

 1

Performance Evaluation of Distributed iSCSI RAID

Xubin (Ben) He, Praveen Beedanagari, Dan Zhou
Department of Electrical and Computer Engineering

Tennessee Technological University
Cookeville, TN 38505, USA

{hexb, prb0779, dz1643}@tntech.edu

Abstract

 iSCSI is a newly emerging protocol with
the goal of implementing the storage area
network (SAN) technology over TCP/IP,
which brings economy and convenience
whereas it also raises performance and
reliability issues. This paper identifies the
performance bottleneck of iSCSI, and then
proposes a distributed iSCSI RAID to
improve the performance by stripping data
among iSCSI targets (S-iRAID) and
improve the reliability by using rotated
parity for data blocks (P-iRAID). Numerical
results using popular benchmark have
shown dramatic performance gain. S-iRAID
improves the average throughput from
11.7MB/s to 46.1MB/s by striping data
among only three iSCSI targets. S-iRAID
and P-iRAID can speed up the iSCSI
performance by a factor of up to 6.6 and
2.17, respectively.

1. Introduction

iSCSI [1,15,18,19] is a newly emerging
technology with the goal of implementing
the storage area networks (SAN) [9,21]
technology over Internet infrastructure,
which brings economy and convenience
whereas it also raises performance and
reliability issues. On a typical software
iSCSI implementation [11], we have
observed one iSCSI target is not enough to
saturate the network and the iSCSI initiator.
We also notice that for each iSCSI
operation, there will be at least 4 socket

communications between the iSCSI initiator
and target [8]. All these socket
communications may cause much overhead
which limits the iSCSI performance. In
addition to the performance issue,
researchers also concern the data reliability
on the iSCSI targets.

RAID (Redundant Array of Independent
Disks) [9] is a known, mature technique to
improve performance and reliability of disk
I/O through parallism and redundancy. This
paper introduces a technique to stripe data
among several iSCSI targets in a similar
way to RAID. Since it’s a distributed RAID
[2,20] across several nodes (iSCSI targets),
we name it iSCSI RAID, or iRAID for short.
The difference between iRAID and
traditional RAID is that in traditional RAID,
disk is the unit, while in iRAID each iSCSI
target is a unit. Similar to traditional RAID,
we may have different layouts/RAID levels.
In this paper we only focus on two layouts:
striping (S-iRAID) and rotated parity (P-
iRAID). By striping data among several
iSCSI targets, S-iRAID improves the
read/write performance of iSCSI
dramatically. Our experiments show that the
average throughput is improved from
11.7MB/s to 46.1MB/s by striping data
among only three iSCSI targets using
Gigabit Ethernet. S-iRAID improves the
performance but also worsen reliability. By
striping data among several iSCSI targets,
any single target failure will cause the entire
data loss. To address this problem, in P-
iRAID, a rotated parity block is used to

 2

every data stripe. In case one iSCSI target
fails, data can be reconstructed from other
n-1 iSCSI targets.

To quantitatively evaluate the performance
potential of iRAID in real world network
environment, we have implemented the
prototype of iRAID under the Linux OS
based on current iSCSI code [11] and Linux
software RAID. We have used Iozone
benchmark [12] to measure system
performance. Extensive measurement
results show that S-iRAID and P-iRAID can
speed up the iSCSI performance by a factor
of up to 6.6 and 2.17, respectively.

The rest of the paper is organized as follows.
Next section presents the design and
implementation of iRAID including S-
iRAID and P-iRAID, followed by our
performance evaluation. We discuss the
related research work in Section 4 and
conclude our paper in Section 5.

2. Design of iSCSI RAID (iRAID)

We introduce iSCSI RAID, or iRAID, to
solve the performance and reliability
problems of iSCSI storage systems. The
basic idea of iRAID is to organize the iSCSI
storage targets similar to RAID by using
striping and rotated parity techniques. In
iRAID, each iSCSI storage target is a basic
storage unit in the array, and it serves as a
storage node as shown in Figure 1. All the
nodes in the array are connected to each
other through a high-speed switch to form a
local area network. iRAID provides a direct
and immediate solution to boost iSCSI
performance and improve reliability.
Parallelism in iRAID leads to performance
gain while using the RAID parity technique
improves the reliability. This paper focuses
on two iRAID configurations: striped iRAID
(S-iRAID) and rotated parity iRAID (P-
iRAID).

Figure 1: iRAID architecture. Data are striped over
N iSCSI targets.

2.1 S-iRAID
In the striped iRAID (S-iRAID), all data are
striped and distributed uniformly among all
the iRAID nodes, which is illustrated in
Figure 2. It borrows the concept from RAID
level 0. Figure 2 shows the data
organization of each iRAID node for a S-
iRAID system consisting of n iSCSI targets,
where Dij indicates that data block i on
iSCSI target j.

Figure 2: Data organization of S-iRAID.

2.2 P-iRAID

The S-iRAID increases the performance of
iSCSI through parallism and also increases
the security since S-iRAID splits data into

D11

D21

D31

…

Dr1

D12

D22

D32

…

Dr2

D13

D23

D33

…

Dr3

D14

D24

D34

…

Dr4

D1n

D2n

D3n

…

Drn

…

System Services

File System

iSCSI Initiator

TCP/IP Network

Target 1 Target 2 Target N

 3

stripes and stores stripes in different nodes,
which could be in different places over the
network. But S-iRAID does not improve the
reliability because failure of any single node
will cause the data loss. To improve the
reliability as well as performance, we
introduce parity iRAID (P-iRAID) where in
addition to data being striped and
distributed among the iSCSI targets, a parity
code for each data stripe is calculated and
stored in an iRAID node. The parity block is
rotated among the n iSCSI targets as shown
in Figure 3, where the shadowed blocks are
parity blocks, and others are data blocks.
Each bit in a parity block is the XOR
operation on the corresponding bits of the
rest data blocks in each stripe. For example,

1,112111 −⊗⋅⋅⋅⊗= nDDDP .

Figure 3: Data organization of P-iRAID.

3. Performance Evaluations
3.1 Experimental Setup

For the purpose of performance evaluation,
we have implemented iRAID prototype (for
both S-iRAID and P-iRAID) based on Linux
software RAID and Intel iSCSI code [11].
Our experimental settings are shown in
Figure 4. Six PCs are involved in our
experiments, namely STAR1 through STAR6.
STAR1 serves as the iSCSI initiator, and
START2-5 are four iSCSI targets, which are
organized as our iRAID. The data block size
is set to 64KB, which is the default chunk

size of Linux software RAID. All these
machines are interconnected through a
DELL PowerConnect 5012, 10-ports
managed Gigabit Ethernet switch to form an
isolated LAN. Each machine is running
Linux kernel 2.4.18 with a 3COM 3C996B-
T server network interface card (NIC) and
an Adaptec 39160 high performance SCSI
adaptor. STAR6 is used to monitor the
network traffic over the switch. The
configurations of these machines are
described in Table 1 and the characteristics
of the disks are summarized in Table 2.

Figure 4: iRAID, where data are striped and
distributed across the n iSCSI targets (S-iRAID) or
n-1 iSCSI targets (P-iRAID).

We use the popular file system benchmark
tool, Iozone [12], to measure the
performance. The benchmark tests file I/O
performance for a wide range of operations.
We will focus on performance of sequential
read/write, random read/write because those
are generally the primary concerns for any
storage systems. The average throughput
listed here is the arithmetic average of
above four I/O operations. We run Iozone
for different request size and data sets under
various scenarios as follows:
Iozone –Ra –S dataset size –r request size
–P –i0 –i1 –I 2 –f /mnt/iRAID/test

D11

D21

D31

…

Pr

D12

D22

D32

…

Dr2

D13

D23

P3

…

Dr3

D14

P2

D34

…

Dr4

P1

D2n

D3n

…

Drn

…

 4

Where dataset size and request size are
configurable. We reboot all machines after
each round of test.

Figure 5: Average throughput

(4 targets, Gbps network, 1 GB data set)

3.2 Numerical Results

3.2.1 Throughput
Our first experiment is to use Iozone to
measure the I/O throughput for iSCSI, S-
iRAID, and P-iRAID using 4 targets under
Gigabit Ethernet. The data set is 1G bytes
and I/O request sizes range from 4KB to
64KB. Figure 5 shows the average
throughputs. Both S-iRAID and P-iRAID
improve the iSCSI performance
dramatically. The performance
improvement over iSCSI is consistent
across different request sizes for both S-
iRAID and P-iRAID. S-iRAID outperforms
iSCSI by a factor of up to 6.6, and P-iRAID
outperforms iSCSI by a factor of 2.17. It’s

obvious that by striping data from the iSCSI
initiator among different iSCSI targets, S-
iRAID and P-iRAID show great
performance gains. P-iRAID calculates
parity for each data stripe and uses one of
the 4 iSCSI targets to store parity blocks.
That’s why S-iRAID performs much better
than P-iRAID. The average performance
gains of S-iRAID and P-iRAID over the
iSCSI are a factor of 5.34 and 1.71,
respectively.

3.2.2 Identifying the bottlenecks

Figure 5 shows that iSCSI performance is
pretty low. Readers may ask what’s the
bottleneck. Is it the iSCSI initiator, network
speed, or iSCSI target? To answer this
question, we perform the following
experiments.

Different networks

0

10000

20000

30000

40000

50000

10M 100M 1G

Bandwidth (bps)

Th
ro

ug
hp

ut
 (K

B/
s)

P-iRAID S-iRAID iSCSI

Figure 6: Average throughput

(4 targets, 1 GB data set, 64KB request size)

Average Throughput

0

10000

20000

30000

40000

50000

4KB 8KB 16KB 32KB 64KB

Request Size

KB
/s

P-iRAID S-iRAID iSCSI

Table 1: Machines configurations
Machines Processor RAM IDE disk SCSI Controller SCSI disk
STAR-1 PIII 1.4GHZ/512K Cache 1024MB N/A Adaptec 39160, Dell

PERC RAID controller
4x Seagate
ST318406LC

STAR2…5 P4 2.4GHZ/512K Cache 256MB WDC WB400BB Adaptec 39160 IBM Ultrastar 73LZX
STAR6 P4 2.4GHZ/512K Cache 256MB WDC WB400BB N/A N/A

Table 2: Disk parameters

Disk Model Interface Capacity Data
buffer

RPM Latency
(ms)

Transfer rate
(MB/s)

Average Seek
time (ms)

ST318406LC Ultra 160 SCSI 18GB 4MB 10000 2.99 63.2 5.6
Ultrastar 73LZX Ultra 160 SCSI 18GB 4MB 10000 3 29.2-57.0 4.9
WB400BB Ultra ATA 40GB 2MB 7200 4.2 33.3 9.9

 5

First, we change the network speed by
setting the switch to different modes:
10Mbps, 100Mbps, and 1Gbps. Figure 6
shows the results for S-iRAID, P-iRAID,
and iSCSI under different networks. It is
clear that they perform similarly under a
slow network (10Mbps). When the network
speeds up, the S-iRAID performs much
better than iSCSI, while P-iRAID show a
smaller performance gain because of parity
computation and less degree of parallism
than S-iRAID.

Overall Network Utilization (S-iRAID)

0

10

20

30

40

50

60

70

80

Gbps 100Mbps 10Mbps

Bandwidth

%

Figure 7: Network utilization

(4 targets, 1 GB data set, 64KB request size)

It seems that network bandwidth is the
bottleneck for iSCSI using slow speed
networks. To verify this, we monitored the
network traffic over the switch. Figure 7
shows the network utilization for S-iRAID.
We found that the network utilization is
over 72% (which is very high for a network
load!) using 10Mbps while only 12% using
1Gbps network. That means, if we use a
slow speed network (10Mbps) for iSCSI,
even we add more iSCSI targets, the
performance will not increase too much
because the network is the bottleneck. Our
next experiment (where different number of
iSCSI targets are used for different
networks) further confirms our conclusion.
Figure 8 shows the results, where we
noticed that performance is consistent for
10Mbps network even we increase the

number of iSCSI targets. For 100Mbps and
1Gbps networks, performance increases
steadily with the increasing number of
iSCSI targets.

Figure 8 also shows that for high-speed
network, iSCSI targets may become the new
bottleneck, that’s why we can use more
iSCSI targets in iRAID to improve the
iSCSI performance. Figure 9 shows the
results for S-iRAID using different number
of iSCSI targets for different request sizes.
The performance improvements are
consistent across all the different request
sizes. S-iRAID improves the iSCSI
performance from 11.7MB/s to 46.1MB/s
only using 3 iSCSI targets for 64KB request
size.

Throughput under different networks

0
10000
20000
30000
40000
50000

1 2 3 4

of targets

Th
ro

ug
hp

ut
 (K

B/
s)

10Mbps 100Mbps 1Gbps

Figure 8: Average throughput
(1 GB data set, 64KB request size)

Average Throughput

0

10000

20000

30000

40000

50000

60000

4K 8K 16K 32K 64k

Request Size

Th
ro

ug
hp

ut
 (K

B/
s)

1 Target 2 Targets 3 Targets 4 Targets

Figure 9: Average throughput

(1 GB data set, 1Gbps network)

 6

Network Utilization (1Gbps network)

0

2

4

6

8

10

12

14

1 2 3 4

of targets

%

Figure 10: Network utilization for different number
of iSCSI targets (1 GB data set, 64KB request size)

Both Figure 8 and 9 also unveil a fact: when
the number of iSCSI targets exceed a
threshold (3 in our experiment), the
performance will not increase even we add
more iSCSI targets. That means in our
environment, 3 iSCSI targets is enough to
saturate the 1Gbps network. iSCSI targets
are not the bottleneck anymore when we use
more than 3 iSCSI targets. So where is the
bottleneck now? Is it the network? Probably
not! Because we measured the network
traffic and found that the network utilization
is just 12% even using 4 iSCSI targets
(Figure 10). Since now the bottleneck is
neither the iSCSI targets not the network,
we can conservatively assume the
bottleneck is the iSCSI initiator! This
problem is addressed by iCache [7], a cache
scheme to improve the initiator performance.

3.3 Reliability analysis
As we mentioned above, P-iRAID improves
the reliability by using rotated parity. The
parity block is rotated among the n iSCSI
targets. Each bit in a parity block is the
XOR operation on the corresponding bits of
the rest data blocks in each stripe. For
example in an n iSCSI targets P-iRAID, in
case of the failure of any single iSCSI target
i, data on iSCSI target i can be recovered

through the rest of n-1 iSCSI targets by
performing XOR operations.

To verify the reliability of our P-iRAID, we
performed a simple experiment as follows.
1) We mounted our 4-target P-iRAID as a

local drive (/mnt/p-iRAID) on the
initiator;

2) Copied the Linux source tree (/usr/src)
to this P-iRAID drive;

3) Rebooted all those machines (initiator
and targets), and formatted one of the
iSCSI target drive (this will erase all
data on it) to emulate one target failure;

4) We mounted the 4-target P-iRAID as a
local drive (/mnt/p-iRAID) on the
initiator again;

5) We compiled the Linux source tree
/mnt/p-iRAID/usr/src successfully. That
means our P-iRAID does improve the
reliability and is safe from single iSCSI
target failure.

4. Related Work

RAID is a mature technology developed to
improve I/O performance and/or reliability.
Distributed RAID concept was originally
presented by Stonebraker and Schloss [20]
in 1990. Since then several distributed
RAID techniques are used in cluster
computing or direct attached storage
systems. RAID-x [10] makes use of
orthogonal striping and mirroring technique
in a serverless cluster to improve the
aggregate I/O bandwidth for parallel writes.
TickerTAIP [2] offers a parallel RAID
architecture for supporting parallel disk I/O
with multiple controllers. However, the
TickerTAIP was implemented as a
centralized I/O subsystem. MAID [3] builds
a mass storage utilizing idle disk resources.
Prototyping of distributed RAID started
with the Swift/RAID [14] and Petal [13].
Swift/RAID provides fault tolerance in the

 7

distributed environment in the manner as
RAID level 4 and 5. Petal uses a collection
of NAS-like storage servers interconnected
using specially customized LAN to form a
unified virtual disk space to clients at block
level.

NAS [5] and SAN [6] are two major
solutions to deploy storage over the network.
The NAS technology provides direct
network connection for hosts to access
through network interfaces. It also provides
file system functionality. NAS-based
storage appliances range from terabyte
servers to a simple disk with Ethernet plug.
The main difference between NAS and
SAN is that NAS provides storages at file
system level while SAN provides storages
at block device level. Another difference is
that NAS is attached to the same LAN as
the one connecting servers accessing
storages, while SAN has a dedicated
network connecting storage devices without
competing for network bandwidth with the
servers. Recently emerged iSCSI (Internet
SCSI) [19] provides an ideal alternative to
Petal’s customized LAN-based SAN
protocol. Taking advantage of existing
Internet protocols and media, it is a natural
way for storage to make use of TCP/IP as
demonstrated by earlier research work
(VISA [16] by Meter et al. of USC) to
transfer SCSI commands and data using IP
protocol. iSCSI protocol is a mapping of the
SCSI remote procedure invocation model
over the TCP/IP protocol [19]. Gabber et al
propose StarFish [4] to improve availability
for IP-based block storage using replicas.

iRAID provides a solution to deploy SAN
using iSCSI over the existing and mature
Ethernet protocol. While many existing
techniques such as striping and rotated
parity [17] may be borrowed for the iRAID
and iCache implementations, the novelty of

our work is the new concept of applying
array technique to iSCSI storage systems.

5. Conclusions

In this paper, we have identified the iSCSI
performance bottlenecks under different
situations. For low-speed networks, the
network bandwidth is the main factor to
limit the performance. For high-speed
networks, both iSCSI target and initiator
could be the bottleneck. We have
introduced S-iRAID to improve the
performance by striping data among several
iSCSI targets, and introduced P-iRAID to
improve the reliability and performance by
striping data and rotating parity over several
iSCSI targets. We have carried out
prototype implementations of S-iRAID and
P-iRAID under the Linux operating system.
Extensive measurement results using Iozone
have shown that S-iRAID and P-iRAID can
speed up the iSCSI performance by a factor
of up to 6.6 and 2.17 in terms of average
throughput.

Acknowledgements

This research is partially supported by the
Center for Manufacturing Research at
Tennessee Technological University.

References

[1] S. Aiken, D. Grunwald, A. Pleszkun, and J.

Willeke, “A Performance Analysis of the
iSCSI Protocol,” 20th IEEE Conference on
Mass storage Systems and Technologies,
2003.

[2] P. Cao, S. B. Lim, S. Venkataraman, J.
Wilkes. “The TickerTAIP Parallel RAID
Architecture,” ACM Transactions on
Computer Systems 12(3): 236-269 (1994).

[3] D. Colarelli and D. Grunwald, “Massive
Arrays of Idle Disks For Storage
Archives,” Proceedings of Super

 8

Computing (SC’2002), Baltimore, MD,
November 2002.

[4] E. Gabber, et al., “StarFish: highly-
available block storage,” Proceedings of
the FREENIX track of the 2003 USENIX
Annual Technical Conference, San
Antonio, TX, June 9--14, 2003, pp. 151-
163.

[5] G. Gibson, R. Meter, “Network Attached
Storage Architecture,” Communications of
the ACM, Vol. 43, No 11, pp.37-45,
November 2000.

[6] M. Gupta, Storage Area Network
Fundamentals, Cisco Press, ISBN: 1-
58705-065-x, 2002.

[7] X. He, et al., “A Caching Strategy to
Improve iSCSI Performance,” IEEE
Annual Conference on Local Computer
Networks, Nov. 6-8,2002.

[8] X. He, Q. Yang, and M. Zhang,
“Introducing SCSI-To-IP Cache for
Storage Area Networks,” in 2002
International Conference on Parallel
Processing (ICPP’2002), Vancouver,
Canada, August 18-21, 2002.

[9] R. W. Horst, D. Garcia, “ServerNet SAN
I/O Architecture,” Hot Interconnects V,
1997.

[10] K. Hwang, H. Jin, and R. S. Ho,
“Orthogonal Striping amd Mirroring in
Distributed RAID for I/O-Centric Cluster
Computing”, IEEE-Trans. on Parallel and
Distributed Systems, 2001.

[11] Intel iSCSI project, URL:
http://sourceforge.net/projects/intel-iscsi,
Jan. 2003.

[12] Iozone file system benchmark, URL:
http://www.iozone.org.

[13] E. K. Lee, C. A. Thekkath. “Petal:
Distributed Virtual Disks.” Proceedings of
the 7th International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS VII), pp. 84-92, Oct. 1-5,1996.

[14] D. E. Long, B. R. Montague, L. Cabrera,
“Swift/RAID: A Distributed RAID
System,” Computing Systems 7(3): 333-
359 (1994).

[15] Y. Lu and D. Du, “Performance Study of
iSCSI-based Storage Systems,” IEEE
Communications, Vol. 41, No. 8, 2003.

[16] R. V. Meter, G. G. Finn, S. Hotz. “VISA:
Netstation's Virtual Internet SCSI
Adapter.” In Proceedings of the 8th
International Conference on Architectural
Support for Programming Languages and
Operating Systems (ASPLOS VIII), pp. 71-
80, October 4-7,1998.

[17] D.A. Patterson, et al., “A Case for
Redundant Arrays of Inexpensive Disks
(RAID),” ACM International Conference
on Management of Data (SIGMOD), pp.
109-116, 1988.

[18] P. Sarkar, S. Uttamchandani, and K.
Voruganti, “Storage Over IP: When Does
Hardware Support Help?” USENIX
Conference on File And Storage
Technologies, 2003.

[19] J. Satran, et al. “iSCSI draft standard,”
URL: http://www.ietf.org/internet-
drafts/draft-ietf-ips-iscsi-20.txt, Jan. 2003.

[20] M. Stonebraker and G. Schloss,
“Distributed RAID- a New Multiple Copy
Algorithm,” Proceedings of the 6th
International Conference on Data
Engineering, Feb. 1990, pp. 430-437.

[21] P. Wang, et al.,“IP SAN-from iSCSI to IP-
Addressable Ethernet Disks,” 20th IEEE
Conference on Mass storage Systems and
Technologies, 2003.

