
Session B:
Hadoop

2

Hadoop At Yahoo!
(Some Statistics)

•  25,000 + machines in 10+ clusters
•  Largest cluster is 3,000 machines
•  3 Petabytes of data (compressed,

unreplicated)
•  1000+ users
•  100,000+ jobs/week

3

Sample Applications

•  Data analysis is the inner loop of Web
2.0
– Data ⇒ Information ⇒ Value

•  Log processing: reporting, buzz
•  Search index
•  Machine learning: Spam filters
•  Competitive intelligence

Prominent Hadoop Users

•  Yahoo!
•  A9.com
•  EHarmony
•  Facebook
•  Fox Interactive

Media
•  IBM

•  Quantcast
•  Joost
•  Last.fm
•  Powerset
•  New York Times
•  Rackspace

Yahoo! Search Assist

6

Search Assist

•  Insight: Related concepts appear close
together in text corpus

•  Input: Web pages
– 1 Billion Pages, 10K bytes each
– 10 TB of input data

•  Output: List(word, List(related words))

7

// Input: List(URL, Text)	
foreach URL in Input :	
 Words = Tokenize(Text(URL));	
 foreach word in Tokens :	
 Insert (word, Next(word, Tokens)) in Pairs;	
 Insert (word, Previous(word, Tokens)) in Pairs;	
// Result: Pairs = List (word, RelatedWord)	
Group Pairs by word;	
// Result: List (word, List(RelatedWords)	
foreach word in Pairs :	
 Count RelatedWords in GroupedPairs;	
// Result: List (word, List(RelatedWords, count))	
foreach word in CountedPairs :	
 Sort Pairs(word, *) descending by count;	
 choose Top 5 Pairs;	
// Result: List (word, Top5(RelatedWords))	

Search Assist

You Might Also Know

9

You Might Also Know

•  Insight: You might also know Joe Smith if
a lot of folks you know, know Joe Smith
–  if you don’t know Joe Smith already

•  Numbers:
– 100 MM users
– Average connections per user is 100

10

// Input: List(UserName, List(Connections))	

foreach u in UserList : // 100 MM	
 foreach x in Connections(u) : // 100	
 foreach y in Connections(x) : // 100	
 if (y not in Connections(u)) :	
 Count(u, y)++; // 3 Trillion Iterations	
 Sort (u,y) in descending order of Count(u,y);	
 Choose Top 3 y;	
 Store (u, {y0, y1, y2}) for serving;	

You Might Also Know

11

Performance

•  101 Random accesses for each user
– Assume 1 ms per random access
– 100 ms per user

•  100 MM users
– 100 days on a single machine

12

Map & Reduce

•  Primitives in Lisp (& Other functional
languages) 1970s

•  Google Paper 2004
– http://labs.google.com/papers/

mapreduce.html

13

Output_List = Map (Input_List)	

Square (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) =	

(1, 4, 9, 16, 25, 36,49, 64, 81, 100)	

Map

14

Output_Element = Reduce (Input_List)	

Sum (1, 4, 9, 16, 25, 36,49, 64, 81, 100) = 385	

Reduce

15

Parallelism

•  Map is inherently parallel
– Each list element processed independently

•  Reduce is inherently sequential
– Unless processing multiple lists

•  Grouping to produce multiple lists

16

// Input: http://hadoop.apache.org	

Pairs = Tokenize_And_Pair (Text (Input))	

Output = {	
(apache, hadoop) (hadoop, mapreduce) (hadoop, streaming)
(hadoop, pig) (apache, pig) (hadoop, DFS) (streaming,
commandline) (hadoop, java) (DFS, namenode) (datanode,
block) (replication, default)...	
}	

Search Assist Map

17

// Input: GroupedList (word, GroupedList(words))	

CountedPairs = CountOccurrences (word, RelatedWords)	

Output = {	
(hadoop, apache, 7) (hadoop, DFS, 3) (hadoop, streaming,
4) (hadoop, mapreduce, 9) ...	
}	

Search Assist Reduce

18

Issues with Large Data

•  Map Parallelism: Splitting input data
– Shipping input data

•  Reduce Parallelism:
– Grouping related data

•  Dealing with failures
– Load imbalance

19

Apache Hadoop

•  January 2006: Subproject of Lucene
•  January 2008: Top-level Apache project
•  Latest Version: 0.20.x
•  Stable Version: 0.18.x
•  Major contributors: Yahoo!, Facebook,

Powerset

20

Apache Hadoop

•  Reliable, Performant Distributed file
system

•  MapReduce Programming framework
•  Sub-Projects: HBase, Hive, Pig,

Zookeeper, Chukwa
•  Related Projects: Mahout, Hama,

Cascading, Scribe, Cassandra, Dumbo,
Hypertable, KosmosFS

21

Problem: Bandwidth to Data

•  Scan 100TB Datasets on 1000 node
cluster
– Remote storage @ 10MB/s = 165 mins
– Local storage @ 50-200MB/s = 33-8 mins

•  Moving computation is more efficient
than moving data
– Need visibility into data placement

22

Problem: Scaling Reliably

•  Failure is not an option, it’s a rule !
– 1000 nodes, MTBF < 1 day
– 4000 disks, 8000 cores, 25 switches, 1000

NICs, 2000 DIMMS (16TB RAM)
•  Need fault tolerant store with reasonable

availability guarantees
– Handle hardware faults transparently

23

Hadoop Goals

•  Scalable: Petabytes (1015 Bytes) of data
on thousands on nodes

•  Economical: Commodity components
only

•  Reliable
– Engineering reliability into every application

is expensive

24

HDFS

•  Data is organized into files and
directories

•  Files are divided into uniform sized
blocks (default 64MB) and
distributed across cluster nodes

•  HDFS exposes block placement so
that computation can be migrated to
data

25

HDFS

•  Blocks are replicated (default 3) to
handle hardware failure

•  Replication for performance and fault
tolerance (Rack-Aware placement)

•  HDFS keeps checksums of data for
corruption detection and recovery

26

HDFS

•  Master-Worker Architecture
•  Single NameNode
•  Many (Thousands) DataNodes

27

HDFS Master
(NameNode)

•  Manages filesystem namespace
•  File metadata (i.e. “inode”)
•  Mapping inode to list of blocks +

locations
•  Authorization & Authentication
•  Checkpoint & journal namespace

changes

28

Namenode

•  Mapping of datanode to list of blocks
•  Monitor datanode health
•  Replicate missing blocks
•  Keeps ALL namespace in memory
•  60M objects (File/Block) in 16GB

29

Datanodes

•  Handle block storage on multiple
volumes & block integrity

•  Clients access the blocks directly from
data nodes

•  Periodically send heartbeats and block
reports to Namenode

•  Blocks are stored as underlying OS’s
files

HDFS Architecture

31

Replication

•  A file’s replication factor can be changed
dynamically (default 3)

•  Block placement is rack aware
•  Block under-replication & over-replication

is detected by Namenode
•  Balancer application rebalances blocks

to balance datanode utilization

32

hadoop fs [-fs <local | file system URI>] [-conf <configuration file>]	
[-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>]	
[-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>]	
[-rmr <src>] [-put <localsrc> ... <dst>] [-copyFromLocal <localsrc> ... <dst>]	
[-moveFromLocal <localsrc> ... <dst>] [-get [-ignoreCrc] [-crc] <src> <localdst>	
[-getmerge <src> <localdst> [addnl]] [-cat <src>]	
[-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>] [-moveToLocal <src> <localdst>]	
[-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>]	
[-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>]	
[-tail [-f] <path>] [-text <path>]	
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]	
[-chown [-R] [OWNER][:[GROUP]] PATH...]	
[-chgrp [-R] GROUP PATH...]	
[-count[-q] <path>]	
[-help [cmd]]	

Accessing HDFS

33

// Get default file system instance	
fs = Filesystem.get(new Configuration());	
// Or Get file system instance from URIfs =
Filesystem.get(URI.create(uri),	
 new Configuration());	
// Create, open, list, … OutputStream out =
fs.create(path, …);	
InputStream in = fs.open(path, …);	
boolean isDone = fs.delete(path, recursive);	
FileStatus[] fstat = fs.listStatus(path);	

HDFS Java API

34

Hadoop MapReduce

•  Record = (Key, Value)
•  Key : Comparable, Serializable
•  Value: Serializable
•  Input, Map, Shuffle, Reduce, Output

35

cat /var/log/auth.log* | \ 	
grep “session opened” | cut -d’ ‘ -f10 | \	
sort | \	
uniq -c > \	
~/userlist 	

Seems Familiar ?

36

Map

•  Input: (Key1, Value1)
•  Output: List(Key2, Value2)
•  Projections, Filtering, Transformation

37

Shuffle

•  Input: List(Key2, Value2)
•  Output

– Sort(Partition(List(Key2, List(Value2))))
•  Provided by Hadoop

38

Reduce

•  Input: List(Key2, List(Value2))
•  Output: List(Key3, Value3)
•  Aggregation

39

Example: Unigrams

•  Input: Huge text corpus
– Wikipedia Articles (40GB uncompressed)

•  Output: List of words sorted in
descending order of frequency

40

$ cat ~/wikipedia.txt | \	
sed -e 's/ /\n/g' | grep . | \	
sort | \	
uniq -c > \	
~/frequencies.txt	

$ cat ~/frequencies.txt | \	
# cat | \	
sort -n -k1,1 -r |	
# cat > \	
~/unigrams.txt	

Unigrams

41

mapper (filename, file-contents):	
 for each word in file-contents:	
 emit (word, 1)	

reducer (word, values):	
 sum = 0	
 for each value in values:	
 sum = sum + value	
 emit (word, sum)	

MR for Unigrams

42

mapper (word, frequency):	
 emit (frequency, word)	

reducer (frequency, words):	
 for each word in words:	
 emit (word, frequency)	

MR for Unigrams

MR Dataflow

Pipeline Details

45

Hadoop Streaming

•  Hadoop is written in Java
– Java MapReduce code is “native”

•  What about Non-Java Programmers ?
– Perl, Python, Shell, R
– grep, sed, awk, uniq as Mappers/Reducers

•  Text Input and Output

46

Hadoop Streaming

•  Thin Java wrapper for Map & Reduce
Tasks

•  Forks actual Mapper & Reducer
•  IPC via stdin, stdout, stderr
•  Key.toString() \t Value.toString() \n
•  Slower than Java programs

– Allows for quick prototyping / debugging

47

$ bin/hadoop jar hadoop-streaming.jar \	
 -input in-files -output out-dir \	
 -mapper mapper.sh -reducer reducer.sh	

# mapper.sh	

sed -e 's/ /\n/g' | grep .	

# reducer.sh	

uniq -c | awk '{print $2 "\t" $1}'	

Hadoop Streaming

MR Architecture

Job Submission

Initialization

Scheduling

Execution

Reduce Task

54

Session C:
Pig

What is Pig?

•  System for processing large semi-
structured data sets using Hadoop
MapReduce platform

•  Pig Latin: High-level procedural
language

•  Pig Engine: Parser, Optimizer and
distributed query execution

55

Pig vs SQL

•  Pig is procedural
(How)

•  Nested relational
data model

•  Schema is optional
•  Scan-centric analytic

workloads
•  Limited query

optimization

•  SQL is declarative
•  Flat relational data

model
•  Schema is required
•  OLTP + OLAP

workloads
•  Significant

opportunity for query
optimization

Pig vs Hadoop

•  Increase programmer productivity
•  Decrease duplication of effort
•  Insulates against Hadoop complexity

– Version Upgrades
– JobConf configuration tuning
– Job Chains

57

Example

•  Input: User profiles,
Page visits

•  Find the top 5 most
visited pages by
users aged 18-25

In Native Hadoop

In Pig

60

Users = load ‘users’ as (name, age); 
Filtered = filter Users by age >= 18 and age <= 25;  
Pages = load ‘pages’ as (user, url); 
Joined = join Filtered by name, Pages by user; 
Grouped = group Joined by url; 
Summed = foreach Grouped generate group,	
 COUNT(Joined) as clicks; 
Sorted = order Summed by clicks desc; 
Top5 = limit Sorted 5; 
store Top5 into ‘top5sites’;	

Natural Fit

Comparison

Flexibility & Control

•  Easy to plug-in user code
•  Metadata is not mandatory
•  Pig does not impose a data model on

you
•  Fine grained control
•  Complex data types

63

Pig Data Types

•  Tuple: Ordered set of fields
– Field can be simple or complex type
– Nested relational model

•  Bag: Collection of tuples
– Can contain duplicates

•  Map: Set of (key, value) pairs

64

Simple data types

•  int : 42
•  long : 42L
•  float : 3.1415f
•  double : 2.7182818
•  chararray : UTF-8 String
•  bytearray : blob

65

NULL

•  Same as SQL: unknown or non-existent
•  Loader inserts NULL for empty data
•  Operations can produce NULL

– divide by 0
– dereferencing a non-existent map key

66

Expressions

67

A = LOAD ‘data.txt AS	
 (f1:int , f2:{t:(n1:int, n2:int)}, f3: map[])	

A =	
{	
 (1, -- A.f1 or A.$0	
 { (2, 3), (4, 6) }, -- A.f2 or A.$1	
 [‘yahoo’#’mail’] -- A.f3 or A.$2	
}	

Counting Word Frequencies

•  Input: Large text document
•  Process:

– Load the file
– For each line, generate word tokens
– Group by word
– Count words in each group

68

Load

69

myinput = load '/user/milindb/text.txt'	
 USING TextLoader() as (myword:chararray);	

(program program)	
(pig pig)	
(program pig)	
(hadoop pig)	
(latin latin)	
(pig latin)	

Tokenize

70

words = FOREACH myinput GENERATE FLATTEN(TOKENIZE(*));	

(program) (program) (pig) (pig) (program) (pig) (hadoop)
(pig) (latin) (latin) (pig) (latin)	

Group

71

grouped = GROUP words BY $0;	

(pig, {(pig), (pig), (pig), (pig), (pig)})	
(latin, {(latin), (latin), (latin)})	
(hadoop, {(hadoop)})	
(program, {(program), (program), (program)})	

Count

72

counts = FOREACH grouped GENERATE group, COUNT(words);	

(pig, 5L)	
(latin, 3L)	
(hadoop, 1L)	
(program, 3L)	

Store

73

store counts into ‘/user/milindb/output’	
 using PigStorage(); 	

pig 5	
latin 3	
hadoop 1	
program 3	

Example: Log Processing

74

-- use a custom loader  
Logs = load ‘apachelogfile’ using 
 CommonLogLoader() as (addr, logname, 
 user, time, method, uri, p, bytes); 
-- apply your own function 
Cleaned = foreach Logs generate addr,  
 canonicalize(url) as url; 
Grouped = group Cleaned by url; 
-- run the result through a binary  
Analyzed = stream Grouped through  
 ‘urlanalyzer.py’; 
store Analyzed into ‘analyzedurls’;	

Schema on the fly

75

-- declare your types  
Grades = load ‘studentgrades’ as  
 (name: chararray, age: int, 
 gpa: double); 
Good = filter Grades by age > 18  
 and gpa > 3.0;  
-- ordering will be by type  
Sorted = order Good by gpa; 
store Sorted into ‘smartgrownups’;	

Nested Data

76

Logs = load ‘weblogs’ as (url, userid); 
Grouped = group Logs by url;  
-- Code inside {} will be applied to each 
-- value in turn. 
DisinctCount = foreach Grouped { 
 Userid = Logs.userid; 
 DistinctUsers = distinct Userid; 
 generate group, COUNT(DistinctUsers); 
} 
store DistinctCount into ‘distinctcount’;	

Pig Architecture

Pig Frontend

Logical Plan

•  Directed Acyclic Graph
– Logical Operator as Node
– Data flow as edges

•  Logical Operators
– One per Pig statement
– Type checking with Schema

79

Pig Statements

Load

Read data from the file

system

Store

Write data to the file

system

Dump
 Write data to stdout

Pig Statements

Foreach..Generate

Apply expression to
each record and

generate one or more
records

Filter

Apply predicate to each

record and remove
records where false

Stream..through

Stream records through

user-provided binary

Pig Statements

Group/CoGroup

Collect records with the
same key from one or

more inputs

Join

Join two or more inputs

based on a key

Order..by

Sort records based on a

key

Physical Plan

•  Pig supports two back-ends
– Local
– Hadoop MapReduce

•  1:1 correspondence with most logical
operators
– Except Distinct, Group, Cogroup, Join etc

83

MapReduce Plan

•  Detect Map-Reduce boundaries
– Group, Cogroup, Order, Distinct

•  Coalesce operators into Map and
Reduce stages

•  Job.jar is created and submitted to
Hadoop JobControl

84

Lazy Execution

•  Nothing really executes until you request
output

•  Store, Dump, Explain, Describe,
Illustrate

•  Advantages
–  In-memory pipelining
–  Filter re-ordering across multiple commands

85

Parallelism

•  Split-wise parallelism on Map-side
operators

•  By default, 1 reducer
•  PARALLEL keyword

– group, cogroup, cross, join, distinct, order

86

Running Pig

87

$ pig	
grunt > A = load ‘students’ as (name, age, gpa);	
grunt > B = filter A by gpa > ‘3.5’;	
grunt > store B into ‘good_students’;	
grunt > dump A;	
(jessica thompson, 73, 1.63)	
(victor zipper, 23, 2.43)	
(rachel hernandez, 40, 3.60)	
grunt > describe A;	
A: (name, age, gpa)	

Running Pig

•  Batch mode
– $ pig myscript.pig

•  Local mode
– $ pig –x local

•  Java mode (embed pig statements in
java)
– Keep pig.jar in the class path

88

SQL to Pig

SQL
 Pig

...FROM MyTable...	A = LOAD ‘MyTable’ USING PigStorage(‘\t’) AS	 (col1:int, col2:int, col3:int);	

SELECT col1 +
col2, col3 ...	 B = FOREACH A GENERATE col1 + col2, col3;	

...WHERE col2 > 2	 C = FILTER B by col2 > 2;	

SQL to Pig

SQL
 Pig

SELECT col1, col2, sum(col3)	
FROM X GROUP BY col1, col2	

D = GROUP A BY (col1, col2)	
E = FOREACH D GENERATE	
 FLATTEN(group), SUM(A.col3);	

...HAVING sum(col3) > 5	 F = FILTER E BY $2 > 5;	

...ORDER BY col1	 G = ORDER F BY $0;	

SQL to Pig

SQL
 Pig

SELECT DISTINCT col1
from X	

I = FOREACH A GENERATE col1;	
J = DISTINCT I;	

SELECT col1,
count(DISTINCT col2)
FROM X GROUP BY col1	

K = GROUP A BY col1;	
L = FOREACH K {	
 M = DISTINCT A.col2;	
 GENERATE FLATTEN(group), count(M);	
 }	

SQL to Pig

SQL
 Pig

SELECT A.col1, B.
col3 FROM A JOIN
B USING (col1)	

N = JOIN A by col1 INNER, B by col1 INNER;	

O = FOREACH N GENERATE A.col1, B.col3;	

-- Or	

N = COGROUP A by col1 INNER, B by col1 INNER;	

O = FOREACH N GENERATE flatten(A), flatten(B);	

P = FOREACH O GENERATE A.col1, B.col3	

