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Hadoop At Yahoo! 
(Some Statistics) 

•  25,000 + machines in 10+ clusters 
•  Largest cluster is 3,000 machines 
•  3 Petabytes of data (compressed, 

unreplicated) 
•  1000+ users 
•  100,000+ jobs/week 
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Sample Applications 

•  Data analysis is the inner loop of Web 
2.0 
– Data ⇒ Information ⇒ Value 

•  Log processing: reporting, buzz 
•  Search index 
•  Machine learning: Spam filters 
•  Competitive intelligence 



Prominent Hadoop Users 

•  Yahoo! 
•  A9.com 
•  EHarmony 
•  Facebook 
•  Fox Interactive 

Media 
•  IBM 

•  Quantcast 
•  Joost 
•  Last.fm 
•  Powerset 
•  New York Times 
•  Rackspace 



Yahoo! Search Assist 
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Search Assist 

•  Insight: Related concepts appear close 
together in text corpus 

•  Input: Web pages 
– 1 Billion Pages, 10K bytes each 
– 10 TB of input data 

•  Output: List(word, List(related words)) 
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// Input: List(URL, Text)	
foreach URL in Input :	
    Words = Tokenize(Text(URL));	
    foreach word in Tokens :	
        Insert (word, Next(word, Tokens)) in Pairs;	
        Insert (word, Previous(word, Tokens)) in Pairs;	
// Result: Pairs = List (word, RelatedWord)	
Group Pairs by word;	
// Result: List (word, List(RelatedWords)	
foreach word in Pairs :	
    Count RelatedWords in GroupedPairs;	
// Result: List (word, List(RelatedWords, count))	
foreach word in CountedPairs :	
    Sort Pairs(word, *) descending by count;	
    choose Top 5 Pairs;	
// Result: List (word, Top5(RelatedWords))	

Search Assist 



You Might Also Know 
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You Might Also Know 

•  Insight: You might also know Joe Smith if 
a lot of folks you know, know Joe Smith 
–  if you don’t know Joe Smith already 

•  Numbers: 
– 100 MM users 
– Average connections per user is 100 



10 

// Input: List(UserName, List(Connections))	

foreach u in UserList : // 100 MM	
    foreach x in Connections(u) : // 100	
        foreach y in Connections(x) : // 100	
            if (y not in Connections(u)) :	
                Count(u, y)++; // 3 Trillion Iterations	
    Sort (u,y) in descending order of Count(u,y);	
    Choose Top 3 y;	
    Store (u, {y0, y1, y2}) for serving;	

You Might Also Know 
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Performance 

•  101 Random accesses for each user 
– Assume 1 ms per random access 
– 100 ms per user 

•  100 MM users 
– 100 days on a single machine 
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Map & Reduce 

•  Primitives in Lisp (& Other functional 
languages) 1970s 

•  Google Paper 2004 
– http://labs.google.com/papers/

mapreduce.html 
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Output_List = Map (Input_List)	

Square (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) =	

(1, 4, 9, 16, 25, 36,49, 64, 81, 100)	

Map 
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Output_Element = Reduce (Input_List)	

Sum (1, 4, 9, 16, 25, 36,49, 64, 81, 100) = 385	

Reduce 
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Parallelism 

•  Map is inherently parallel 
– Each list element processed independently 

•  Reduce is inherently sequential 
– Unless processing multiple lists 

•  Grouping to produce multiple lists 
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// Input: http://hadoop.apache.org	

Pairs = Tokenize_And_Pair ( Text ( Input ) )	

Output = {	
(apache, hadoop) (hadoop, mapreduce) (hadoop, streaming) 
(hadoop, pig) (apache, pig) (hadoop, DFS) (streaming, 
commandline) (hadoop, java) (DFS, namenode) (datanode, 
block) (replication, default)...	
}	

Search Assist Map 
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// Input: GroupedList (word, GroupedList(words))	

CountedPairs = CountOccurrences (word, RelatedWords)	

Output = {	
(hadoop, apache, 7) (hadoop, DFS, 3) (hadoop, streaming, 
4) (hadoop, mapreduce, 9) ...	
}	

Search Assist Reduce 
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Issues with Large Data 

•  Map Parallelism: Splitting input data 
– Shipping input data 

•  Reduce Parallelism: 
– Grouping related data 

•  Dealing with failures 
– Load imbalance 
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Apache Hadoop 

•  January 2006: Subproject of Lucene 
•  January 2008: Top-level Apache project 
•  Latest Version: 0.20.x 
•  Stable Version: 0.18.x 
•  Major contributors: Yahoo!, Facebook, 

Powerset 
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Apache Hadoop 

•  Reliable, Performant Distributed file 
system 

•  MapReduce Programming framework 
•  Sub-Projects: HBase, Hive, Pig, 

Zookeeper, Chukwa 
•  Related Projects: Mahout, Hama, 

Cascading, Scribe, Cassandra, Dumbo, 
Hypertable, KosmosFS 
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Problem: Bandwidth to Data 

•  Scan 100TB Datasets on 1000 node 
cluster 
– Remote storage @ 10MB/s = 165 mins 
– Local storage @ 50-200MB/s = 33-8 mins 

•  Moving computation is more efficient 
than moving data 
– Need visibility into data placement 
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Problem: Scaling Reliably 

•  Failure is not an option, it’s a rule ! 
– 1000 nodes, MTBF < 1 day 
– 4000 disks, 8000 cores, 25 switches, 1000 

NICs, 2000 DIMMS (16TB RAM) 
•  Need fault tolerant store with reasonable 

availability guarantees 
– Handle hardware faults transparently 
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Hadoop Goals 

•  Scalable: Petabytes (1015 Bytes) of data 
on thousands on nodes 

•  Economical: Commodity components 
only 

•  Reliable 
– Engineering reliability into every application 

is expensive 
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HDFS 

•  Data is organized into files and 
directories 

•  Files are divided into uniform sized 
blocks (default 64MB) and 
distributed across cluster nodes 

•  HDFS exposes block placement so 
that computation can be migrated to 
data 
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HDFS 

•  Blocks are replicated (default 3) to 
handle hardware failure 

•  Replication for performance and fault 
tolerance (Rack-Aware placement) 

•  HDFS keeps checksums of data for 
corruption detection and recovery 
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HDFS 

•  Master-Worker Architecture 
•  Single NameNode 
•  Many (Thousands) DataNodes 
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HDFS Master 
(NameNode) 

•  Manages filesystem namespace 
•  File metadata (i.e. “inode”) 
•  Mapping inode to list of blocks + 

locations 
•  Authorization & Authentication 
•  Checkpoint & journal namespace 

changes 
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Namenode 

•  Mapping of datanode to list of blocks 
•  Monitor datanode health 
•  Replicate missing blocks 
•  Keeps ALL namespace in memory 
•  60M objects (File/Block) in 16GB 
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Datanodes 

•  Handle block storage on multiple 
volumes & block integrity 

•  Clients access the blocks directly from 
data nodes 

•  Periodically send heartbeats and block 
reports to Namenode 

•  Blocks are stored as underlying OS’s 
files 



HDFS Architecture 
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Replication 

•  A file’s replication factor can be changed 
dynamically (default 3) 

•  Block placement is rack aware 
•  Block under-replication & over-replication 

is detected by Namenode 
•  Balancer application rebalances blocks 

to balance datanode utilization 
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hadoop fs [-fs <local | file system URI>] [-conf <configuration file>]	
[-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>]	
[-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>]	
[-rmr <src>] [-put <localsrc> ... <dst>] [-copyFromLocal <localsrc> ... <dst>]	
[-moveFromLocal <localsrc> ... <dst>] [-get [-ignoreCrc] [-crc] <src> <localdst>	
[-getmerge <src> <localdst> [addnl]] [-cat <src>]	
[-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>] [-moveToLocal <src> <localdst>]	
[-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>]	
[-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>]	
[-tail [-f] <path>] [-text <path>]	
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]	
[-chown [-R] [OWNER][:[GROUP]] PATH...]	
[-chgrp [-R] GROUP PATH...]	
[-count[-q] <path>]	
[-help [cmd]]	

Accessing HDFS 
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// Get default file system instance	
fs = Filesystem.get(new Configuration());	
// Or Get file system instance from URIfs = 
Filesystem.get(URI.create(uri),	
                    new Configuration());	
// Create, open, list, … OutputStream out = 
fs.create(path, …);	
InputStream in = fs.open(path, …);	
boolean isDone = fs.delete(path, recursive);	
FileStatus[] fstat = fs.listStatus(path);	

HDFS Java API 



34 

Hadoop MapReduce 

•  Record = (Key, Value) 
•  Key : Comparable, Serializable 
•  Value: Serializable 
•  Input, Map, Shuffle, Reduce, Output 
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cat /var/log/auth.log* | \ 	
grep “session opened” | cut -d’ ‘ -f10 | \	
sort | \	
uniq -c > \	
~/userlist 	

Seems Familiar ? 
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Map 

•  Input: (Key1, Value1) 
•  Output: List(Key2, Value2) 
•  Projections, Filtering, Transformation 
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Shuffle 

•  Input: List(Key2, Value2) 
•  Output 

– Sort(Partition(List(Key2, List(Value2)))) 
•  Provided by Hadoop 
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Reduce 

•  Input: List(Key2, List(Value2)) 
•  Output: List(Key3, Value3) 
•  Aggregation 
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Example: Unigrams 

•  Input: Huge text corpus 
– Wikipedia Articles (40GB uncompressed) 

•  Output: List of words sorted in 
descending order of frequency 
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$ cat ~/wikipedia.txt | \	
sed -e 's/ /\n/g' | grep . | \	
sort | \	
uniq -c > \	
~/frequencies.txt	

$ cat ~/frequencies.txt | \	
# cat | \	
sort -n -k1,1 -r |	
# cat > \	
~/unigrams.txt	

Unigrams 
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mapper (filename, file-contents):	
  for each word in file-contents:	
    emit (word, 1)	

reducer (word, values):	
  sum = 0	
  for each value in values:	
    sum = sum + value	
  emit (word, sum)	

MR for Unigrams 
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mapper (word, frequency):	
  emit (frequency, word)	

reducer (frequency, words):	
  for each word in words:	
    emit (word, frequency)	

MR for Unigrams 



MR Dataflow 



Pipeline Details 
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Hadoop Streaming 

•  Hadoop is written in Java 
– Java MapReduce code is “native” 

•  What about Non-Java Programmers ? 
– Perl, Python, Shell, R 
– grep, sed, awk, uniq as Mappers/Reducers 

•  Text Input and Output 
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Hadoop Streaming 

•  Thin Java wrapper for Map & Reduce 
Tasks 

•  Forks actual Mapper & Reducer 
•  IPC via stdin, stdout, stderr 
•  Key.toString() \t Value.toString() \n 
•  Slower than Java programs 

– Allows for quick prototyping / debugging 
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$ bin/hadoop jar hadoop-streaming.jar \	
      -input in-files -output out-dir \	
      -mapper mapper.sh -reducer reducer.sh	

# mapper.sh	

sed -e 's/ /\n/g' | grep .	

# reducer.sh	

uniq -c | awk '{print $2 "\t" $1}'	

Hadoop Streaming 



MR Architecture 



Job Submission 



Initialization 



Scheduling 



Execution 



Reduce Task 
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Session C: 
Pig 



What is Pig? 

•  System for processing large semi-
structured data sets using Hadoop 
MapReduce platform 

•  Pig Latin: High-level procedural 
language 

•  Pig Engine: Parser, Optimizer and 
distributed query execution  

55 



Pig vs SQL 

•  Pig is procedural 
(How) 

•  Nested relational 
data model 

•  Schema is optional 
•  Scan-centric analytic 

workloads 
•  Limited query 

optimization 

•  SQL is declarative 
•  Flat relational data 

model 
•  Schema is required 
•  OLTP + OLAP 

workloads 
•  Significant 

opportunity for query 
optimization 



Pig vs Hadoop 

•  Increase programmer productivity 
•  Decrease duplication of effort 
•  Insulates against Hadoop complexity 

– Version Upgrades 
– JobConf configuration tuning 
– Job Chains 

57 



Example 

•  Input: User profiles, 
Page visits 

•  Find the top 5 most 
visited pages by 
users aged 18-25 



In Native Hadoop 



In Pig 
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Users = load ‘users’ as (name, age); 
Filtered = filter Users by age >= 18 and age <= 25;  
Pages = load ‘pages’ as (user, url); 
Joined = join Filtered by name, Pages by user; 
Grouped = group Joined by url; 
Summed = foreach Grouped generate group,	
           COUNT(Joined) as clicks; 
Sorted = order Summed by clicks desc; 
Top5 = limit Sorted 5; 
store Top5 into ‘top5sites’;	



Natural Fit 



Comparison 



Flexibility & Control 

•  Easy to plug-in user code 
•  Metadata is not mandatory 
•  Pig does not impose a data model on 

you 
•  Fine grained control 
•  Complex data types 
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Pig Data Types 

•  Tuple: Ordered set of fields 
– Field can be simple or complex type 
– Nested relational model 

•  Bag: Collection of tuples 
– Can contain duplicates 

•  Map: Set of (key, value) pairs 
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Simple data types 

•  int : 42 
•  long : 42L 
•  float : 3.1415f 
•  double : 2.7182818 
•  chararray : UTF-8 String 
•  bytearray : blob 
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NULL 

•  Same as SQL: unknown or non-existent 
•  Loader inserts NULL for empty data 
•  Operations can produce NULL 

– divide by 0 
– dereferencing a non-existent map key 
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Expressions 
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A = LOAD ‘data.txt AS	
  (f1:int , f2:{t:(n1:int, n2:int)}, f3: map[] )	

A =	
{	
    (1,                   -- A.f1 or A.$0	
    { (2, 3), (4, 6) },   -- A.f2 or A.$1	
    [ ‘yahoo’#’mail’ ]    -- A.f3 or A.$2	
}	



Counting Word Frequencies 

•  Input: Large text document 
•  Process: 

– Load the file 
– For each line, generate word tokens 
– Group by word 
– Count words in each group 
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Load 
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myinput = load '/user/milindb/text.txt'	
     USING TextLoader() as (myword:chararray);	

(program program)	
(pig pig)	
(program pig)	
(hadoop pig)	
(latin latin)	
(pig latin)	



Tokenize 
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words = FOREACH myinput GENERATE FLATTEN(TOKENIZE(*));	

(program) (program) (pig) (pig) (program) (pig) (hadoop) 
(pig) (latin) (latin) (pig) (latin)	



Group 
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grouped = GROUP words BY $0;	

(pig, {(pig), (pig), (pig), (pig), (pig)})	
(latin, {(latin), (latin), (latin)})	
(hadoop, {(hadoop)})	
(program, {(program), (program), (program)})	



Count 
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counts = FOREACH grouped GENERATE group, COUNT(words);	

(pig, 5L)	
(latin, 3L)	
(hadoop, 1L)	
(program, 3L)	



Store 
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store counts into ‘/user/milindb/output’	
      using PigStorage(); 	

pig     5	
latin   3	
hadoop  1	
program 3	



Example: Log Processing 
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-- use a custom loader  
Logs = load ‘apachelogfile’ using 
    CommonLogLoader() as (addr, logname, 
    user, time, method, uri, p, bytes); 
-- apply your own function 
Cleaned = foreach Logs generate addr,  
    canonicalize(url) as url; 
Grouped = group Cleaned by url; 
-- run the result through a binary  
Analyzed = stream Grouped through  
    ‘urlanalyzer.py’; 
store Analyzed into ‘analyzedurls’;	



Schema on the fly 
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-- declare your types  
Grades = load ‘studentgrades’ as  
    (name: chararray, age: int, 
    gpa: double); 
Good = filter Grades by age > 18  
    and gpa > 3.0;  
-- ordering will be by type  
Sorted = order Good by gpa; 
store Sorted into ‘smartgrownups’;	



Nested Data 
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Logs = load ‘weblogs’ as (url, userid); 
Grouped = group Logs by url;  
-- Code inside {} will be applied to each 
-- value in turn. 
DisinctCount = foreach Grouped { 
    Userid = Logs.userid; 
    DistinctUsers = distinct Userid; 
    generate group, COUNT(DistinctUsers); 
} 
store DistinctCount into ‘distinctcount’;	



Pig Architecture 



Pig Frontend 



Logical Plan 

•  Directed Acyclic Graph 
– Logical Operator as Node 
– Data flow as edges 

•  Logical Operators 
– One per Pig statement 
– Type checking with Schema 
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Pig Statements 

Load

Read data from the file 

system


Store

Write data to the file 

system


Dump
 Write data to stdout




Pig Statements 

Foreach..Generate


Apply expression to 
each record and 

generate one or more 
records


Filter

Apply predicate to each 

record and remove 
records where false


Stream..through

Stream records through 

user-provided binary




Pig Statements 

Group/CoGroup

Collect records with the 
same key from one or 

more inputs


Join

Join two or more inputs 

based on a key


Order..by

Sort records based on a 

key




Physical Plan 

•  Pig supports two back-ends 
– Local 
– Hadoop MapReduce 

•  1:1 correspondence with most logical 
operators 
– Except Distinct, Group, Cogroup, Join etc 
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MapReduce Plan 

•  Detect Map-Reduce boundaries 
– Group, Cogroup, Order, Distinct 

•  Coalesce operators into Map and 
Reduce stages 

•  Job.jar is created and submitted to 
Hadoop JobControl 
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Lazy Execution 

•  Nothing really executes until you request 
output 

•   Store, Dump, Explain, Describe, 
Illustrate 

•   Advantages 
–   In-memory pipelining 
–   Filter re-ordering across multiple commands 
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Parallelism 

•  Split-wise parallelism on Map-side 
operators 

•  By default, 1 reducer 
•  PARALLEL keyword 

– group, cogroup, cross, join, distinct, order 
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Running Pig 
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$ pig	
grunt > A = load ‘students’ as (name, age, gpa);	
grunt > B = filter A by gpa > ‘3.5’;	
grunt > store B into ‘good_students’;	
grunt > dump A;	
(jessica thompson, 73, 1.63)	
(victor zipper, 23, 2.43)	
(rachel hernandez, 40, 3.60)	
grunt > describe A;	
A: (name, age, gpa )	



Running Pig 

•  Batch mode 
– $ pig myscript.pig 

•  Local mode  
– $ pig –x local 

•  Java mode (embed pig statements in 
java)  
– Keep pig.jar in the class path 
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SQL to Pig 

SQL
 Pig


...FROM MyTable...	A = LOAD ‘MyTable’ USING PigStorage(‘\t’) AS	        (col1:int, col2:int, col3:int);	

SELECT col1 + 
col2, col3 ...	 B = FOREACH A GENERATE col1 + col2, col3;	

...WHERE col2 > 2	 C = FILTER B by col2 > 2;	



SQL to Pig 

SQL
 Pig


SELECT col1, col2, sum(col3)	
FROM X GROUP BY col1, col2	

D = GROUP A BY (col1, col2)	
E = FOREACH D GENERATE	
        FLATTEN(group), SUM(A.col3);	

...HAVING sum(col3) > 5	 F = FILTER E BY $2 > 5;	

...ORDER BY col1	 G = ORDER F BY $0;	



SQL to Pig 

SQL
 Pig


SELECT DISTINCT col1 
from X	

I = FOREACH A GENERATE col1;	
J = DISTINCT I;	

SELECT col1, 
count(DISTINCT col2) 
FROM X GROUP BY col1	

K = GROUP A BY col1;	
L = FOREACH K {	
      M = DISTINCT A.col2;	
      GENERATE FLATTEN(group), count(M);	
    }	



SQL to Pig 

SQL
 Pig


SELECT A.col1, B. 
col3 FROM A JOIN 
B USING (col1)	

N = JOIN A by col1 INNER, B by col1 INNER;	

O = FOREACH N GENERATE A.col1, B.col3;	

-- Or	

N = COGROUP A by col1 INNER, B by col1 INNER;	

O = FOREACH N GENERATE flatten(A), flatten(B);	

P = FOREACH O GENERATE A.col1, B.col3	


