we 
will assume that the utilizations of disks and path elements due to 
requests associated with other systems remain unchanged. 

In estimating the effective service demand at each disk in the model, 
we represent the effect of requests associated with other systems in two 
ways: 
l accounting for additional reconnect delay experienced because of path con- 

tention due to ‘Yoreign” requests - In evaluating the expressions for the 
probabilities that various paths are found busy, the measured utiliza- 
tions due to requests associated with other systems are added to the 
calculated utilizations due to customers in the model, for each shared 
path element and shared disk. This adjustment results in a realistic 
estimate for the contention component of effective service demand. 

l accounting for delay in acquiring the disk due to its use by ‘yoreign” 
requests - For each disk, the contention component calculated above 
is added to the seek, latency, and transfer components. This total is 
divided by one minus the measured utilization of the disk due to 
requests associated with other systems. The rationale is the same used 
in estimating channel contention for non-RPS disks (Section 10.2). 
We recommend this approach whenever it is possible to assume rela- 

tive stability in the utilizations of disks and path elements due to requests 
associated with other systems, in the presence of postulated modifications 
to the system of interest. 
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10.6.2. Cached Devices 

A cache memory is a relatively small, relatively high speed memory 
that is used as a staging area for data. For many years cache memories 
have been interposed between processors and their primary memories. 
Very recently they have been introduced into I/O subsystems, typically by 
augmenting controllers with storage capacity (on the order of millions of 
bytes) and processing capacity. In this subsection we will take a brief 
look at modelling cached devices. 

The cache contains duplicate copies of some of the disk-resident data. 
If the cache is well managed, the vast majority of the data that is refer- 
enced by I/O operations will be resident in the cache. Two parameters 
are crucial in determining the effectiveness of the cache. The first is the 
hit ratio: the proportion of I/O operations that refer to data residing in 
the cache. The second is the read ratio: the proportion of I/O operations 
that are reads rather than writes. These parameters are crucial because a 
read hit (a read operation referencing data resident in the cache) can be 
serviced without accessing the disk. Thus, it has a service time roughly 
equal to the data transfer time, with no seek or latency components. On 
the other hand, a read miss, a write hit, and a write miss each require that 
the disk be accessed. Furthermore, because of the overhead involved in 
managing the cache, a disk access in a cached environment is somewhat 
slower than a disk access in a conventional environment. Thus, a perfor- 
mance degradation can result from conversion to a cached I/O subsystem 
if a low read ratio exists, regardless of the hit ratio. A performance 
improvement will result if high hit and read ratios exist. 

Let us consider a modelling study whose objective is to estimate the 
effect of converting an existing system to a cached I/O subsystem. We 
adhere to the basic model structure and evaluation techniques used in 
previous sections, and assume that a validated baseline model exists. 
l We can reflect any changes in the seek, latency, and transfer times 

due to device characteristics in a straightforward manner. 
l To account for the fact that a read hit can be serviced with no disk 

access, we adjust the effective service demands of the disks in the 
obvious way: 

Dk = V, (1 - (hit ratio X read ratio)) X (seekk -I- latency,) ‘r 
I 

transfeli, f contentionii 1 
The hit ratio is not apt to be site-dependent in a significant way, so 
typical values can be obtained from manufacturer’s data. The read 
ratio is not apt to change as a result of the conversion, so measure- 
ment data from the existing system can be used. 
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l The overhead of managing the cache may cause the utilizations to 
increase at various path elements, especially controllers. These 
increased utilizations should be represented, because they will affect 
path contention, Manufacturer’s data is available that provides multi- 
plicative factors to be used in estimating this overhead, given the basic 
transfer time. These factors can be used within the model in calculat- 
ing the path busy probabilities. 

10.7. Practical Considerations 

Two practical considerations immediately arise in contemplating the 
application of the techniques we have described: 
l How can the relatively detailed parameters required by these tech- 

niques be inferred from the measurement data that typically is 
encountered? 

0 How can these techniques be embedded in queueing network model- 
ling software? 

These related concerns are the subjects of the present section. 

10.7.1. Inferring Parameter Values from Measurement Data 

The techniques we have presented require that the following informa- 
tion be provided as input: 

- a specification of the path structure of the I/O subsystem 
- for each disk: 

- the visit count 
- the average seek, latency, and transfer times per visit 
- the average rotation time 

Given this information, these techniques iteratively estimate the average 
contention time per visit at each disk, and thus the effective service time 
per visit, S,, and the effective service demand, Dk. 

In this section we consider the common situation in which the values 
of some of these parameters are not available directly, so must be 
inferred before our techniques can be applied. Inevitably, the visit counts 
and utilizations of the disks are known from measurement data. From 
these, the actual effective service times per visit and effective service 
demands can be calculated. We know that the actual effective service 
demands, if used to parameterize a model, would yield excellent results 
without the use of the techniques described in this chapter. (These tech- 
niques are required to conduct a modification analysis in which a change 
to the contention component of the effective service demands is 
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anticipated to be a primary effect.) A fruitful way to view our task is that 
we must partition the actual effective service times per visit into seek, 
latency, transfer, and contention components, in such a way that when 
the seek, latency and transfer components are provided as inputs to the 
model (along with path structure, visit counts, and rotation times), the 
techniques that we have developed will calculate effective service times 
per visit and effective service demands that are roughly the same as the 
actual values. Once this has been achieved, we will consider the baseline 
model to be validated and will be prepared to use it for performance pro- 
jection 

We denote the actual effective service time per visit at disk k by Si, 
and the actual effective service demand by DL. We proceed as follows: 
l To estimate latencyk, we refer to the device characteristics. 
l To estimate transfer, we employ the utilizations and visit counts of the 

channels, which are available readily from measurement data. From 
these, the service time per visit to each channel can be obtained. In 
the single path case, we set transfer, to this value (for the appropriate 
channel, of course). In the multipathing case, we take an average of 
the values of the channels accessible from disk k. Estimating transferi, 
on the basis of measured channel service times is important. The 
various path elements are processors rather than wires, and overhead 
is associated with each transfer. Estimating transferk by considering 
block sizes and transfer rates would ignore this overhead, yielding an 
optimistic value. In stating our approach, we have made the homo- 
geneity assumption that the data transfer service requirements of all 
disks on a particular channel are the same. Adjustments are possible 
if block size information is available. 

l To estimate seekk it is tempting to refer to the device characteristics. 
Unfortunately, this approach is notoriously unreliable. We know that: 

seekk + contentionk = Si - Iatencyn - transfer, 

where each of the quantities on the right hand side is known. In order 
to obtain consistent estimates for the two quantities on the left hand 
side, we will evaluate the queueing network, using either Algorithm 
10.2 (for the single path case, augmented as in Section 10.4) or Algo- 
rithm 10.3 (for the multipathing case>, and let the results determine 
the estimates. More specifically: 

- In Step 2.1 of either algorithm, we use the values of transferx 
estimated above. 

- In each iteration of Step 2 in either algorithm, we use Di as the 
effective service demand of disk k. (Fixing this value does not 
entirely eliminate iteration, because the throughput of the 
model will differ slightly from the throughput of the system.) 
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- When the algorithm terminates, it will have estimated 
Pk [reconnect fails] and retrie+ for each disk. Since rotationk is 
known (from the device characteristics), this means that an esti- 
mate for contentionk has been obtained. We set our estimate for 
seekk to: 

seekk = Sk” - latencyk - transferk - contentionk 

We now are prepared to use the model for performance projection, 

10.7.2. Incorporation in Queueing Network Modelling Software 

The preceding discussion provides a number of insights concerning the 
support that a queueing network analysis software package might provide 
for modelling complex I/O subsystems. 

The package might provide a convenient syntax for specifying the path 
structure of the I/O subsystem. As input, the analyst would provide this 
path structure, plus the effective service demands and visit counts at each 
disk, and the service demands and visit counts at each channel. The 
package might make use of internal information concerning various dev- 
ice types to provide quantities such as average latency and rotation times. 

The analyst would indicate when the model has been specified fully. 
At this point, the package would evaluate the model, inferring the 
detailed parameter values and storing them internally. 

At this point, it is possible to undertake modification analyses. The 
package might support this process in a number of ways. For example, 
the path structure might be modifiable using the same syntax in which it 
was specified, with the package adjusting the detailed parameter values. 

Chapter 16 contains a more extensive discussion of software support 
for queueing network modelling. 

10.8. Summary 

In this chapter we have presented a single model structure that can be 
used to represent complex contemporary I/O subsystems at varying levels 
of detail. In this model structure, the I/O subsystem is represented by 
service centers corresponding to the various disks, each with an efSective 
service demand, Dk, equal to: 

V, 
I 
seekk i- latencyk -I- transferk f contentionk 1 

We have developed algorithms for estimating the contention component 
of the effective service demand under a number of different assumptions 
about the structure of the I/O subsystem and the level of detail of the 
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model. We have discussed various practical considerations, such as 
obtaining the necessary parameters for these algorithms from typical 
measurement data and incorporating these algorithms in queueing net- 
work modelling software. 

For a variety of reasons the material in this chapter should not be 
viewed as definitive: the I/O subsystem architectures of various vendors 
differ substantially in their details, these architectures are evolving 
rapidly, and techniques for representing these architectures in queueing 
network models are an area of current research activity. Our algorithms 
should be viewed as an indication of what can be done, and as a set of 
techniques that can be used directly and also can be tailored as necessary 
to the requirements of specific systems. 

In closing this chapter, we reiterate an important point made in its 
introduction. The fact that the computer system under study has a com- 
plex I/O subsystem does not mean that sophisticated I/O subsystem 
modelling techniques are required. If the primary effects of the postu- 
lated modifications can be represented by straightforward adjustments of 
disk service demands, then sophisticated I/O subsystem modelling tech- 
niques are not called for. The benefits of omitting sophistication include 
a simpler parameterization and fewer assumptions. 

10.9. References 

In this chapter we have developed models in which service centers of 
the load-independent queueing type are used to represent each disk, itera- 
tively estimating the effective service demands at these centers. Two 
equally reasonable alternate approaches exist. The first of these can be 
described as follows: 

- Define a queueing network model of the system in which the I/O 
subsystem is represented only by the disks, and each disk is 
represented by a service center of the delay type. 

- Iterate as follows: 
- For each disk: 

- Estimate the effective service demand. 
- Use this value in a formula from queueing theory to estimate 

the average residence time at the disk. 
- Substitute this value into the corresponding delay center. 

- Evaluate the queueing network model. 
Repeat until successive estimates of system throughput are 
sufficiently close. 



10.9. References 249 

This approach is common in practice. Although its origins are unknown, 
it has been used by Bard [1980, 19821, by Wilhelm [19771, and by Zahor- 
jan, Hume, and Sevcik [Zahorjan et al. 19781. 

The second alternate approach, due to Brandwajn [1981l, involves 
multiple applications of the principles of flow equivalence and hierarchical 
modelling described in Chapter 8: 

- Consider each string (the disks attached to a particular head of 
string) in turn. Define an FESC by evaluating (for each feasible 
population) a submodel in which each disk on the string is 
represented by a service center of load-independent queueing type. 

- Consider each controller subsystem (the heads of string and disks 
attached to a particular controller) in turn. Define an FESC by 
evaluating (for each feasible population) a submodel in which each 
string is represented by the FESC defined in the previous step. 

- Consider each channel subsystem (the controllers, heads of string, 
and disks attached to a particular channel) in turn. Define an 
FESC by evaluating (for each feasible population) a submodel in 
which each controller subsystem is represented by the FESC 
defined in the previous step. 

- Evaluate a high-level model consisting of the CPU and the channel 
subsystem FESCs defined in the previous step. 

Two of the three model structures described above, including the one 
adopted in this chapter, require that effective service demands be 
estimated for each disk. The treatment of non-RPS disks (Section 10.2) 
belongs to the folklore of queueing network modelling. The treatment of 
RPS disks (Section 10.3) also is difficult to attribute. Wilhelm [19771 and 
Zahorjan, Hume, and Sevcik [Zahorjan et al. 19781 are responsible for 
two accessible renditions. The latter analysis incorporates the fact that 
the probabilities of failure on successive reconnect attempts are not 
independent. 

Bard is responsible for the original work on multipathing, both in the 
case of static reconnection algorithms [Bard 19801 and in the case of 
dynamic reconnection algorithms [Bard 19821. Bard’s approach relies on 
a maximum entropy formulation of the problem. 

Buzen and von Mayrhauser [19821 present an interesting analysis of 
various considerations affecting the modelling and the performance of the 
IBM 3880-13 cached storage controller. The discussion in Section 10.6.2 
is based partially on their work. 

Hunter [19821 explores the process of parameterizing queueing net- 
work models of I/O subsystems from typical measurement data, in the 
context of IBM’s MVS operating system. The discussion in Section 
10.7.1 is based partially on his work. 
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10.10. Exercises 

1. The example of Section 10.2 involves a CPU, five equally loaded disk 
devices, and a channel utilized roughly 65%. Clearly the channel 
represents a performance problem. Suppose a second channel were 
added to the system, and two of the five disks moved to it. 
a. Use the iterative technique of Section 10.2 to estimate system 

throughput under the assumption that the disks do not have rota- 
tional position sensing capability. Compare the channel contention 
component of effective disk service demand with the new 
configuration to that shown in Table 10.1 for the single channel 
configuration. 
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b. Perform the same calculations under the assumption of RPS disks. 
Compare your results to those shown in Table 10.2. 

2. Consider the simple models of channel contention discussed in Section 
10.2 (Algorithm 10.1 for non-RPS disks) and Section 10.3 (Algorithm 
10.2 for RPS disks). Show that for fixed seek times, rotation times, 
data transfer times, and visit counts, the “effective service demand” 
will be lower with rotational position sensing than without it, for any 
disk throughput that does not saturate the channel. (Assume a single 
transaction workload, and a latency equal to one half of a rotation.) 

3. Consider a new disk technology in which each disk contains a one 
track buffer. Assuming a simple channel/disk view of the I/O subsys- 
tem (i.e., ignoring o.ther path elements), the disk would operate as fol- 
lows. When performing a read operation, seek and initial latency 
would be performed independently of the channel. If the channel was 
idle when the data to be read rotated under the heads, the disk would 
gain control of the channel and perform the data transfer. If the chan- 
nel was busy when the data became available, the entire track would 
be copied into the disk’s buffer, and the disk would queue in a FCFS 
manner for the channel. When the channel became available, the data 
would be transferred from the buffer. When performing a write opera- 
tion, the buffer would not be used (i.e., the disk would operate as a 
standard RPS device). 
a. Give an expression for the effective disk service time. What input 

parameters are required? 
b. Describe an (iterative) approximation technique for modelling this 

disk technology. 
4. In deriving the expression for retriesk (the average number of retries 

required by device k), we have assumed that the probability that a 
reconnect attempt fails is independent of the number of attempts 
made so far. However, it appears that in practice the probability that 
the second and subsequent afiempts fail is slightly larger than the pro- 
bability that the first attempt fails. 
a. What does this indicate about the tendency of the procedures 

described in this chapter to under- or over-estimate system 
response time? 

b. Suppose you knew that the probability of a reconnect attempt fail- 
ing was 10% higher on the second and subsequent attempts than on 
the first attempt. Give an expression for the average number of 
retries required. 
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c. In practice, an unlimited number of reconnect failures is not possi- 
ble. After some fixed number of failures, the disk queues for the 
channel, and reconnects as soon as possible regardless of the posi- 
tion of the desired data relative to the heads. What does this indi- 
cate about the tendency of the procedures described in this chapter 
to under- or over-estimate system response time? Does this 
amplify or diminish the effect indicated by your answer to (a)? 

5. The complex approach to modelling multi-element I/O paths taken in 
this chapter was necessary for two reasons. First, a single job may use 
more than one path element at a time. Such simultaneous resource 
possession cannot be modelled directly by separable queueing net- 
works. Secondly, measurement tools frequently do not provide 
sufficient information about the usage of the I/a path elements. 
a. What sorts of measurement information would be useful in model- 

ling complex I/O subsystems? 
b. How could you modify the procedures given in this chapter to take 

advantage of such information? 


