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Abstract

This paper introduces a new benchmark tool for evalu-
ating performance and availability (performability) of net-
worked storage systems, specifically storage area network
(SAN) that is intended for providing block-level data stor-
age with high performance and availability. The new bench-
mark tool, named N-SPEK (Networked-Storage Performa-
bility Evaluation Kernel module), consists of a controller,
several workers, one or more probers, and several fault
injection modules. N-SPEK is highly accurate and effi-
cient since it runs at kernel level and eliminates skews and
overheads caused by file systems. It allows a SAN ar-
chitect to generate configurable storage workloads to the
SAN under test and to inject different faults into various
SAN components such as network devices, storage devices,
and controllers. Available performances under different
workloads and failure conditions are dynamically collected
and recorded in the N-SPEK over a spectrum of time. To
demonstrate its functionality, we apply N-SPEK to evalu-
ate the performability of a specific iSCSI-based SAN under
Linux environment. Our experiments show that N-SPEK not
only efficiently generates quantitative performability results
but also reveals a few optimization opportunities for future
iSCSI implementations.
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1. Introduction

One of the primary concerns of storage area network
(SAN) is high data availability besides performance. To
ensure high availability, a typical SAN has built-in redun-
dancies at various levels including storage devices such as
RAID, controllers such as HBA and NIC, and network com-
ponents such as switches, bridges, and connecting cables.
Software mechanisms are employed to bypass failed com-
ponents to provide continued data availability. Different

topological architectures and fault-tolerant mechanisms ex-
ist for SAN and new ideas and technologies emerge rapidly
[20]. It is highly desirable to have efficient benchmark
tools to quantitatively evaluate performance and availability
of various SAN architectures. While there are benchmark
tools for file system and disk performance evaluations such
as PostMark [9], IoMeter [8] and others [3, 4, 14], there is
little work done on benchmark tools for evaluating avail-
ability of a networked storage system. One exception is the
research work done by Brown and Patterson [2] who were
the first to advocate for availability benchmarking with a
case study on evaluating the availability of software RAID
systems.

In this paper, we present a kernel level benchmark tool
for evaluating the availability of SAN systems named N-
SPEK (Networked-Storage Performability Evaluation Ker-
nel module). N-SPEK measures performance levels under
various fault conditions in terms of performability (perfor-
mance + availability) over time instead of using an aver-
age percentage of “up” time as an availability metric. N-
SPEK allows a user to generate workloads to a SAN, to
inject faults at different parts of the SAN such as networks,
storage devices, and storage controllers. By generating con-
figurable workloads and injecting configurable faults, users
can grab the dynamic changes of potentially compromised
performance and therefore quantitatively evaluate system
performability of a measured SAN. To demonstrate how
N-SPEK works, we carried out performability tests on an
iSCSI SAN system.

The paper is organized as follows. Next section presents
the structure and behaviors of N-SPEK. A case study on
iSCSI will be presented in Section 3. We conclude the paper
in Section 4.

2. Structure of N-SPEK

Figure 1 shows the overall structure of N-SPEK. N-
SPEK contains a controller, several workers, one or several
probers, and different types of fault injection modules.
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Figure 1. N-SPEK Structure

An N-SPEK Controller resides on a controller machine
which is used to coordinate N-SPEK Workers and Probers.
It can start/stop N-SPEK Workers and Probers, send com-
mands and receive responses from them. One N-SPEK con-
troller controls several workers and each worker generates
I/O requests to storage targets independently. A Java GUI
interface of the controller allows a user to input configu-
ration parameters such as workload characteristics and to
view measured results. The controller also has a data anal-
ysis module to analyze measured data.

There is one N-SPEK Worker running on each testing
client to generate I/O requests via the low level device driver
and to record performance data. As a Linux kernel module,
each N-SPEK Worker has one main thread, one working
thread, and one probe thread. The main thread receives in-
structions from the N-SPEK Controller, controls the work-
ing thread to execute actual I/O operations, and reports re-
sults to the controller. The working thread keeps sending
requests to SCSI layer that are eventually sent to remote tar-
gets by a lower level device driver. The probe thread records
system status data periodically and reports to the N-SPEK
Controller once test completes.

Ext2 Ext3 Ext2 with Sync flag

PostMark 2.375 1.351 0.511
IoZone 65.228 61.676 2.136
Bonnie++ 61.495 56.773 3.236

Table 1. Measured throughput (MB/s) of Post-
Mark, IoZone, and Bonnie++ with changes of
file system options

By running in the kernel space, N-SPEK minimizes over-
heads caused by system calls and context switches com-
pared to other benchmark tools running in the user space.
It also eliminates overheads and skews caused by file sys-
tem layer. Such overheads and skews may give quite differ-
ent performance results for the same measured system. Ta-
ble 1 shows measured random write performance results of
a same SCSI disk under different file systems (Ext2, Ext3,

and Ext2 with Sync flag) using PostMark, IoZone, and Bon-
nie++, respectively. It is clearly shown that although our
measured storage is exactly same, these benchmark tools
produce completely different performance results because
of different file systems. Figure 2 plots the measured ran-
dom write performance of a Seagate SCSI disk using N-
SPEK and IoMeter, respectively. It is interesting to ob-
serve that throughputs produced by IoMeter fluctuate dra-
matically between 0 and 300 IOPS (IO per second) while
those produced by N-SPEK are fairly consistent over time.
The fluctuation of the throughputs produced by IoMeter re-
sults mainly from the buffer cache. Because of the existence
of the buffer cache, throughputs are high at times. However,
during a dirty cache flushing period, measured throughput
approaches to zero because the system is busy and not able
to respond to normal I/O requests. Our N-SPEK module,
on the other hand, produces accurate and stable throughput
values over time.

The accuracy of N-SPEK is also evidenced when we
measure the sequential read throughput of a SCSI disk as
shown in Figure 3. In this figure, throughput changes peri-
odically between 55MB/s and 39MB/s and the total data ac-
cessed in each period is 18GB which approximately equals
to the formatted disk size. With Zoned Constant Angular
Velocity (ZCAV) scheme, a modern SCSI disk has more
sectors on outer tracks than inner tracks. As a result, ac-
cessing sectors on outer tracks is faster than inner tracks
giving rise to the periodic throughput change as shown in
the figure.

To evaluate system availability, we need to inject faults
at various parts of the system. Fault injection is commonly
used in fault-tolerance community to verify fault tolerant
systems or to study system behaviors [1, 5]. It is also
adopted for the analysis of software RAID system availabil-
ity [2] and measurement of networked service availability
[10]. There are three types of fault injection modules in
N-SPEK to support availability evaluation. By using these
modules, users can introduce different types of faults to dif-
ferent parts of a networked storage system under test and
measure the performability of the tested system at degraded
modes. These modules are:

Network fault injector. It resides on a network bridge
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Figure 2. Measured throughputs for random write with block size being 16KB. The average IOPS of
IoMeter is 175 while that of N-SPEK is 240. And the dynamic result of IoMeter fluctuates between 0
and 300 because of buffer cache effects while that of N-SPEK keeps consistent.
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Figure 3. Measured throughput on the Sea-
gate SCSI disk using N-SPEK.

on the network path between a worker and the measured
storage target. It injects unexpected events to network traf-
fic traveling through the bridge by adding excessive delays
and dropping packets with a configurable packet loss rate.
Note that TCP provides reliable transport over the Internet
through flow control, time-out, and retransmission mech-
anisms. Many network faults including hardware failures
and software failures in the network result in excessive de-
lays at the transport layer. Injecting excessive delays at TCP
layer mimics various network faults. We call this type of
faults delay fault. Our fault injector makes use of a pro-
gram that controls the existing dummynet [15] package in
FreeBSD, a network traffic control and shaping software
that was previously used by other researchers [13].

Storage fault injector. Its main purpose is to emulate a
normal SCSI disk that can be used directly by storage sys-
tems, and to generate some kinds of transient and sticky
SCSI disk errors that compromise system availability. Pre-
vious researchers [2, 6] have also used disk emulation tech-

niques to do fault injections and performance evaluation.
Our storage fault injection module is a RAM based virtual
SCSI disk residing on the storage target. It exports itself as
a normal SCSI disk and is utilized by the target under test.

Controller fault injector. Besides hardware failures of a
storage controller, major source of faults of a controller can
be attributed to malfunction of CPU and RAM. Normal op-
erations of a controller can be compromised if needed CPU
and/or RAM resources are unavailable. Directed by config-
urable parameters, a controller fault injector can take away
most of CPU and/or memory resources from normal stor-
age controller operations by adding unrelated CPU loads
and memory loads to the controller.

All these injected faults are user configurable and can be
set before a test experiment. Users can set them as sticky or
transient. A sticky fault will influence tested systems during
the entire measurement period while a transient fault occurs
to the system in a short period. For example, users can set a
network delay fault to 1ms during an entire test process as
a sticky fault or add a packet loss rate of 0.0005 only in the
third minute as a transient fault. By introducing these faults
individually or simultaneously into a system, users can well
simulate different failure situations and obtain performabil-
ity of the measured system.

Unlike performance evaluation that has well-established
metrics such as throughput and response time, there is no
such a well-established performability benchmark avail-
able. Traditionally, availability has been measured as an
average percentage of system “up” time. Brown and Pat-
terson defined availability as a fluctuation of performance
dynamics as opposed to a binary value to reflect different
degree of performance degradations caused by component
failures. Other researchers define performability as the av-
erage throughput multiplied by a measure of availability for
cluster-based services [12]. Tsai [17] uses a time-dependent



quality of service metric that is also adopted in [2]. Our
method is to provide dynamics of performance over time
under different fault conditions, and leave the performabil-
ity definition and computation to users. In this way, user can
obtain enough data and flexibly use their own definition of
their interest, which is more informative to their research.

3. A Case Study: Performability Evaluation of
iSCSI

iSCSI is an emerging standard [16] to support remote
storage access via encapsulating SCSI commands and data
in IP packets. It was originally proposed by IBM, Cisco,
HP, and etc, and has recently become an industry standard
approved by IETF. It enables clients to discover and ac-
cess SCSI devices directly via the matured TCP/IP technol-
ogy and existing Ethernet infrastructures. Previous work on
iSCSI mainly concentrated on its performance evaluation
and potential improvement [13, 19, 11, 7]. By using our
N-SPEK, we evaluate the performability of a popular iSCSI
implementation and observe that the performance of iSCSI
degrades dramatically in case of faults, and it can rapidly
recover to normal status once such faults are removed or
corrected.

3.1. Experimental Environment

In our experiments, we use four PCs acting as N-SPEK
Controller, N-SPEK Worker, network bridge, and iSCSI
storage target, respectively. The network fault injection
module is installed on the bridge and the controller fault
injection module resides on the iSCSI target. The iSCSI
target uses an N-SPEK storage fault injection module, an
emulated disk, as a storage device. All PCs are equipped
with one Pentium III 866MHz CPU, 512M PC133 memory,
and one Intel Pro1000 Gigabit NIC except for the bridge
that has two NICs. The N-SPEK worker is connected to a
NetStructure 470T Gigabit switch through the bridge using
a crossover cable while other three PCs are connected to the
switch directly. All PCs run Redhat Linux 7.3 with recom-
piled standard 2.4.18 kernel except for the bridge that uses
FreeBSD 4.6. The iSCSI implementation we choose comes
from University of New Hampshire [18].

3.2. Performability Results

We measured performability under different faults with
different request patterns and found that for different re-
quest patterns, the performability shows similar tendency
under same fault conditions. Because of the page limit, we
report here only the performability results under sequential
read with 8KB block size. We mainly measure the per-
formability with single fault injections to check effects of

different faults. In all experiments, we let workers generate
next request only if it successfully receives a response for
the previous request. If it gets a response indicating that the
previous request failed, was timeout, or finished with errors,
it will retry the previous request.
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(a) Sticky Delay Faults and Packets Loss Faults Injected
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Figure 4. iSCSI Performability under Network
Faults.

We plot throughput results of iSCSI under different net-
work faults in Figure 4. From Figure 4 (a), we observe that
iSCSI performance degrades rapidly with increase of delay
faults and packet loss rate. For example, when the network
delay fault increases from 0ms to 1ms, the iSCSI perfor-
mance drops from 9.68 MB/s to 1.94 MB/s, a 398% reduc-
tion. And a 0.001 packet loss rate fault will degrade system
performance from 9.68 MB/s to 3.42 MB/s. Since many



iSCSI deployments share the same network with other ap-
plications, such network congestion can greatly impair the
performability of the iSCSI storage system. Figure 4 (b) is
the measured instant throughputs of the iSCSI target under
transient packet loss that sustains for about 2 seconds. Dur-
ing the 2 seconds, system suffers from a low throughput.
In general, we find that system runs with a degraded perfor-
mance during the period that network faults are injected and
it rebounds back to the normal status rapidly once the faults
are removed.
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(a) Transient Disk Errors Injected
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(b) Sticky Disk Errors Injected

Figure 5. iSCSI Performability with Disk Faults

The iSCSI performance under transient and sticky disk
faults are shown in Figure 5 (a) and (b), respectively. Dur-
ing the transient fault injection period, we let the storage
fault injector reply each I/O request with a successful re-
sponse or with a correctable error response equally likely,
i.e. 50% chance of errors. Such transient faults result in
a nearly 50% performance drop during the period of tran-
sient errors injected. To understand why there is such a big
performance drop, we analyzed the source code of iSCSI
implementation. We noticed that in this iSCSI implementa-
tion, the storage controller simply returns response of a re-
quest back to an initiator without checking its result. There-
fore for a failed request, the iSCSI controller sends the re-
sponse containing error message back to the client and the
client simply retries this request via network again. A better

policy would be to let the iSCSI controller retry the failed
request directly at controller side and return a response with
successful message or with failed message after predefined
trials. In this way, an iSCSI controller can find and han-
dle most transient errors locally minimizing unnecessary
network traffic and thus improving iSCSI performability.
With sticky uncorrectable disk errors injected, iSCSI per-
formance reduces to zero as shown in Figure 5 (b). It can
be seen that iSCSI performability is greatly influenced by
the performability of storage devices it uses. A storage de-
vice that has some kinds of redundancy or mirroring such
as RAID can greatly improve its performability and also
enhance the performability of higher level services.
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Figure 6. iSCSI Performability under Transient
Controller Faults

We also measured iSCSI performance under transient
controller faults and show the results in Figure 6. Our con-
troller fault injector takes over 98% of the CPU time during
the fault-injection period and iSCSI only has 10% through-
put compared with normal case. During a fault injection pe-
riod, the controller CPU becomes the bottleneck although
Linux scheduler still gives the iSCSI process some time
slices to run. Once the CPU fault is removed, iSCSI returns
to normal performance rapidly.

Figure 7 shows the performance results of iSCSI under
multiple faults. With both network delay faults and con-
troller CPU faults injected, iSCSI only gets a throughput of
around 0.39 MB/s, much lower than the case of any single
fault. After the network delay fault is removed, the perfor-
mance of iSCSI recovers to around 0.79 MB/s, almost iden-
tical to the performance it achieves with single controller
CPU fault. Its performance recovers to the normal value
rapidly after the CPU fault is removed.

4. Conclusions

In this paper, a new benchmark tool has been presented
for measuring performability (performance + availability)
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Figure 7. iSCSI Performability under Transient
Network and Controller Faults

of SANs. The benchmark tool, referred to as N-SPEK (Net-
worked Storage Performability Evaluation Kernel module),
enables a SAN architect to measure available performance
of a SAN under different failure conditions and to analyze
performance changes as result of various component faults.
In its current version, N-SPEK tool can generate user con-
figurable storage workloads, network faults, disk failures,
and controller faults. It then collects and records perfor-
mance results based on the workloads and fault injections.
A prototype N-SPEK has been tested on a simple iSCSI
based SAN to demonstrate its functionality. Our future
work is to support more network protocols and controller
OS, to introduce more realistic faults, and to perform mea-
surements on various SAN systems.
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