
Java Security
—an Infrastructure for Secure Client-Server

Communication

Thesis for the degree Master of Science

Lars-Helge Netland
Department of Informatics

University of Bergen

June 2005

The NoWires Research Group

http://www.nowires.org

i

Preface

Web application programmers tend to focus on services when developing networking ap-
plications. Numerous services are designed to communicate with each other and are made
available through service-oriented architectures. The emphasis on functionality has taken
attention away from the production of secure and reliable systems. In this thesis, ap-
proaches to secure client-server communication will be presented. The important step is
the development of an underlying infrastructure that can provide basic security mecha-
nisms. An example framework in Java will be refined and improved throughout the text
to show readers how to implement the concepts discussed.

The intended audience for this thesis is students and IT professionals with an under-
standing of Public Key Infrastructures and Java programming. People with background in
just one of these categories will have a harder time following the text, but are encouraged
to continue reading. References are included throughout the document, enabling readers
to go to the sources for an in-depth presentation.

iii

Acknowledgments

First of all I would like to thank my supervisor, Professor Kjell Jørgen Hole, for brilliant
guidance throughout this thesis. Our weekly meetings and daily discussions have been
invaluable to the quality of my work. I also owe Yngve Espelid my deepest gratitude for
his major involvement in reaching the bottom of Java security and the ongoing NIO/SSL
project, and for valuable comments on this document. I also thank Thomas Tjøstheim and
my uncle Johs for proof-reading the thesis. If I were to give these four a beer for every
mistake and shortcoming they have corrected, I’d be broke. Both socially and academically,
the members of The NoWires Research Group have been very important. Our monthly
“excursions” to Onkel Lauritz have meant a lot to me. I would also like to thank my
common-law spouse Kristine for her patience and great support. My finances over the
last year have been taken care of my poker-playing brother, allowing me to concentrate on
research. In closing, I thank my parents, Audun and Kari, for always pushing me beyond
the limit of my capabilities.

v

Contents

1 Introduction 1
1.1 Defining Security . 2
1.2 Distributed Computing and Java . 2

1.2.1 Infrastructure . 3
1.3 Application Domains . 3
1.4 Structure of Thesis . 4

2 The Communication Framework 5
2.1 Network Protocols and Internet Banking 5

2.1.1 Real life example: Sparebanken Vest 6
2.2 The Client-Server Paradigm . 7

2.2.1 Communication model . 8
2.2.2 Client-server architecture . 9

2.3 Networking in Java . 10
2.3.1 NIO . 10
2.3.2 The implementation . 11

2.3.2.1 Server implementation . 11
2.3.2.2 Client implementation . 13
2.3.2.3 Client and server interactions 13

2.4 Summary . 16

3 Cryptography 17
3.1 Introduction . 17

3.1.1 Defining PKI . 18
3.1.1.1 X509 public key certificate 18
3.1.1.2 Certificate Revocation List (CRL) 20
3.1.1.3 Certification Authority (CA) 20
3.1.1.4 Registration Authority (RA) 21
3.1.1.5 Repository . 21
3.1.1.6 Archive . 21
3.1.1.7 Certificate chain . 21

3.2 Java Security Fundamentals . 22
3.2.1 The Java language rules . 22

vii

CONTENTS viii

3.2.1.1 Enforcement of the Java language rules 23
3.2.2 The sandbox . 23

3.2.2.1 Permissions . 24
3.2.2.2 Code sources . 25
3.2.2.3 Protection domains . 25
3.2.2.4 Policy files . 25
3.2.2.5 Access controller . 26
3.2.2.6 Class loading . 29

3.2.3 The Java security model . 30
3.3 Cryptography in Java . 32

3.3.1 The framework for cryptographic services 32
3.3.2 Cryptography APIs . 34

3.3.2.1 Java Cryptography Architecture (JCA) 34
3.3.2.2 Java Cryptography Extension (JCE) 35
3.3.2.3 Java Secure Sockets Extension (JSSE) 35
3.3.2.4 Java Authentication and Authorization Service (JAAS) . . 36

3.3.3 Java key and certificate management 36
3.4 Summary . 37

4 Towards More Secure Internet Banking 39
4.1 Security in Today’s Internet Banking Systems 39

4.1.1 Improving authentication procedures 39
4.1.2 The banking security paradigm . 40
4.1.3 BankID . 40

4.2 Shortcomings in the Initial Internet Banking Scheme 41
4.3 PKI for Internet Banking . 42

4.3.1 The scalable solution . 43
4.3.2 Java Implementation . 43

4.3.2.1 Assumptions . 43
4.3.2.2 Configuration details . 45
4.3.2.3 The Legion of the Bouncy Castle 45
4.3.2.4 Key generation . 46
4.3.2.5 X509 certificate generation 47
4.3.2.6 CRL generation . 48
4.3.2.7 Distribution of certificates and CRLs 49
4.3.2.8 Mutual authentication between members of the PKI . . . 50

4.4 PKI Challenges . 54
4.5 Summary . 55

5 Transport Security 57
5.1 Background . 57
5.2 The SSL Protocol . 59
5.3 JSSE . 61

CONTENTS ix

5.3.1 SSL in Java 1.4 . 61
5.3.2 The New SSL API . 62

5.3.2.1 The Handshake Protocol 62
5.3.2.2 Exchanging application data 65
5.3.2.3 Pitfalls . 66

5.3.3 The Prototype . 66
5.4 SSL and PKI . 66

5.4.1 Side-effects of client side authentication 67
5.4.2 SSL on a compromised host . 68

5.5 Summary . 68

6 Summary and Conclusions 69
6.1 Summary . 69
6.2 Academic Progression and Uniqueness . 70

6.2.1 Progression . 70
6.2.2 Contributions . 70

6.3 Conclusions . 71
6.4 Further Work . 71

List of Tables

3.1 X509 Version 3 public key certificates . 19
3.2 Engines in J2SE 5.0 . 33

xi

List of Figures

2.1 Login Sparebanken Vest . 6
2.2 Continued login Sparebanken Vest . 6
2.3 Sequence diagram: Login Sparebanken Vest 7
2.4 Client-server communication protocol . 8
2.5 Application layers . 9
2.6 Three tier client-server architecture . 10

3.1 The stack and protection domains of a method 27
3.2 AccessController class hierarchy . 28
3.3 Java class loader responsibilities . 29
3.4 The Java security model . 31

4.1 PKI architecture . 44

5.1 EDB Business Partner ASA’s server certificate 59
5.2 SSL Handshake Protocol . 60
5.3 JSSE communication model . 64

xiii

Important acronyms

Acronym First page occurrence
CA: Certification Authority 18
CRL: Certificate Revocation List 18
DN: Distinguished Name 18
DoS: Denial-of-Service 1
J2EE: Java 2 Enterprise Edition 3
J2SE: Java 2 Standard Edition 2
JAAS: Java Authentication and Authorization Service 34
JCA: Java Cryptography Architecture 32
JCE: Java Cryptography Extension 34
JSSE: Java Secure Sockets Extension 34
JVM: Java Virtual Machine 23
NIO: New Input/Output 4
PKI: Public Key Infrastructure 3
RA: Registration Authority 18
SSL: Secure Socket Layer 2
TLS: Transport Layer Security 35

xv

Chapter 1

Introduction

Today, close to 900 million people use the Internet [59]. Over the last 5 years the Web’s user
base has expanded with 146.2% worldwide. Along with the rapid growth of this relatively
new communication medium, a wealth of new services have been introduced. On-line you
can now shop, gamble, date, pay bills, and find out how much your neighbor made last
year. Not only do you have almost endless possibilities, but with the recent explosive
addition of wireless networks, you are free to explore them from just about anywhere. And
people are actively using the Web: A survey [46] from 1st quarter 2004, shows that 31%
of the Norwegian population aged between 16-74 had ordered or purchased goods on-line
over the last 3 months.

With the widespread use of the Internet, users have also experienced a drastic increase in
Web related crime. Common felonies include theft of credit card information, deployment
of computer worms and viruses, illegal access of confidential information, and Denial-
of-Service (DoS) [11] attacks. According to Eurostat [47], 32.9% of Norwegian Internet
users lost time or information due to computer viruses in 2004. The availability of the
Web is complicating the investigation of cybercrime. Bringing perpetrators to justice often
necessitates cooperation across national borders. Kazakhstani malicious hacker Oleg Zezev
operated from his homeland when he in March 2000 broke into Bloomberg L.P.’s computer
systems, and later tried to blackmail the company’s founder Michael Bloomberg. The
attacker demanded $200,000 or else he would destroy Bloomberg’s systems. Zezev was
apprehended in an undercover operation in London, a joint effort by the FBI and British
intelligence, later that same year [31].

Evil-minded hackers can often obtain access to large networks of computers, from which
they can launch powerful attacks. Internet Service Provider (ISP) Telenor discovered a net-
work of approximately 10,000 “zombie” computers in September 2004 [22]. These networks
are often called botnets. A botnet consists of computers that act like robots, communicat-
ing with each other and a central server. A skilled malicious hacker in possession of such
an army of computers can accomplish almost anything on the Web.

1

CHAPTER 1. INTRODUCTION 2

1.1 Defining Security
The term security means different things to different people. Computer network people
often talk about firewalls and intrusion detection systems when asked if their computer
systems are secure. Folks in management sometimes will argue that their organization’s
systems are secure because they implement the Secure Socket Layer (SSL) protocol. Secu-
rity is not a feature. It is a system property [5]. In building secure systems for the Internet,
one has to realize that nothing can be considered 100% secure. Computer professionals ac-
tually need to take the opposite view: consider all client systems as fundamentally insecure
[41]. As a consequence, security-minded developers apply best practices in order to build
as robust systems as possible. In addition, security must be integrated into the software
development life-cycle in order to craft reliable software. A security review at the end of the
software process is not sufficient to produce good quality programs. Security needs to be
considered in a much wider sense, as a set of non-functional goals. A thorough treatment
of the matter includes procedures for prevention, traceability and auditing, monitoring,
privacy and confidentiality, anonymity, authentication, and integrity [5].

Taking the necessary steps to secure your on-line systems is hardly a one-man show. To
implement the procedures mentioned above, you need a team of security professionals. In
this thesis, a subset of the total package of security services will be considered. In particular,
the basic services of authentication, integrity, and confidentiality will be addressed. From
this point on these three will also be referred to by the term primary security services.

The main goal is to explain in theory and through code examples how readers can
construct an infrastructure that can be used to build a wide range of security services. But
please keep in mind that a comprehensive security solution entails much more than these
services.

1.2 Distributed Computing and Java
The security framework to be designed in this thesis is meant to be deployed in an Internet
setting. As such, it is required to function in a hostile environment, meaning that the
implementation language should be as secure as possible. Also, it is desirable to choose a
platform that can keep up with the advances in technology. In particular, it seems certain
that small devices such as cell phones will be deployed as fully capable client systems on
the Internet.

Currently, given the factors above, Java is the best choice for your programming plat-
form. Languages such as C and C++ were not designed with the Web in mind, and do
not contain mechanisms to secure your applications from buffer overflows and arbitrary
memory access. C# is a relatively new language that borrows heavily from Java. The
biggest concern regarding C# is the lack of penetration in the mobile segment. Current
cell phones contain limited computing capabilities, but do provide some support for Java
development through the Java 2 Micro Edition platform.

In this thesis, programs will be developed using the Java 2 Standard Edition (J2SE)

CHAPTER 1. INTRODUCTION 3

computing environment. It should be stressed that J2SE is a subset of the Java 2 Enterprise
Edition (J2EE) platform, meaning that the security framework created can be exported to
a J2EE setting. The most important libraries in Java that will be used include java.nio,
javax.net.ssl, java.net, java.security, and javax.net.ssl. Also, a few classes from
third party provider Bouncy Castle [54] will be used. For more information on the code,
consult the author’s web site [7].

1.2.1 Infrastructure

In terms of software, the universal tool platform Eclipse is used to develop programs. Most
of the graphics are created in OmniGraffle Professional, except the figures in Section 3.2,
which were made by Yngve Espelid in Visio. The main body of text will be written in
LYX.

The code in chapters 2 and 4 has been developed on an Apple computer, a Powerbook
with a 1.25 GHz G4 processor and 512 MB of RAM. The code in Chapter 5 has been
developed on a Pentium 4 with a 2.8 GHz processor and 1 GB of RAM. All of the code
can run on any system with J2SE version 5.0 installed.

1.3 Application Domains
As stated in Section 1.1, the main goal of the thesis is to develop a security framework capa-
ble of providing the primary security services. The true power of such a framework cannot
be fully appreciated without an understanding of how it can be put into an operational
context. An ideal candidate relying on the primary security services is Internet banks.
They have high demands in terms of availability and security, making the development of
them a difficult task. The possibility of getting access to lots of money, makes Internet
banking systems attractive targets for evil-minded hackers. The challenges present in the
development of these solutions make them attractive to security researchers as well. Also,
a constellation called BankID [4] is currently working on a project that aims to improve
Norwegian Internet banking systems. There is a bit of confusion surrounding this initia-
tive, especially since they have been reluctant to give away details on their system. They
have been very clear on one thing: their solution will include a Public Key Infrastructure
(PKI).

The decision to implement the security constructs in an Internet banking scenario does
not mean that the techniques can’t be applied to different settings. Once you have a
security infrastructure in place, you should be able to provide services to a whole range
of different applications. The important step is to create the underlying infrastructure.
The Internet banking system is included to show you how to make use of the services
provided by the infrastructure. Other interesting application domains include electronic
voting, e-commerce, and payment solutions with handheld devices.

CHAPTER 1. INTRODUCTION 4

1.4 Structure of Thesis
In this thesis, a security critical application developed for the Internet is considered. At
first, the reader will be made familiar with a stripped down version of the system, a
functioning prototype. In subsequent chapters, weaknesses in the initial system will be
identified, and the application will undergo changes to meet various security requirements.
The underlying theory will be explained before implementations are given. This way,
readers are given theoretical background on security mechanisms and examples of how to
get from theory to code. Each chapter ends with a short summary highlighting the most
important parts of the text.

Chapter 2 sets up a communication framework to be used throughout the thesis. It
relies on the client-server paradigm to exchange information. In the beginning, Internet
banking is presented as a typical networking system. Later, a minimal prototype using the
New Input/Output (NIO) library in Java is given.

Chapter 3 opens with a short introduction to PKI. Concepts that are necessary to un-
derstand when implementing a PKI will be presented. Readers should see texts such as
[1, 15] for a more thorough understanding of the theoretical foundations of the infrastruc-
ture. Next, Java is discussed in a security context. A walk-through of the programming
platform’s approach to security is given. In closing, cryptographic capabilities in Java are
presented.

Chapter 4 discusses current Internet banking systems. A discussion of next generation
banking software is also included. Next, shortcomings in the initial communication frame-
work are identified. These are later dealt with by applying the theory given in Chapter
3. After the development of a PKI for Internet banking, current challenges in PKI are
discussed.

Chapter 5 addresses the widely used SSL protocol. First, current deployment of SSL
in Internet banking systems are debated, and a simple attack is given. Next, a short
introduction to the workings of SSL is given. Then, a prototype using SSL in Java will be
implemented. Rounding off the chapter is an overview of SSL’s role in a PKI.

Chapter 6 ends the thesis. First, a short summary highlights the main points of the
text. Next, a number of conclusions are given. In closing, a list of ways to continue and
build on the work in the thesis is presented.

Chapter 2

The Communication Framework

This chapter outlines the communication framework to be used throughout the thesis.
First, Internet banking is presented to illustrate usage of network protocols. Second, the
client-server paradigm is explained. The description is fairly superficial, the interested
reader is strongly encouraged to read more about this topic in Sommerville’s book on
software engineering [49] or in undergraduate networking textbooks, such as “Computer
Networking” by Kurose and Ross [34]. A Java implementation of a client-server protocol,
featuring the NIO library [13] added in Java 2 Standard Edition (J2SE) version 1.4, ends
the chapter.

2.1 Network Protocols and Internet Banking
Communication over a network is accomplished through the use of communication proto-
cols. One such protocol is the Transport Control Protocol (TCP). Packages sent via TCP
are guaranteed to arrive in order and in their entirety, but the sender has no guarantee re-
garding the time of arrival. An alternative to TCP is the User Datagram Protocol (UDP).
The latter protocol is connectionless and makes no guarantees about delivery. The upside
for UDP is that it introduces less overhead, allowing packets to propagate faster through
the network. Programs in this thesis will use TCP, as alterations in the data sent can’t
be tolerated. Please consult Request For Comments (RFC) 793 [18] and 768 [17] for more
information on TCP and UDP, respectively.

A typical scenario in which sensitive information is exchanged over a publicly accessi-
ble network is Internet banking. Customers log into the bank’s servers to perform basic
services, such as checking their balance, paying bills, or managing stocks and bonds. All
of the above can be accomplished through the use of an Internet browser.1

1Popular ones include Internet Explorer, Mozilla, Opera, and Safari.

5

CHAPTER 2. THE COMMUNICATION FRAMEWORK 6

2.1.1 Real life example: Sparebanken Vest

Fig. 2.1 and Fig. 2.2 show screenshots of the login procedure in Sparebanken Vest’s Internet
banking system. The two fields in Fig. 2.1 prompt the user to input a username and the
corresponding password. The format of these are specified as follows:

• The username is the full given name of the customer. All characters not being
letters are removed, e.g., a person named Abdoulaye M’Baye would get the username:
abdoulayembaye.

• The password is defined by the user and is verified by the bank. It must contain at
least 6, but no more than 30 characters. The password is not case-sensitive and can
include any character in the English alphabet. In addition, the bank recommends a
mixture of letters and numbers.

Figure 2.1: Login Sparebanken Vest

In Fig. 2.2 the user is prompted for a four digit one-time Personal Identification Number
(PIN), which is given by a table of 50 such PINs that is sent to the customer prior to usage
of the system. After 35 logins the bank sends the user 50 new PINs.

Fig. 2.3 is a sequence diagram illustrating the flow of information when logging into
Sparebanken Vest’s Internet banking system:

Figure 2.2: Continued login Sparebanken Vest

CHAPTER 2. THE COMMUNICATION FRAMEWORK 7

Customer Sparebanken
Vest

Login request

One-time PIN

PIN request

Login response

Figure 2.3: Sequence diagram: Login Sparebanken Vest

Main flow of events: First, the user sends his username and password to the bank, as
indicated by the arrow labeled “Login request.” Next, the financial institution re-
sponds by requiring the customer to send a one-time PIN. Upon looking up the
required PIN, the user sends it off to Sparebanken Vest. The login procedure culmi-
nates in a response from the bank, granting the customer access to his/her accounts.

Exceptional flow of events: If the pair (username, password) fails to validate the cus-
tomer, the bank prompts the user to resend these values up to a maximum of three
times. Failing the last attempt closes the account. The customer must contact the
bank via telephone or mail to re-open the account. If the user inputs an invalid one-
time PIN, the scenario continues as if it were a mismatched (username, password)
pair.

2.2 The Client-Server Paradigm
A widely used model for communication on the Internet is the client-server model. Merriam-
Webster on-line dictionary defines a server [37] to be “a computer in a network that is used
to provide services (...) to other computers in the network.” Examples of services provided
by a server are access to files or shared peripherals and routing of e-mail. A client is defined

CHAPTER 2. THE COMMUNICATION FRAMEWORK 8

Client Server

Time Time

Connect

Accept

Request

Response

Close

Figure 2.4: Client-server communication protocol

[36] to be “a computer in a network that uses the services (...) provided by a server.” In
this thesis, a server should be understood as a continuous provider of services, meaning
that the server is able to accept and process multiple simultaneous connections. Such a
scheme can be realized through the use of multiplexing I/O.

2.2.1 Communication model

In the following, we design a simple model for client-server communication, enabling the
reader to get an easy start with both concepts and implementation issues. The communi-
cation protocol is depicted in Fig. 2.4.

The client initiates the communication by sending a connection request, indicated by
the “connect” arrow in Fig. 2.4. The server responds with an “accept” message. Upon
establishing the connection, the client then sends a service request, graphically represented
in the figure by the arrow labeled “request.” Next, the server sends a response. The
communication ends with a “close” message sent from the client, indicating to the server
that no additional services will be called for in the current session.

Looking back at the login procedure described in Section 2.1.1, notice that Sparebanken
Vest uses a variant of the client-server paradigm to realize their Internet banking system.
Customers use clients, disguised as Internet browsers, to connect to the bank’s web server
located at www.spv.no. In fact, except from the messages sent to initiate and close the
communication,2 Fig. 2.3 and Fig. 2.4 have the same structure, i.e., they are both re-
quest/response based. In terms of networking code, the text will rely exclusively on the

2Omitted in Fig. 2.3 in order to keep the figure simple.

CHAPTER 2. THE COMMUNICATION FRAMEWORK 9

client-server paradigm.

2.2.2 Client-server architecture

Having identified and described the interactions in an application, you are in position to
design the system architecture. It can be useful to dissect the application layer into three
layers:

1. The presentation layer presents information to the user and is responsible for all user
interaction.

2. The processing layer is made up of all application logic details.

3. The data management layer is responsible for all database operations.

The exchange of information between the layers is portrayed in Fig. 2.5. The segmentation
of the application layer enables us to distribute the different processes across multiple
processors, possibly across a network. Please note that even if we regard these as separate
processes, they don’t have to be physically separated. The same computer could preform
presentation, processing and data management.

Data
Management

Presentation

Processing

Figure 2.5: Application layers

In Sparebanken Vest’s system, presentation is done in the individual client browser.
Processing is handled by the bank’s webservers. Sparebanken Vest’s system is proprietary,
so we can only make an educated guess when saying that they have an external data
management system. Looking at the quantity of information that flows through the system,
they would have to have a separate system for database operations.

A system involving a set of distributed components is known as a multi-tier system.
This thesis will focus on three-tier client-server architectures, like the one displayed in Fig.
2.6. The three components portrayed are:

CHAPTER 2. THE COMMUNICATION FRAMEWORK 10

• client, responsible for presenting information to the user,

• webserver, conducts application processing, and

• database server, handles database transactions.

To ease the burden on the webserver, some of the processing can be done on the clients.
This reduces the amount of traffic sent across the network, allowing higher throughput
for the data moving between the processes. If clients are to do processing, you need
relatively fast CPUs and large amounts of memory to do so efficiently. As of June 2005, this
requirement forces an exclusion of smart phones, Personal Digital Assistants (PDAs) and
smaller devices. Variants where mobile phones are used introduce workarounds like the one
sketched in “Design and Implementation of a PKI-based End-to-End Secure Infrastructure
for Mobile E-Commerce” [6]. A scheme involving client-side processing is known as a
thick-client model.

Presentation
Processing Data

Management

Figure 2.6: Three tier client-server architecture

2.3 Networking in Java
The following subsections show a possible implementation of the login procedure in Spare-
banken Vest’s Internet banking system. The application is in no way meant to mimic the
bank’s existing solution, but offers a view of how to implement a login scheme in Java
using the NIO Application Programming Interface (API). I/O addresses transfer of data
between processes and/or devices, e.g. from a web server to a client. Ron Hitchens gives
a solid introduction to NIO in his book “Java NIO” [13]. Construction of highly scalable
servers is addressed in [42].

2.3.1 NIO

Introduced in Java 1.4, the set of classes in the NIO library offers an enhanced approach
in dealing with I/O issues. The genius of NIO is to rely on system specific calls in the

CHAPTER 2. THE COMMUNICATION FRAMEWORK 11

underlying OS to handle I/O services. The interesting Java classes enabling advanced I/O
are situated in the java.nio, java.nio.channels, and java.nio.charset packages. For
an overview of the classes, consult Sun’s on-line Java 1.4.2 API specification [24].

An important new feature is the ability to perform readiness selection. The
java.nio.channels.Selector class encapsulates this concept. An instance of Selector
can be set to monitor the traffic on a set of registered channels. A channel is used to
transport data to and from processes. Whenever a channel is ready to perform some kind
of I/O, the selector is notified and the event can be dealt with as needed. The result is
that one thread can efficiently manage a large number of channels. Prior to NIO, the single
thread scheme involved checking each channel manually for new activity.

2.3.2 The implementation

Segments of the implemented system are presented in this section. These are meant to high-
light design choices and important NIO concepts used to realize the client-server scheme.
A complete listing of the program code for Chapter 2 can be found on my web site [7].

Five classes make up the application: Communicator.java, Client.java, Server.java,
StartClient.java, and StartServer.java. The latter two are engine classes, meaning
that their sole purpose is to create instances of clients and servers. Communicator.java is
an abstract class encapsulating common features of clients and servers. Client.java and
Server.java define specific client and server behavior, respectively.

2.3.2.1 Server implementation

Before the communication can start, the server has to be bound to a specific port listening
for incoming connections. Here is code for creating a non-blocking server:

// Open a new channel from the server
serverChannel = ServerSocketChannel.open();

// Get the serversocket associated with the channel
socket = serverChannel.socket();

// Bind the socket to the communication port given by SERVICE_PORT
socket.bind(new InetSocketAddress(SERVICE_PORT));

// Instruct the channel to perform non-blocking I/O
serverChannel.configureBlocking(false);

// Register the serverChannel with the selector whose current
// interest is accepting new connections, indicated by constant:
// SelectionKey.OP_ACCEPT.
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

CHAPTER 2. THE COMMUNICATION FRAMEWORK 12

First a new channel is created. The socket associated with this channel is retrieved, allowing
the service port to be set. Then the channel is made non-blocking. Finally, the channel is
registered with a selector. The selector was created ahead of time by invoking the static
Selector.open() method. When registering, an operation of interest is specified in the
parameter list. At this point the server wants to accept new clients, which is indicated by
the predefined variable SelectionKey.OP_ACCEPT.3 Now the server is listening on the port
given by SERVICE_PORT for new clients wanting to establish a connection.

Calling the select() method on a Selector returns the number of newly registered
activities. A set of keys holding the underlying channels ready to perform I/O can be
retrieved by invoking selectedKeys().iterator() on a given selector. The server-side
code for getting and handling the previously mentioned key set is:

while(selector.select(15000) > 0) { //timeout set to 15 sec.
Iterator keys = selector.selectedKeys().iterator();

while (keys.hasNext()) {
SelectionKey selectKey = (SelectionKey) keys.next();

// Removes from the underlying collection the last
// key returned by the iterator
keys.remove();

// What type of key is this?
if(selectKey.isAcceptable()) {

// set up new connection
this.acceptClient(selectKey, selector);

}
else if(selectKey.isReadable()) {

// Read data from client
String message = this.readData(

(SocketChannel)selectKey.channel());
this.processData(selectKey, message);

}
}

}

The server iterates through the keys, looking for incoming connections and data available
for reading. If a client wants to connect, i.e. the call to selectKey.isAcceptable()
returns true, a new non-blocking channel is created and registered with the selector.4 The
server wants to be notified whenever the new client writes a message to the channel, so

3Other valid operations include OP_CONNECT, OP_READ, and OP_WRITE.
4Future activities of interest in the new channel will be caught by a later selector.select(15000)

invocation.

CHAPTER 2. THE COMMUNICATION FRAMEWORK 13

the channel is registered with the SelectionKey.OP_READ option. If there’s data to be
read from the channel, the selectKey.isReadable() method returns true. The data is
then read and the resulting string processed in the processData(SelectionKey, String)
method.

2.3.2.2 Client implementation

Looking back at the sequence diagram in Fig. 2.3, it is clear that the communication starts
at the client. But before any messages in the protocol can be exchanged, the client has to
connect to the server:

InetSocketAddress server = new InetSocketAddress(host, SERVICE_PORT);

channel = SocketChannel.open();

// Set non-blocking
channel.configureBlocking(false);

// Register channel with selector
channel.register(selector, SelectionKey.OP_READ);

// Connect to server
channel.connect(server);

while(!channel.finishConnect()) {
System.out.println("Waiting for server to accept connection...");

}

Host and service port are specified when creating an InetSocketAddress object. A channel
is then created and registered with a selector. Current interest is set to the read operation:
SelectionKey.OP_READ. The next step is to connect to the server. After issuing the
connect command, the client waits for the connect operation to finish.

2.3.2.3 Client and server interactions

In order for the server and client(s) to fulfill the Sparebanken Vest login procedure, they
have to agree on the format of the messages exchanged. The server is designed to recognize
two types of requests:

1. A string on the form “usernamejohnjohnsen|passwordw3KpO9cQ” means that user
’johnjohnsen’ with password ’w3KpO9cQ’ wants to login.

2. A string on the form “PINxxxx” means that the user associated with the underlying
channel has supplied a 4-digit PIN, where the string ’xxxx’ contains the 4 digits.

CHAPTER 2. THE COMMUNICATION FRAMEWORK 14

Any other commands received at the server are discarded, and the corresponding channel
is closed.

The client must recognize the following strings:

1. The string “PIN” indicates that the server is asking the client for a PIN.

2. “welcome!” indicates that the client was successfully authenticated and can be given
access to the protected resources.

As previously mentioned, the client initiates the application logic in Sparebanken’s login
procedure. The user sends his username to the bank:

this.writeData(channel, "usernameabdoulayembaye|passwordrT7xX2Wb");

The server recognizes the message as a login request from a customer with username ’ab-
doulayembaye’ and password ’rT7xX2Wb’. In order to distinguish communication sessions,
the username and hash-code of the underlying channel are stored in a Hashtable:

if(message.startsWith("username")) {
// Get the username and store the request
StringTokenizer st = new StringTokenizer(message, "|");

// CAUTION can cause a NoSuchElementException if
// the tokenizer is empty
String username = st.nextToken();
String password = st.nextToken();

String user = username.substring(8);
String passwd = password.substring(8);

if(this.validateUser(user, passwd)) {
int hashCode = key.channel().hashCode();
sessionInfo.put(new Integer(hashCode), user);

// Prompt user for PIN
this.writeData((SocketChannel)key.channel(), "PIN");

}
}

The username and password is extracted by using a StringTokenizer with delimiter ’|’.
In order to keep things simple, the supplied implementation always accepts the user, i.e.
calling the validateUser(...) method returns true. Typically, the validation would

CHAPTER 2. THE COMMUNICATION FRAMEWORK 15

include retrieving the (username, password) mapping from an external storage medium,
such as a database.

The variable named sessionInfo is an instance of Hashtable, which is a collection
of elements made up of (key, value) - pairs. At any given time, the program’s hashtable
contains the (username, hash-code of the underlying channel) pair of any clients that have
sent the initial login request, but have not yet supplied a PIN. After storing the necessary
information, the server demands a PIN in accordance with the predefined protocol:

this.writeData((SocketChannel)key.channel(), "PIN");

The client recognizes the message and willingly obeys the order:

if (message.equals("PIN")) {
System.out.println("Server is asking for PIN");
this.writeData((SocketChannel)key.channel(), "PIN1234");

}

The PIN sent is 1234. Other clients would change these 4 digits as appropriate. On
the receiving end, the server registers new activity on the channel corresponding to the
before-mentioned client, and tries to validate the customer:

if (message.startsWith("PIN")) {
String tempPasswd = message.substring(3);
String username = null;

// Retrieve the username for this channel
Object currChannel = key.channel();

username = (String) sessionInfo.get(currChannel.hashCode());
sessionInfo.remove(currChannel.hashCode());

˜
if (username == null) {

System.out.println("Unable to recognize user.");
key.channel().close();

}
else {

if (this.validateUser(username, tempPasswd)) {
// Send welcome message to client
this.writeData((SocketChannel)key.channel(), "welcome!");
key.channel().close();

}
else {

// UNREACHABLE!
key.channel().close();

CHAPTER 2. THE COMMUNICATION FRAMEWORK 16

}
}

}

The hash-code of the underlying channel is used to retrieve the username corresponding
to the PIN request. If the hashtable doesn’t contain an entry with the given hash-code,
the channel to the client is immediately closed. If instead a match is found, the external
validation procedure is called. Upon successfully authenticating the customer, the server
sends a welcome message to the client.

2.4 Summary
The client-server paradigm is a request-response based communication scheme suitable
for exchanging messages in a large network, such as the Internet. Sparebanken Vest of-
fers Internet banking, realized through an implementation of the previously mentioned
paradigm. In this thesis, the client-server scheme will be used in the development of net-
working applications. In addition, the clients will be required to do processing. Such a
scenario is called a thick-client model.

The NIO library in Java performs readiness selection to efficiently handle numerous
clients in a single-threaded model. A lightweight communication framework addressing the
login feature of Sparebanken Vest’s Internet banking system, can be implemented using
Java NIO. The implementation given in Section 2.3.2 suffers from quite a few shortcomings
that will be addressed and dealt with in subsequent chapters.

Chapter 3

Cryptography

This chapter is meant to provide readers with the theoretical background needed to embark
on a secure coding project using the cryptographic APIs in Java. Parts of the discussion
is quite technical, in particular Section 3.2. An understanding of the concepts presented is
needed to follow the evolution of the example framework given in Chapter 2.

The chapter opens with a short introduction to cryptography. In this opening section,
cryptographic terminology used throughout the thesis is defined. A background in cryp-
tography is required to follow the discussion. An understanding of public key cryptography
is a necessity. Next, the security mechanisms in the Java programming language are pre-
sented. The chapter ends with a closer look on the cryptographic services and features
available with the Java platform.

3.1 Introduction
The word cryptography is of Greek origin, and comes from the words kryptos meaning hid-
den and graphein meaning to write [9]. In short, cryptography is the science of encrypting
and decrypting text. Simon Singh gives a publicly accessible introduction to cryptogra-
phy in “The Code Book — The Secret History of Codes and Code-Breaking” [48]. For
a more thorough mathematical treatment of the subject, consult “Cryptography—Theory
and Practice” by Stinson [52].

The ideal security solution would be a framework capable of delivering services to
a wide range of systems. In order to gain credibility, the infrastructure must facilitate
analysis. Other desirable features are interoperability and extensibility. One promising
infrastructure able to fulfill these requirements is known as the Public Key Infrastructure
(PKI). It relies on public key cryptography to deliver security services. For an in-depth
discussion on PKI see “Understanding PKI” [1] or “Planning for PKI” [15].

17

CHAPTER 3. CRYPTOGRAPHY 18

3.1.1 Defining PKI

A PKI can be set up to provide a wide range of services.1 The implementation of an all-
purpose PKI falls outside the scope of this thesis. The text will only deal with a handful
of interesting and important services. The PKI that is to be implemented in Chapter 4 is
required to offer the following:

Authentication: The proof of a binding of an identity to an identification tag. The
binding is established by a trusted third party. An example of such a scenario in real
life is the creation of passports, where the the person to whom the passport is issued
represents the identity, and the passport itself is the identification tag. The trusted
third party is the issuing government.

Integrity: An assurance to the involved parties that the data were not modified or tam-
pered with in transit.

Confidentiality: Data travelling across a network should not be viewable or accessible
for others than the sender and the intended recipient(s).

In order to meet these requirements, the infrastructure relies on a few central components
and concepts to be discussed in the next sections:

• X509 public key certificate

• Certificate Revocation List (CRL)

• Certification Authority (CA)

• Registration Authority (RA)

• Repository

• Archive

• Certificate chain

3.1.1.1 X509 public key certificate

Authentication in a PKI is realized through the use of public key certificates. Many different
formats for certificates exist, but the most widely deployed is X509 version 3 public key
certificates. The X509 certificate structure is outlined in Table 3.1.

In a certificate, a binding between a public key and a Distinguished Name (DN) is
created. A DN is a string on the following format [CN, OU, O, L, ST, C] that is meant to
uniquely identify the owner:

1In principle that is. No current product offers comprehensive PKI support [1].

CHAPTER 3. CRYPTOGRAPHY 19

Field Description
Version X509 public key certificate version number. Three ver-

sions exist: 1, 2, and 3.
Serial Number Unique identifier for the certificate within the CA.
Signature Identifies the algorithm that was used to sign the cer-

tificate.
Issuer The DN of the issuing CA.
Validity Specifies two dates between which the certificate is

considered valid, unless it has been otherwise canceled.
Subject The DN of the owner of the certificate.
Subject Public Key Info The public key and algorithm identifier for the owner.
Issuer Unique ID Optional field assigning a unique ID to the CA issuing

the certificate. Not recommended for use in RFC 3280.
Subject Unique ID Optional field assigning a unique ID to the owner of

the certificate. Not recommended for use in RFC 3280.
Extensions Includes a set of optional extension fields. These can

be marked as critical or noncritical. Failure in process-
ing a critical extension forces the examiner to reject
the certificate, whereas a noncritical extension can be
skipped. Examples include Certificate Policies, Policy
Mappings, and Subject Alternative Name.

Digital Signature A signature on all the above fields by the issuing CA.

Table 3.1: X509 Version 3 public key certificates

CHAPTER 3. CRYPTOGRAPHY 20

• Common Name (CN): The full given name of the owner.

• Organizational Unit (OU): The unit the owner belongs to within her organization.

• Organization (O): The organization the owner is associated with.

• Locality (L): The location of the owner, i.e. city.

• State (ST): The state or province the owner resides in.

• Country (C): Two-letter country code for the owner.

To learn more about X509 certificates, see RFC 3280: Internet X.509 Public Key Infras-
tructure Certificate and Certificate Revocation List (CRL) Profile [21].

3.1.1.2 Certificate Revocation List (CRL)

The validity period of a certificate is determined by the field Validity presented in Table
3.1. In certain situations it’s desirable to cancel the certificate before the end of that
time window, e.g., in the case of theft or suspected compromise of the private key. The
victim would then need to notify all other members of the PKI about the revocation. In
practice, the user informs the CA who in turn will inform the rest of the user community.
This can be accomplished by using a CRL, which is a listing of serial numbers belonging
to certificates that have been canceled. X509 public key certificates contain an extension
named ’CRL Distribution Point’, which points to the location where revocation information
for the given certificate can be obtained. Other techniques for revocation exist, such as
on-line revocation solutions and schemes relying on reduced data structures [61], but a
discussion of these fall outside the scope of this thesis. CRLs were mainly adopted because
in terms of revocation, Java only includes CRL based solutions.

3.1.1.3 Certification Authority (CA)

In order to protect the integrity of a public key certificate, it is signed with the issuer’s
private key. The issuing party is called a CA. The CA is often an independent third party
that all the communicating parties assumingly trust. When creating a certificate, the user
must identify himself to the CA. The identification procedure varies with the intended
use of the certificate. Consider a certificate that is to be used in the signing of multi-
million dollar contracts. Identification would probably involve meeting with the CA in
person, presenting your passport, birth certificate, and possibly other credentials. Getting
a certificate intended for signing of e-mails is typically less cumbersome.

If Alice wants to communicate in a secure fashion with Bob, she first has to get his
certificate. Lets assume they both trust a common CA. Alice would contact that authority
for Bob’s certificate. Upon receiving it, Alice is convinced that she’s in possession of Bob’s
public key. This doesn’t mean that he should be trusted, merely that the CA is vouching
for the binding between Bob’s identity credentials and the corresponding public key.

The CA is required to:

CHAPTER 3. CRYPTOGRAPHY 21

• Register new users,

• issue certificates and CRLs,

• distribute certificates and CRLs, and

• store certificate information.

A number of different providers of CA services exist. Two of the most recognized ones
include Thawte [53] and Verisign [58].

3.1.1.4 Registration Authority (RA)

The CA is the cornerstone of any PKI. The tasks it performs are critical in terms of the
PKI’s overall functioning. The CAs responsibilities are often divided and distributed to
other components in the architecture. The registration procedure can be handled by one or
more RAs. Each of these are issued a certificate by the CA. In subsequent communications,
the RA signs the customer information with its private key, ensuring the message integrity.

3.1.1.5 Repository

The task of distributing certificates and CRLs can be given to a repository. The CA
creates and issues certificates and CRLs, which in turn are signed by the authority and
sent to the repository. The address and protocol of the repository is announced to make
the system available to clients. The integrity of the information is achieved through the
CA’s signature, allowing the repository to focus on availability and performance issues.

3.1.1.6 Archive

An archive in a PKI context is a tamper-proof long-term storage facility that holds cer-
tificate information generated by the CA. The important problem this construct needs to
solve is whether or not a certificate and its corresponding private key was valid at a given
point in time. By answering that question the archive can solve disputes involving the
validity of a digital signature. As an example, consider a contract digitally signed by two
companies. A while after the signing, one of the organizations deny any involvement in
the business agreement. Archive data on the certificates of the two parties can help solve
the situation. This property is more commonly referred to as non-repudiation.

3.1.1.7 Certificate chain

Consider a scenario where Alice has obtained Bob’s certificate. She does not trust Bob
directly, so Alice needs to create a path from Bob’s certificate to an entity that she trusts.
First, Alice obtains the certificate for the entity that has signed Bob’s certificate. Then,
continuing recursively, she continues to add the signer’s certificate until she reaches an
issuer she already trusts or a self-signed certificate. In the former case, Alice has a complete

CHAPTER 3. CRYPTOGRAPHY 22

certificate chain and can start validating the individual entries top-down. A self-signed
certificate is signed by the owner herself, which means that the issuer and subject fields
are identical. The term self-signed is used interchangeably with root. If Alice arrives at a
root certificate not known to her, she needs to establish trust in the issuing party in order
to communicate with Bob.

After accumulating the complete path, Alice needs to validate each entry. The process
of validation involves:

1. Verifying the digital signature,

2. checking that the DN of the certificate corresponds to the identity Bob,

3. examining the validity period, and

4. checking revocation status.

The procedure starts with the entity she trusts, possibly a root CA, then the subject of
that starting certificate, continuing all the way to Bob’s certificate.

In Chapter 4 the various components are put together to form a more robust Internet
banking system.

3.2 Java Security Fundamentals
The following section describes the underlying security foundation of the Java platform.
For a more thorough presentation see “Java Security” [40] by Scott Oaks.

3.2.1 The Java language rules

The basic building blocks in the Java security model is a set of language specific rules.
Their primary purpose is to deny access to or modification of random locations in the
memory of the hosting machine. If you’re interested in the reasoning behind the rules, see
Oaks[40]. The rules are

1. Access levels are strictly enforced.

2. Code cannot access arbitrary memory locations.

3. Entities marked with the final identifier cannot be changed.

4. Variables may not be used before they have been initialized.

5. You cannot access data outside your initial data set. E.g., attempts to access an
array index that does not exist will result in an ArrayIndexOutOfBounds.

6. Objects cannot be arbitrarily cast into other objects.

CHAPTER 3. CRYPTOGRAPHY 23

3.2.1.1 Enforcement of the Java language rules

The constructs responsible for enforcing these rules are the compiler, byte-code verifier,
and the Java Virtual Machine (JVM). The first line of defence is the compiler. During
compilation, every rule but 5 and 6 is checked; the compiler cannot enforce checking of
array bounds or all cases of illegal casts. These checks will be completed at runtime. The
problem with casting arises when two objects are not known to be unrelated:

Object maybeCar = myVector.elementAt(0);
Car ferrari = (Car) maybeCar;

There is no way for the compiler to know whether the object returned from the vector is
a car, or just something posing as a car.

When classes are loaded in Java, the byte-code verifier provides a way to check the
rules on the list above. In addition to the four first entries on the list above, the byte-code
verifier also makes sure that:

• The format of the class file is correct.

• Every class has a single superclass.2

• There are no operand stack overflows or underflows.

The compiler and the byte-code verifier have overlapping responsibilities: they perform
some of the same checks. The double-checking is necessary when dealing with code that
has been compiled by somebody else, whom you possibly don’t trust. To use the byte-code
verifier you run your program with the -verify option from the command line. In future
releases of the Java platform, the byte-code verifier will most likely be running by default.
But for now, using the -verify option is highly recommended when running code compiled
by others.

The JVM is responsible for checking of array bounds and the validity of object casts.
Non-compliance with the former check results in a
java.lang.ArrayIndexOutOfBoundsException. Likewise, illegal object casts end with
the throwing of a java.lang.ClassCastException at runtime.

3.2.2 The sandbox

The security model in Java centers around the idea of a sandbox. In executing code you
don’t fully trust, you confine the environment in which it runs. There are two aspects of
protection to think of:

1. Protecting resources outside the sandbox from the code itself, and
2multiple inheritance is illegal in Java

CHAPTER 3. CRYPTOGRAPHY 24

2. making sure that elements living on the outside can’t manipulate the code on the
inside.

Stand-alone programs in Java are by default running without the sandbox enabled. You
have to turn this mechanism on explicitly by executing your application with the command-
line option: -Djava.security.manager

Conceptually, you need the following elements to set up a sandbox in Java:

• A predefined set of sensitive actions code can perform,

• a way of binding these actions to specific segments of code, and

• a control center responsible for allowing or refusing code to perform sensitive opera-
tions.

3.2.2.1 Permissions

The abstract class java.security.Permission defines a permission in Java. Every class
is associated with a set of permissions. By default, classes in the core Java API can perform
any action. A class able to do anything is associated with the special java.security. \3

AllPermission class. You can choose from a list of predefined permissions, such as
java.io.FilePermission and java.net.SocketPermission, or you can define your own
by extending the Permission class, or more commonly the java.security. \
BasicPermission class. A permission consists of three attributes:4

Type, the name of the particular Java class implementing the permission. This attribute
is required.

Name, based on the type of permission. A name associated with a permission to a file is
the name of the target directory or file. Many permissions don’t have a name entry,
e.g. instances of the AllPermission class.

Actions, an optional list of entries describing what can be done to the target. A file
permission may specify that a file can be read, written or deleted.

Permission to read files in the directory “/Users/public/shared/” would be specified as:

permission java.security.FilePermission
"/Users/public/shared", "read";

The given permission is of type java.security.FilePermission, has name /Users/ \
public/shared, and action read.

3The \ will be used throughout the thesis to indicate splitting of characters that should be considered
one word.

4The naming of the attributes is a bit confusing and awkward. The type is really a name and the name
is a type.

CHAPTER 3. CRYPTOGRAPHY 25

3.2.2.2 Code sources

A code source encapsulates information about where a class was loaded from and who
signed the class. Both entries are optional. The location is specified as a Universal Resource
Locater (URL), and is called the code base. In Java, the java.security.CodeSource class
defines code sources. You may specify the URL using the java.net.URL class. Information
about signers are encapsulated in a table of java.security.cert.Certificate instances.
Certificate objects make a binding of an identity’s credentials to a public key.

3.2.2.3 Protection domains

A protection domain defines a mapping between permissions and code sources, i.e. it con-
tains information about what a code source is allowed to do. This construct glues together
the ability to perform sensitive operations with specific segments of code. In terms of Java,
a protection domain is an instance of the java.security.ProtectionDomain class. Each
class can only be associated with one protection domain, and classes in the core API belong
to the special system domain.

3.2.2.4 Policy files

The description of protection domains is done through the use of policy files. A policy file
relates permissions to code sources. The JVM can use any number of policy files, but two
are used by default:

Global policy file, located in $JREHOME/lib/security/java.policy,5 and a

user-specific policy file, located in ${user.home}/.java.policy.6

An excerpt from the global policy file:

grant codeBase "file:${java.home}/lib/ext/*" {7

permission java.security.AllPermission;
};

The result is that the code source $java.home/lib/ext is associated with the special
AllPermission, meaning that code from this directory can do whatever it wants.

Programmatically, an implementation of the abstract class java.security.Policy en-
capsulates the policy files in use. This is known as the system’s security policy. There
can only be one instance of the policy class in the JVM at any given time, but it can
be replaced if the given code has permission to do so. You can specify which policy files
your system should use in the $JREHOME/lib/security/java.security file. You can also
specify the policy files you want to use directly on the command-line by using the option:

5$JREHOME indicates the root catalog for your Java runtime installation.
6${user.home} indicates the home catalog of the current user.
7${java.home} points to the root catalog for your Java installation.

CHAPTER 3. CRYPTOGRAPHY 26

Djava.security.policy=myPolicy.policy

The resulting policy uses the global, user-specific, and command-line specified policy files.
Use two equal signs to only enable the one given on the command-line.

In summary, we now have a way to explicitly state what specific classes in Java are
allowed to do through the use of permissions and code sources, and we can set up our own
protection domains by creating policy files. Please note that giving code permission to
perform some action doesn’t necessarily mean that the environment on the executing host
will allow that action, e.g., deleting critical system files will typically not be permitted,
unless the user has administrator privileges.

3.2.2.5 Access controller

In determining if a class should be allowed to carry out a sensitive operation, the un-
derlying OS and the class’ policy files must be consulted. This is the job of the access
controller, it controls the security policy of an application. Prior to the Java 2 release, this
responsibility fell on the security manager. This mechanism still exists, in order to accom-
modate programs developed before the introduction of the Java 2 platform. The common
scenario now, is for the security manager to defer its actions to the access controller. The
controller was added to enable a more fine-grained way to customize the security policy of
an application: that process is simply too hard to implement with the security manager.

The access controller is represented by the java.security.AccessController class.
It cannot be instantiated, but contains static methods that query the state of the security
policy in effect. The following method checks to see if a particular permission should be
granted:

public static void checkPermission (Permission p)

An AccessControlException is thrown if the operation isn’t permitted, otherwise the
method silently returns, allowing the execution of code to continue. This decision depends
on the set of protection domains on the stack. The stack holds references to the active
classes in a thread. It’s created on a per-thread basis, meaning that each thread in an
application has its own stack. Fig. 3.1 illustrates the structure of the stack in place when
the checkPermission (p) method of the AccessController class is called. The current
permissions in effect are given by the intersection of the permissions associated with each
protection domain. This association is denoted by a solid yellow arrow in the figure.

Since the system domain is an identifier for classes loaded from the core API, which can
perform any operation, the important permissions are those associated with classes loaded
elsewhere. To generalize, we label these as belonging the the non-system domain. Upon
invocation of the static checkPermission (p) method, the stack is traversed from the top
down, checking the protection domains in effect, as indicated by the numbered arrows in
Fig. 3.1. The intersection of the protection domains determines the current security policy.

Fig. 3.2 shows the relationship between important classes in the java.security package
when it comes to explaining how the access controller works. The java.security. \

CHAPTER 3. CRYPTOGRAPHY 27

Figure 3.1: The stack and protection domains of a method

AccessController object holds a reference to the system’s current security policy, which
is encapsulated in a java.security.Policy object. At any given time, there’s only one
policy in effect for an application. The policy can be retrieved by a call to the static
getPolicy () method of the Policy class. This class specifies which permissions are
available for code from various sources, i.e. it contains the different protection domains in
the program. This information is held by a java.security.ProtectionDomain object.
The result is that the access controller can find out through the system policy, which in
turn consults the needed protection domain that holds information about the permissions
assigned to a specific code source, if a sensitive operation can be performed. To illustrate
the procedure depicted in Fig. 3.2, consider the following scenario: A programmer wants
to find out if his program will be allowed to use a socket to try to connect to an arbitrary
host on the Internet. The following code segment will do the trick:

SocketPermission perm = new SocketPermission("*:1-", "connect");
AccessController.checkPermission(perm);

The strings passed to the constructor of SocketPermission indicates ([hostname]:[port
range], [action]). In our example the wildcard “*” means all possible hostnames, the char-
acter “:” separates hostname from port range, and “1-” specifies all ports from 1 and up.
The value “connect” indicates that our application should be allowed to establish connec-
tions to hosts. After the call has been made to checkPermission (perm), the implies
(ProtectionDomain, perm) method of the Policy class is consulted to see if the given
permission is contained in the current system policy. To determine if it is, the protection
domain’s implies (perm) method is called. Finally, the PermissionCollection object,
which can hold a variety of Permission instances, is asked whether the initially specified
permission can be matched with a permission in the collection of permissions. If yes, true
is returned back through the chain of calls and the application continues silently, otherwise
false is returned, ultimately causing an exception to be thrown.

CHAPTER 3. CRYPTOGRAPHY 28

Figure 3.2: AccessController class hierarchy

CHAPTER 3. CRYPTOGRAPHY 29

Figure 3.3: Java class loader responsibilities

3.2.2.6 Class loading

The mechanism responsible for converting Java byte-code into Java class files is the class
loader. This operation takes place inside the JVM, and is carried out simultaneously with
byte-code verification. From a security standpoint, the class loader is important because
of its three duties:

1. It defines namespaces in co-operation with the JVM.

2. It calls the security manager to see if a particular class should be allowed to access
or define classes.

3. It sets up a mapping of permissions to class objects.

Every class in Java has a unique namespace based on the package it belongs to and the
name of that particular class. The Math class’ namespace is java.lang.Math. The defi-
nition of namespaces is crucial in terms of protecting the built-in security features of the
Java platform. Imagine a scenario where the JVM was unable to distinguish namespaces
from each other. You could then confuse the virtual machine by supplying your own imple-
mentations of core Java API classes, potentially causing mayhem. In Java, this is resolved
by requiring that code from different code bases are loaded by different instances of class
loaders. This way, the security manager knows which class loader to contact for the correct
versions of a given namespace.

CHAPTER 3. CRYPTOGRAPHY 30

Fig. 3.3 depicts the responsibilities of a class loader. When prompted to load a class, the
class loader must consult the security manager to find out if it has the necessary permissions
to carry out the operation. Failure to present valid access properties causes an exception
to be thrown. This interaction is labeled 1 in Fig. 3.3. The defineClassInPackage and
accessClassInPackage permissions carry the attributes needed to define or access classes.

When a class is loaded, the class loader creates the appropriate protection domain,
which is a mapping of a specific code source to one or more permissions. This operation
is summarized under 2 in Fig. 3.3. The necessary information needed to create protection
domains is usually located in the policy files. The previously mentioned mapping lets the
access controller know what classes have which permissions. This way, you can define your
own security policy by writing a custom class loader, which is considered less cumbersome
than implementing the java.security.Policy class.

Class loaders are organized in a hierarchy. The mother of all class loaders is called
the system class loader,8 and loads all the core Java API classes. It has one or more
descendants, at least a URL class loader responsible for loading classes from the classpath.
Class loaders should always consult their parents when prompted to load a class. This
operation continuous recursively, making the primordial class loader the first in line to
provide the class in question. If it isn’t able to find the class, the task falls back down
through the chain of calls.

Class loaders in Java are extensions of the abstract class java.lang.ClassLoader.
However, the preferred basis for developing class loaders is the java.security. \
SecureClassLoader class. It provides additional support for defining classes with associ-
ated code sources and permissions. The java.net.URLClassLoader provides a complete
definition of a class loader aimed at loading classes from a filesystem or an HTTP server.

3.2.3 The Java security model

Fig. 3.4 shows an overview of the Java security model. Source files come in three flavors:
core API, local, and remote. Files belonging to the core API are converted to byte-code by a
compiler at Sun Microsystems and shipped with releases of the Java Runtime Environment
(JRE). This code is considered trusted and is therefore not subject to byte-code verification.
Code created locally is compiled by a local compiler.9 Remotely loaded resources are
usually class files, meaning that the source files have been compiled by a remote, unknown
and possibly not trustworthy compiler. To ensure that this code follows the rules of the
Java programming language, these files are checked by the byte-code verifier as they’re
loaded into the JVM. Byte-code verification of local class files is optional, but highly
recommended. The arrow from the remote to local class files in Fig. 3.4 indicates scenarios
where the user downloads remote class files and stores them on a local disk, making byte-
code verification an absolute necessity, unless you trust the source 100 percent. Looking
again at Fig. 3.4, core API class files are loaded into the JVM by the system class loader.

8The system class loader also goes by the names primordial and null class loader.
9Distributed with the Java platform.

CHAPTER 3. CRYPTOGRAPHY 31

Figure 3.4: The Java security model

CHAPTER 3. CRYPTOGRAPHY 32

All other class files are loaded by class loaders further down in the hierarchy. The different
loaders collaborate in the design of unique namespaces for classes that are instantiated and
loaded into the virtual machine.

As the JVM is started, a security manager and an access controller are created. The
policy files specified in the $JREHOME/lib/security/java.security file are consulted
during creation of the system policy. The arrow between the JVM and the OS illustrates
that the virtual machine can access resources controlled by the underlying host. This access
is restricted to the rules defined for the user executing the code, meaning that someone
logged into the OS with administrator privileges will be able to do whatever she pleases.

3.3 Cryptography in Java
Cryptographic services in Java are made available through the Java Cryptography Archi-
tecture (JCA). For an in-depth presentation of the architecture, see “Java Cryptography
Architecture: API Specification & Reference” [29].

3.3.1 The framework for cryptographic services

Support for cryptographic services is realized by engine classes in Java. An engine is an
abstraction of a particular cryptographic concept, e.g., the signature engine encapsulates
the mechanism for managing digital signatures. A complete listing of the engines in Java
5.0 is given in Table 3.2.

Each engine has a corresponding Java class with the same name. In general, to use any
of the engines you instantiate the given cryptographic service with a call to its getInstance
() method. A certain engine can be associated with numerous algorithms. An algorithm
in this context is a “recipe” of how to create an instance of an engine. A message digest
can be realized using, e.g., the MD5, SHA-1, or MD2 algorithms.

Assume that a developer wants to create a message digest using the SHA-1 algorithm.
All that’s needed is the following code segment:

MessageDigest shaDigest = MessageDigest.getInstance("SHA-1");

The actual implementation of the algorithm is done by a provider. The Java 5.0 release
comes with a variety of different providers pre-installed: SUN, SunRsaSign, SunJSSE,
SunJCE, SunJGSS, and SunSASL. If you have a preferred message digest provider you
simply invoke MessageDigest.getInstance(SHA-1, myProvider), where myProvider is
your favourite provider. If you don’t supply a provider, like we did in the example above,
the system tries to find one for you. The file $JREHOME/lib/security/java.security
contains a 1-based ranking of the installed providers. Excerpt from the security file:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider

CHAPTER 3. CRYPTOGRAPHY 33

Engine Description
Signature Provides the functionality required to create a digital

signature, which in turn can be used for authentication
or data assurance.

CertStore Encapsulates functionality to retrieve certificates and
CRLs from a repository.

CertPathValidator Tests the validity of certificate chains.
CertPathBuilder Builds certificate paths.
MessageDigest Enables message digests, which are secure one-way

hash functions that take an arbitrary length input and
produce a fixed length output.

AlgorithmParameterGenerator Can be used to specify a set of parameters to be used
in a certain algorithm.

SecureRandom Provides a cryptographically strong Random Number
Generator (RNG). An implementation must comply
to the random tests defined by FIPS 140-2, Security
Requirements for Cryptographic Modules [10].

KeyStore Used to store cryptographic keys and certificates.
More specifically: private keys, symmetric keys, and
trusted certificates.

KeyFactory Can convert opaque key objects into key specifications,
and vice versa.

AlgorithmParameters Representation of cryptographic parameters.
CertificateFactory Factory used to generate certificates, certificate chains,

and CRLs from their encodings.
KeyPairGenerator Used to generate asymmetric key pairs, i.e. public and

private key pairs.
TrustManagerFactory Factory to create trust managers based on trusted ma-

terial from e.g. a keystore.
KeyManagerFactory Factory to create key managers based on key material

from e.g. a keystore.
SSLContext Used to specify and retrieve SSL implementations.
MAC Provides the functionality of a Message Authentication

Code (MAC).
KeyGenerator Used for generation of symmetric keys.
Cipher Provides the functionality to create cryptographic ci-

phers that can encrypt and decrypt data.
SecretKeyFactory Factory for secret keys that can convert opaque secret

key objects into key specifications, and vice versa.
KeyAgreement Encapsulates the functionality of a key exchange pro-

tocol.
SaslClientFactory Factory to create Simple Authentication Security

Layer (SASL) clients.
SaslServerFactory Factory to create SASL servers.

Table 3.2: Engines in J2SE 5.0

CHAPTER 3. CRYPTOGRAPHY 34

security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider

Assume that you invoke the static getInstance () of the MessageDigest class without
naming a provider. The system would then try to find an implementation of SHA-1 by
security.provider.1. If the effort fails, provider number 2 is consulted, then number 3
and so on. If no provider has an implementation of the given algorithm, the system throws
a NoSuchAlgorithmException.

The provider architecture can be extended with your own or third party implementa-
tions. If you need additional providers, see “How to Implement a Provider for the Java
Cryptography Architecture” [16].

3.3.2 Cryptography APIs

In the following, the cryptographic libraries explored in the thesis are introduced. The most
up-to-date resource for information on Java APIs is Sun Microsystems’ Java webpages [24].

Historically, cryptography came into Java in the 1.1 release, with the introduction
of the JCA. At first, it contained functionality to create and manage digital signatures
and message digests. In later revisions more services were added, and presently the JCA
includes support for all the engines listed in Table 3.2. More cryptographic features were
added in the Java Cryptography Extension (JCE). The JCE API was included in version
1.4 of the Java platform. In addition, the Java Secure Sockets Extension (JSSE) and the
Java Authentication and Authorization Service (JAAS) libraries rely on cryptography to
offer services such as secure transport using SSL, authentication, and authorization.

3.3.2.1 Java Cryptography Architecture (JCA)

The JCA defines a generic, pluggable, and extensible framework for cryptography in Java.
It was designed around two principles:

1. Algorithm independence, and

2. implementation independence.

The first is achieved through the definition of engine classes. As described in Section 3.3.1,
the engine classes encapsulate the generics of some specific cryptographic service. The
actual algorithm and implementation used is decided by the programmer. She has three
choices: a) Do all the work herself, b) use the cryptographic implementations that come
bundled with the JDK, i.e. software supplied by the installed providers, c) import third
party software into the Java environment.

Implementation independence is accomplished through the provider architecture.

CHAPTER 3. CRYPTOGRAPHY 35

3.3.2.2 Java Cryptography Extension (JCE)

The JCE is an extension to JCA built upon the same provider architecture. The JCE de-
fines a framework for advanced cryptographic services and an implementation of these. The
implementation is made available through the SunJCE provider that comes pre-installed
with current releases of the Java platform. The JCE addresses the following cryptographic
concepts:

Encryption and decryption, encryption is the process of making data unintelligible,
while decryption is the opposite task.

Password-based encryption, encryption where a key derived from a password is used.

Cipher, used to encrypt and decrypt data according to a particular algorithm.

Key Agreement, protocol to securely agree on a set of keys to be used in subsequent
communications.

Message Authentication Code (MAC), a keyed hash function used to assure data
integrity.

Various techniques from the JCE will be used as needed throughout the remainder of
the thesis. For a detailed description of the workings of JCE, see “Java Cryptography
Extension: Reference Guide” [27].

3.3.2.3 Java Secure Sockets Extension (JSSE)

The SSL protocol is the most widely used mechanism to secure transmissions of data over
the Internet. It was designed by Netscape Communications Corporation in the mid-90s,
but its development and maintenance was taken over by the Internet Engineering Task
Force in 1996. Now in version 3.1, SSL has been renamed to Transport Layer Security
(TLS). Every reference to SSL in this thesis should be understood as SSL version 3.1.
As the name indicates, the protocol offers secure transport of data, and can be used in
conjunction with application level protocols, e.g. the Hypertext Transfer Protocol (HTTP),
or the File Transfer Protocol (FTP). TLS provides the following services:

Mutual Authentication, the server and the client can establish trust through the use
of digital certificates.

Data Encryption, the data passed between the communicating parties is made unintel-
ligible by using an encryption algorithm. This ensures privacy and confidentiality.

Data Integrity, changes in the data sent over the communication channel are detected.
This service also guards against replays of old messages.

CHAPTER 3. CRYPTOGRAPHY 36

JSSE is a framework for implementation of SSL in Java. JSSE supports SSL v2.0, v3.0,
and TLS v1.0. Due to the security problems identified in the earlier versions of SSL, this
thesis will only focus on TLS.

JSSE will be used in Chapter 5. For more information on SSL, see “Java Secure Sockets
Extension (JSSE): Reference Guide” [28].

3.3.2.4 Java Authentication and Authorization Service (JAAS)

JAAS provides subject authentication and authorization. In JAAS, the subject (user or
service) running the application is authenticated. Authentication is based on a Java im-
plementation of the Pluggable Authentication Module framework, which separates the
application code from the underlying authentication. Replacing authentication technolo-
gies boils down to plugging in the desired solution. The application code itself remains
unchanged.

Section 3.2.2.5 stated that access control is determined by the code source of the ex-
ecuting code. More specifically, the location and the signer of the code. In JAAS, upon
completion of the authentication procedure, the authenticated subjects are associated with
code sources. Any subsequent authorization is determined by the permissions belonging
to the requesting subject. So instead of checking the code source of the application code,
the code source of an authenticated subject is consulted.

For more information, please see “User Authentication and Authorization in the Java
Platform” [57].

3.3.3 Java key and certificate management

Proper management of keys and certificates is vital for the proper functioning of PKI
schemes. The class java.security.KeyStore encapsulates the concept of a keystore. Its
purpose is to hold cryptographic keys and public key certificates. The store distinguishes
between three types of entries:

1. Private key entry,

2. symmetric key entry, and

3. trusted certificate entry.

Private keys are stored together with the corresponding certificate chain. Both private and
secret keys can be stored in encrypted form. Trusted entries are meant to hold certificates
belonging to entities you have authenticated, i.e. people or organizations you trust.

The keystore provides functionality to store the entries through the store(OutputStream
stream, char[] password) method. Note that the store doesn’t dictate a specific form
of storage, it is left to the developer to decide which medium to use. Access to the keystore
is protected by a password. Yet another password can optionally be applied to safeguard
private and secret keys in the store. Compromise of a private or secret key is critical for

CHAPTER 3. CRYPTOGRAPHY 37

the victim using PKI services, and secure storage of these items is therefore extremely
important.

3.4 Summary
The Public Key Infrastructure relies on cryptographic primitives to provide authenti-
cation, integrity, and confidentiality. Built-in features in the Java platform provide a
safe computing environment for developers. Central components include the access con-
troller, byte-code verifier, and class loader. In Java, a variety of engines provide
access to cryptographic services. The JAAS and JSSE APIs enable use of authoriza-
tion procedures and TLS, respectively. Access to certificates and keys is given through a
keystore, that can hold private key, symmetric key, and trusted certificate entries.

Armed with the theoretical background on PKI and an overview of the security mech-
anisms of the Java platform, we’re in position to weld the two together and bring security-
minded development to Internet banking.

Chapter 4

Towards More Secure Internet Banking

In this chapter, present Internet banking solutions are discussed with an emphasis on
security issues. Next, PKI is debated in the context of banking systems. Current initiatives
and challenges are presented. The chapter continues with an expansion of the application
code given in Chapter 2, where PKI is used to provide a framework for security services.
The main focus of the chapter is to familiarize readers with important basic operations
in a PKI. These include generation of keys, certificates and CRLs, and distribution of the
created material. An example of how to realize mutual authentication using the output
from the basic operations is also included. In closing, present PKI challenges are debated.

4.1 Security in Today’s Internet Banking Systems
Selmersenteret, a subdivision of Department of Informatics at University of Bergen, has
evaluated the security in some of the largest Norwegian Internet banks. In the resulting
report [14], the research group recommends that a number of banks should change their
procedures for customer login. The problem with current practices is the authentication
of clients through publicly available usernames, such as social security numbers, in com-
bination with short PINs. In particular, these systems seem to be very vulnerable to a
distributed DoS attack joined with a brute-force PIN cracking scheme.

4.1.1 Improving authentication procedures

One way to improve security against brute-force attacks in Internet banking is to introduce
longer PINs. Each new digit added reduces an attackers chance of success by a factor of
1/10. On the downside, users will have a harder time remembering longer PINs. A more
serious threat, independent of the length of the PIN, is that as the bank’s customer base
expands, the odds are changing in favor of the hacker. This is due to the nature of the
attack outlined in the before-mentioned report [14].

Another improvement, which also would help against DoS attacks aimed at individual
account holders, would be to conceal usernames of clients. One way to achieve this is to have

39

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 40

account holders pick their own credentials. However, customers tend to choose usernames
that are easy to memorize, which often translates to easy to guess for an adversary. A
variant of the scheme is to have the bank generate random login names. The approach
forces users to remember two pieces of information, which isn’t optimal as clients then
become more likely to write down and store their credentials. For a discussion on choosing
good passwords, see “Password Memorability and Security: Empirical Results” [3].

4.1.2 The banking security paradigm

Norwegian banks’ approach to security is that of total secrecy. No breaches or attempted
attacks against their systems are reported to customers. In fact, clients are told that their
financial institution’s security system is infallible. In “Why Cryptosystems Fail” [2], Ross
Anderson describes several cases of poorly designed and implemented security solutions in
British banks. To assume that the problems identified in Anderson’s article are limited to
the English banking industry would be at best naive. The study conducted by researchers
at Selmersenteret mentioned above suggests the contrary.

A shift of paradigm seems to be underway in the banking industry [2]. Traditionally,
services have been developed in a military fashion, minimizing communication and learning
even between banks, the result being that successful attacks against one system could be
conducted with the same outcome at a later time against a different institution. In 1993,
several trends indicated an upcoming fusion of security and software engineering [2]. Total
secrecy would be replaced by an iterative development process with input from other
financial institutions and the public, ultimately leading to the production of more robust
systems.

Modern cryptographers believe that “there is no security through obscurity.” The his-
tory of the discipline repeatedly shows how secret systems have been broken due to un-
known vulnerabilities in the design. This goes all the way back to the earliest substitution
ciphers that were easily broken by exploiting the relative frequency of letters. New cryp-
tographic protocols are introduced with a detailed description of their inner workings,
promoting public review and analysis. The issuance of new standards is carried out by
organizations such as the National Institute of Standards and Technology (NIST) and the
Internet Engineering Task Force (IETF).

4.1.3 BankID

The Norwegian banking industry is currently working on a PKI project named BankID [4].
Its goal is to deliver authentication and digital signature services to bank customers. As of
March 2005, the only publicly available technical information on the project is a 38 page
long document on the system’s policy for personal certificates [38]. In the introduction it
is explicitly stated that descriptions of security and technical details are restricted. Later
in the text, readers are informed that permission to read further documentation can be
given on a “need-to-know” basis. It turns out that individuals can get more information

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 41

by signing a non-disclosure agreement, making them legally incapable of reporting their
findings.

While experts in the crypto community insist that developers publish their security
protocols, the BankID team has chosen not to involve independent security researchers in
the process. This is alarming due to a number of reasons:

• According to research conducted by Ross Anderson [2], most failures in cryptosystems
are caused by management and implementation errors. The introduction of software
engineering processes similar to those used in the design of safety critical systems
can increase learning between projects and result in more robust applications.

• Systems designed for the Internet leak information. Hackers can often gather insight
about web applications by using the software in ways not intended by the system
designers. Most likely, attackers learn less about the application from a public review
than others, as they would get a great deal of this information through various
information retrieval techniques anyway.

• BankID aims to support non-repudiation. This is a complex and difficult service to
provide. In order for it to function properly, you would need a secure time server and
a secure data storage facility approved by all members of the PKI. Non-repudiation
can’t be handled in software alone, a human presence is needed in solving disputes. At
the very least, the BankID team must inform its users on how secure time stamping
is achieved, how information is stored securely, and clarify who that is to decide the
outcome of future disagreements.

• A central part of any PKI is trust. Key components in the infrastructure must be
recognized by all members of the PKI. BankID does not include an explicit trust
model.

• In an interview with Dagbladet [8], the coordinator of BankID is quoted saying
that BankID is introduced to offer more services, and is not intended to strengthen
the security of current Internet banking solutions. A PKI is primarily a security
infrastructure, that when employed correctly can be used to deliver a wide range of
services to its members. The security foundation has proved to be very difficult and
complex to implement, some common pitfalls are pointed out through case studies in
“Planning for PKI” [15]. BankID’s service-oriented approach could very well end up
weakening Internet banking security, through sacrificing security to user friendliness.

4.2 Shortcomings in the Initial Internet Banking Scheme
The code developed in Section 2.3.2 provides a communication framework which can be
used for Internet banking. A specialized protocol was designed to show how users can
supposedly authenticate themselves to the bank. By itself this scheme fails to deliver the

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 42

primary security services. Data in transit from an end user to the bank, can easily be read,
altered, or intercepted by anyone controlling an intermediate node in the network.

This is also a recognized fact in the banking community. Their solution is to use the SSL
protocol with server-side authentication. Typically, the bank purchases a certificate from
Verisign,1 that it uses to authenticate their web-site in subsequent sessions with customers.
The underlying assumption is that everyone should trust Verisign, since the company is
a large commercial provider of certificates. It should be noted that Skandiabanken has
implemented a solution that includes client certificates. The problem with their system is
the distribution of these certificates. Users get these through weak client authentication
procedures. So instead of strengthening security, Skandiabanken has included a new layer
of complexity.

In current Internet banking solutions it is assumed that only a legitimate user can
obtain the credentials asked for at login. This assumption isn’t correct, a fact established
in Section 4.1. Employing SSL with server-side authentication does not improve the weak
client authentication. An additional concern is the growing amount and sophistication of
computer viruses that are spread throughout the Internet. Malicious software can monitor
legitimate bank users’ computers, and use the acquired information to access customers’
accounts.

A step in the right direction would be to introduce strong client-side authentication
in today’s Internet banking systems. This solution, in combination with a tamper-proof
smartcard-reader setup, can effectively strengthen login procedures and thwart viral at-
tacks. The key here is realizing that sensitive operations should not be performed on a
device that is connected to the Internet. Private key computations should be carried out
on an offline device, and the results transferred to an on-line computer. A way to make this
transfer is to make the user manually input the computed values. Section 5.4.2 contains a
discussion of the suggested scenario. Union Bank of Switzerland (UBS) started testing a
system based on the above-mentioned approach in 2004. More details on the design can be
found in “Secure Internet Banking Authentication” [12]. Mutual authentication requires
each client to have their own certificate and corresponding private key, which introduces a
key and certificate management problem. An underlying infrastructure, such as the PKI,
can deal with the new administrative challenge.

4.3 PKI for Internet Banking
The following subsection describes a PKI implementation in Java. Important methods and
segments of code needed to realize a PKI are presented, and tips and hints are given to
developers of PKI software. The framework will later be used to offer mutual authentication
of clients and servers.

1The largest Norwegian Internet banks all use certificates from Verisign.

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 43

4.3.1 The scalable solution

Fig. 4.1 presents the textbook solution in designing a PKI. Different tasks are distributed
among components first introduced in Section 3.1.1 to facilitate analysis and management.
To become a member of the PKI you need to register with the RA. This process is ex-
emplified in Fig. 4.1 by the arrows from the customer and bank entities to the RA. The
information supplied is then verified and signed by the RA and sent to the CA, which in
turn produces the actual certificates. Status information on issued certificates is kept in
the archive. Any updates regarding this status are time stamped and sent for long-term
storage as indicated by the arrow from the CA to the archive in Fig. 4.1. Next, the certifi-
cates are signed by the CA and sent to a repository for further distribution. The signing
procedure is denoted KRsigner(Certentity), where KR is the private key belonging to the
signer and Cert is the certificate issued to entity. As noted in the figure, the repository
sends the final certificates to users. In addition, the repository can also be queried to
obtain certificates of other users in the PKI.

4.3.2 Java Implementation

4.3.2.1 Assumptions

The CA is an independent third party provider, meaning that neither the bank nor any
customers control the PKI architecture. In the eyes of the CA, the bank and customers
are treated as equal members of the infrastructure. This setup is somewhat controversial,
as current practice in Internet banking is to let the bank control the CA. A PKI with
an independent CA has the benefit of being useful in other settings than banking. All
members can use the infrastructure to communicate with each other securely. If the bank
is running the CA you should only use the PKI for services you trust the bank to perform.
An independent CA can be used to support services for society at large.

The question is whether or not it is realistic to assume the existence of a CA that
everyone can trust. Maybe governments can be trusted to issue electronic IDs to its
citizens and companies? You could argue that it would be just like issuing passports and
business enterprise organization numbers, a job governments around the world are trusted
to perform. As a cautionary note, keep in mind that a forged handwritten signature is
fundamentally different from a forged electronic signature in that the latter is identical to
a valid signature [52]. This is important to realize because someone in possession of your
private key will be able to do a virtually undetectable impersonation of you. Therefore, any
chosen CA should not be trusted with keys that are to be used for electronic signatures.
Also, there’s the question of cost. Someone has to finance the operation of the PKI. This
theme is debated in Section 4.4.

The discussion above leads us to the next assumption: users must generate their own
keys. Please see Section 5.4.1 for a discussion on management of keys and certificates.

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 44

Repository

RA

CAArchiveCustomer Bank
Time stamped
archive data

KR CA
(C

er
t cu

sto
m

er
)

KR CA
(C

RL)
KR

CA (Certbank)

KR
CA(CRL)

Custom
er credentials

Ba
nk

 c
re

de
nt

ia
ls

S
ig

ne
d

ce
rt

ifi
ca

te
 in

fo

K
R

C
A (C

ertcustom
er)

K
R

C
A (C

ertbank)

K
R

C
A (C

R
L)

Figure 4.1: PKI architecture

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 45

4.3.2.2 Configuration details

In the following, a strict hierarchy of CA’s will be used as the underlying trust model.
In fact, the PKI contains only one CA, given by the DN: {CN=Certification Authority,
OU=NoWires, O=UiB, L=Bergen, ST=Hordaland, C=NO}. All members of the PKI
trust this single authority, and will only accept certificates issued by that entity.

The responsibilities of the repository and the registration authority will be fulfilled by
the CA. The size of the PKI we’re about to implement is so small that there’s no reason to
distribute the workload to more than one component. The archive will not be considered,
as it is not an essential part in providing the primary security services. The operations
that will be addressed are

• Key generation,

• X509 certificate generation,

• CRL generation,

• distribution of certificates and CRLs, and

• mutual authentication between members of the PKI.

These services are built on top of the communication framework presented in Chapter 2.
A complete listing of the added source code is given on the author’s web site [7]. The
code is meant to run under a security manager, enabled on the command-line at startup
by including the option -Djava.security.manager.

4.3.2.3 The Legion of the Bouncy Castle

The current version of Java, J2SE 5.0, does not support generation of X509 certificates
and CRLs. They can both be instantiated from a data source, but cannot be created from
scratch. The Legion of the Bouncy Castle [54] has created a lightweight crypto API that
enables generation of certificates and CRLs. The software package can be used, copied,
and modified free of charge. On the downside, it is extremely poorly documented. This
basically renders the code useless in the development of secure systems. If it were to be used
in such a setting, one would have to put time and effort into examining and documenting
Bouncy Castle’s source code, which can be downloaded from their site. Currently, the API
consists of about 800 Java classes. Turning the whole package into production quality code
is a very time consuming task, but the Bouncy Castle API can be used as a reference in
developing your own crypto libraries. The makings of such a library falls outside the scope
of this thesis, instead we’ll use Bouncy Castle’s APIs as needed. It should be stressed that
this is highly discouraged in a business context. Usage of the Bouncy Castle API will be
marked explicitly in code segments and pointed out in the text.

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 46

4.3.2.4 Key generation

The first step towards becoming a member of the PKI is to register with the CA. In addition
to proving your identity, one must supply a public key to be included in the certificate.
The applicant must create a keypair prior to the registration process. You should not trust
somebody else to generate keys for you, as it is of utmost importance that nobody else
learns your private key. Failure to do so can potentially result in others misusing your
credentials and privileges in the PKI.

Java provides two ways to generate keys:

Keytool, a command-line utility distributed with the JDK [32]. Primarily designed to
ease key and certificate management.

Programmatically, using the java.security.KeyPairGenerator class.

Example key generation using keytool :

keytool -genkey -alias alice -keystore alice -keyalg rsa

Enter keystore password: o5BIwt

What is your first and last name? [Unknown]: Alice Johnson
What is the name of your organizational unit? [Unknown]: N/A
What is the name of your organization? [Unknown]: N/A
What is the name of your City or Locality? [Unknown]: Wonderland
What is the name of your State or Province? [Unknown]: IL
What is the two-letter country code for this unit? [Unknown]: WO

Is CN=Alice Johnson, OU=N/A, O=N/A, L=Wonderland, ST=IL, C=WO \
correct? [no]: yes

Enter key password for <alice> (RETURN if same as keystore \
password):

The first line starts the program in key generation mode, as indicated by the option
-genkey. For an explanation of keytool parameters, please consult the manual [32]. The
user is then prompted to select a password for the newly generated keystore. Next, keytool
collects the necessary information to construct a DN. The last step is to set a password for
the private key, meaning that the security of the key relies on two user-supplied passwords.
They consist of at least 6 characters. The designers of keytool recognize the difficulty of
remembering 2 passwords, and therefore suggest that you use the same password both
for the keystore and the private key. It should be noted that 6 alphanumeric characters
can be brute-forced in 236computations, meaning that a longer password is desirable. In
an environment where multiple users share the same keystore, the private keys should be
protected by different passwords.

Key generation with the java.security.KeyPairGenerator class:

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 47

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
kpg.initialize(1024, SecureRandom.getInstance("sha1prng"));
KeyPair kp = kpg.generateKeyPair();

PublicKey pubKey = kp.getPublic();
PrivateKey privKey = kp.getPrivate();

First, the key generation algorithm is specified through the static getInstance(String
algorithm) method of the java.security.KeyPairGenerator. Next, the newly gener-
ated object is initialized with a key size and source of randomness. The key pair is generated
by a call to the generateKeyPair() method. After completing this step, the programmer
can extract the individual keys by calls to the getPublic() and getPrivate() methods
of the java.security.KeyPair class.

4.3.2.5 X509 certificate generation

Upon confirming the identity of the applicant and receiving the corresponding public key,
the CA can issue a new certificate. X509 version 3 certificates can be created using the
X509V3CertificateGenerator class provided by Bouncy Castle. The following code de-
scribes a method to generate certificates:

public X509Certificate createCertificate (X509Name DN,
PublicKey publicKey, PrivateKey privateKey,
BigInteger serial) {

X509Certificate cert = null;

// Bouncy Castle class
X509V3CertificateGenerator certGen = new

X509V3CertificateGenerator();

// Bouncy Castle class
certGen.setIssuerDN(new X509Name(

"CN=Certification Authority," +
"OU=NoWires, O=UiB, L=Bergen, ST=Hordaland," +
"C=NO"));

// Expires in approx. 10 years
Calendar cal = Calendar.getInstance();
cal.set(2015, 6, 30);
certGen.setNotAfter(cal.getTime());
certGen.setNotBefore(new Date());

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 48

certGen.setPublicKey(publicKey);
certGen.setSerialNumber(serial);
certGen.setSignatureAlgorithm("sha1withrsa");
certGen.setSubjectDN(DN);

cert = certGen.generateX509Certificate(
privateKey, SecureRandom.getInstance("sha1prng"));

return cert;
}

Prior to instantiation of the certificate, a number of fields have to be set in different
set methods. The programmer specifies a DN for the issuer, time-window for certifi-
cate validity, the subject’s public key, a unique serial number, the key signature algo-
rithm, and the DN of the certificate owner. The two DN strings are constructed by using
Bouncy Castle’s X509Name class. A call to the generateX509Certificate(PrivateKey
key, SecureRandom random) method of the X509V3CertificateGenerator creates the
actual certificate. The private key used belongs to the CA issuing the certificate, and
creates a digital signature protecting the integrity of the certificate.

4.3.2.6 CRL generation

The CA must also create CRLs, which can be accomplished through Bouncy Castle’s
X509V2CRLGenerator class. Initially, the CA creates an empty CRL:

// Bouncy Castle class
X509V2CRLGenerator crlGen = new X509V2CRLGenerator();

// Bouncy Castle class
crlGen.setIssuerDN(new X509Name(

"CN=Certification Authority," +
"OU=NoWires, O=UiB, L=Bergen, ST=Hordaland, C=NO"));

crlGen.setThisUpdate(new Date());
crlGen.setSignatureAlgorithm("sha1withrsa");

X509CRL crl = crlGen.generateX509CRL(CertificationAuthority.privKey);

Before producing the list, the issuer DN, the current date, and the signature algorithm fields
are set. The CA’s private key, indicated in the code by the class variable Certification \
Authority.privKey, is used to sign the CRL.

Revoking a certificate involves creating a new list. The contents of the current revoca-
tion list must be copied onto the new CRL, along with the new entry. The following method
enables revocation, where the current CRL is assumed to be contained in a class-variable
named crl:

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 49

private void revokeCertificate (BigInteger serial) {
// Retrieve the current list and add new entry
Iterator revokedCerts = crl.getRevokedCertificates().iterator();

// Bouncy Castle class
X509V2CRLGenerator gen = new X509V2CRLGenerator();
gen.setIssuerDN(CertificationAuthority.CA);

while(revokedCerts.hasNext()) {
BigInteger revokedSerial = ((X509Certificate)
revokedCerts.next()).getSerialNumber();
gen.addCRLEntry(revokedSerial,
crl.getRevokedCertificate(revokedSerial).getRevocationDate(), 0);

}
˜

gen.addCRLEntry(serial, new Date(), 0);

// Replace current revocation list with the newly generated
crl = gen.generateX509CRL(CertificationAuthority.privKey);

}

The certificates are distinguished through their unique serial number within the CA. In
the first part of the method, the current CRL is retrieved and put into an iterator. The
while loop goes through the iterator, copying the old CRL into a new list. Next, the
new entry is added. The method addCRLEntry(BigInteger certificateSerialNumber,
Date revocationDate, int reason) takes as input the serial number of the certificate
to be revoked, the time of revocation, and a reason for the revocation. The last element is
ignored in the implementation, indicated in the code by passage of the 0 value. The new
CRL is then generated and signed with the CA’s private key.

Since adding an entry to the CRL means that you have to create a new list, the
complexity of the operation is O(n). Also, the signature operation can be time consuming.
In a PKI where the CRL is required to be as fresh and up-to-date as possible, and with a
large community of users, the workload in managing the CRL can become substantial.

4.3.2.7 Distribution of certificates and CRLs

A number of protocols can be used to successfully distribute certificates and CRLs to cus-
tomers. Examples include the X500 Directory, the Lightweight Directory Access Protocol
(LDAP), FTP, HTTP, and electronic mail. These have different strengths and weaknesses.
The selection of a specific protocol depends upon what you want to achieve. It’s important
to realize that in most cases you won’t need a trusted repository. The certificates and
CRLs are both signed with the private key of the issuing CA, meaning that the integrity of
the information is protected. No one can modify or insert valid certificates and/or CRLs

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 50

in the repository without access to the CA’s private key. An attacker can achieve denial
of service by modifying or inserting bogus data in the repository, but cannot make users
trust invalid information.

The implementation given on the author’s web site [7] loads certificates and CRLs from
the local filesystem. The code executes under close attention of a security manager, mean-
ing that any potentially sensitive operation must be authorized in a policy file. Lets assume
that Alice and Bob want to communicate. Alice has stored the following information:

• The CA’s certificate in keystore /PKI/CA.ks,

• Bob’s certificate in keystore /PKI/Bob.ks,

• a recent CRL in file /PKI/crl, and

• her own certificate in keystore /PKI/Alice.ks.

She would now need to specify this set of permissions:

permission java.io.FilePermission "/PKI/CA.ks", "read";
permission java.io.FilePermission "/PKI/Bob.ks", "read";
permission java.io.FilePermission "/PKI/crl", "read";
permission java.io.FilePermission "/PKI/Alice.ks", "read";
permission java.net.SocketPermission "*:1024-", "accept, connect,

listen, resolve";

The SocketPermission allows Alice to set up a communication link with Bob.

4.3.2.8 Mutual authentication between members of the PKI

In the following we assume that a bank customer and a bank server have obtained their
own certificates through a common CA, the CA’s public key, and a recent CRL. These
will all be loaded from file on the local system. Certificates are loaded from a file-based
keystore. The CA’s public key must be obtained in a secure fashion, e.g., meeting with the
CA. The grade of security depends on the services you require from the PKI. Some may
be comfortable with fetching the public key from the CA’s Internet site. When you have
acquired the key, certificates and CRLs can be gathered using one or more of the protocols
mentioned in Section 4.3.2.7.

We’re now in position to show how two members of the PKI can achieve mutual au-
thentication. The client-server implementation from Section 2.3.2 is still used, but the
application logic is replaced with the following protocol:

1. The customer sends its certificate to the bank server.

2. The bank tries to verify the customer certificate:

(a) If successful, it sends its certificate to the customer.

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 51

(b) If unsuccessful, it terminates the current session.

3. The customer tries to verify the bank certificate:

(a) If successful, the customer can initiate secure communication using public key
cryptography.

(b) If unsuccessful, the bank certificate is discarded and the connection closed.

The protocol is essentially symmetric: the server and client both have to do the same
operations. In Section 2.3.2, common features and methods for the client and server were
put into the abstract Communicator class. We continue this practice and therefore add
functionality to load CRLs from file, load certificates from a file-based keystore, and verify
certificates to Communicator.java.

Instantiating CRLs from file

CRLs can be instantiated by a CertificateFactory. Through its static getInstance(String
type) method, a factory supporting X509 CRLs can be created. Currently, X509 is the
only certificate type implemented by the pre-installed providers in Java. So if you need a
different type you’re on your own. The following code segment loads a CRL from file:

CertificateFactory cf = CertificateFactory.getInstance("X509");
FileInputStream fis = new FileInputStream(filename);
X509CRL crl = (X509CRL)cf.generateCRL(fis);

The variable filename identifies the file holding the CRL data. The key method to retrieve
the CRL is generateCRL(InputStream inStream) of the CertificateFactory class.

Loading certificates from a file-based keystore

A keystore is created through the static KeyStore.getInstace(String type) method.
The default type is JKS and can be used to store asymmetric keys and certificate entries.
If you need to store symmetric keys, specify JCEKS instead. Before you can extract data
from the store, you have to initialize it with location and password. This is done by invoking
the load(InputStream stream, char[] password) method of the KeyStore class. The
code below instantiates a certificate from a file-based keystore:

KeyStore ks = KeyStore.getInstance("JKS");
ks.load(new FileInputStream(keyStore), pass);
Certificate[] certs = ks.getCertificateChain(alias);
X509Certificate cert = (X509Certificate) certs[0];

The certificates are stored in a certificate chain, represented as a table of type Certificate,
in the store. The different chains are uniquely identified by aliases. In our PKI model,
where the users trust the same CA, we only have certificate chains of length 1. The
certificate is therefore acquired from the first (and only) index in the table.

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 52

Verification of certificates

The certificate presented by another user in the PKI must be verified before it can be used
as a basis for secure communication. Specifically, the user must inspect the time-window,
a recent CRL, the binding between the DN and the certificate, and verify the digital sig-
nature of the CRL and certificate. In the following, the bond between the DN and actual
certificate will not be considered. The bank will probably have a list containing a mapping
of DNs to certificates. The client is asssumed to obtain the bank’s certificate when opening
an Internet banking account. The repository can be queried to discover the identity creden-
tials belonging to a given certificate. The method checkCertificate(X509Certificate
certificate) implements the verification steps:

protected boolean checkCertificate(X509Certificate certificate) {
boolean validity = true;
try {

certificate.checkValidity();

X509CRL crl = loadCRL("/PKI/crl");

if(crl.isRevoked(certificate)) {
validity = false;

}
// Verify that the certificate and CRL both were signed by
// the CA
X509Certificate caCert = loadCertificate(

"/PKI/CA.ks",
"alias", "password".toCharArray());

PublicKey caPubKey = caCert.getPublicKey();
certificate.verify(caPubKey);
crl.verify(caPubKey);

} catch (Exception e) {
validity = false;
e.printStackTrace();

}
return validity;

}

The boolean flag validity indicates the current status of the verification process, where
true represents successful verification. To find out if the certificate is currently within the
time-window set when issued, the checkValidity() method is used. If outside the time-
interval, this method throws a CertificateExpiredException or a CertificateNotYet \
ValidException. In either case the validity flag is set to false. The catch clause in the
code above shows this technique, where the mother of all exception classes is used to catch
any exception thrown. The application code on the author’s web site [7] handles exceptions

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 53

individually, not presented above in order to spare the reader from boring technicalities.
Next, the CRL is loaded and inspected to determine whether or not the certificate has been
revoked. The last step in the verification procedure is to check the digital signature on the
certificate and the CRL. The verify(PublicKey key) method of the Certificate and
X509CRL classes check the integrity of the data. These methods throw exceptions, in the
same manner as with the X509CRL.isrevoked(X509Certificate certificate) method,
if they’re unable to verify the signature.

Upon successful completion of the protocol, both parties have acquired a valid certificate
of the entity identified in the subject field. However, neither of them can be sure that this
is the same entity as the one they got the certificate from. A challenge/response protocol
can establish such a binding.

Proving possession of the corresponding private key: challenge/response

Anyone can obtain a valid certificate from a repository and use it to initiate a session with
the bank. It’s also possible to masquerade as the bank by intercepting connections. To
solve this problem you can use a challenge/response protocol. This is a common basic
authentication technique, and a more thorough treatment can be found in Stallings [51] or
Mao [35]. The idea is to send a random challenge to the party with whom you are commu-
nicating, and have him digitally sign the challenge. This way you can prove possession of
the private key matching the given certificate. The challenge must be random to prevent
replay-attacks, i.e. someone replaying messages exchanged in previous communications.

After finishing the initial certificate exchange, the following challenge/response protocol
is run:

1. The customer sends a random 20-byte challenge to the server.

2. The bank generates its own 20-byte challenge, and signs the challenge issued by the
customer. Both values are sent to the customer.

3. The client attempts to verify the bank’s signature:

(a) If successful, it signs the server-challenge and sends it back to the server.

(b) If unsuccessful, it terminates the session.

4. The server tries to verify the client’s signature:

(a) If successful, both parties have proven possession of the alleged private key and
secure communication can start.

(b) If unsuccessful, the bank terminates the session.

Implementation details are given on the author’s web site [7]. Messages can now be ex-
changed securely through asymmetric encryption/decryption. If the client wants to send a
message to the server, he encrypts the plaintext with the bank’s public key. The resulting

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 54

ciphertext can only be decrypted with the corresponding private key, which is only known
to the bank. Asymmetric operations are time consuming, a faster approach is for the
parties to exchange a symmetric key. Designs of key agreement protocols can be found in
Stallings’ [51] textbook on cryptography.

4.4 PKI Challenges
A comprehensive PKI can provide a wide range of security services. In terms of new
opportunities, the service of non-repudiation is very interesting. Employed correctly, this
mechanism effectively binds a public key, which in turn is bound to a identity’s credentials,
to an action. The nature of the bond is such that the owner of the public key cannot later
deny involvement in the given action. Non-repudiation has the potential to enable legally
binding electronic signatures.

The attractiveness of non-repudiation is often used to market new PKIs. BankID
has been marketed with such capabilities. The service of non-repudiation is difficult to
implement. It necessitates a way to determine the order in which various events occurred.
I.e., given three actions A, B, and C, it must be possible to sort out the actions relative
order. One approach is to use time to order the elements. A working group under the IETF
tried to extend the Network Time Protocol (NTP) to provide authenticated distribution
of time [45]. The group’s goal was to lay the foundation for a new RFC. The work has now
been concluded, but their suggestions has not been turned into a standards-track document
as of April 2005. In addition to decide the order in which events happened, it must be
possible to prove that the archive was working properly at the time of conflict [30]. This
necessitates the definition of a set of standard protocols and procedures that the archive
should follow.

Java 5.0 does not contain APIs to design a comprehensive PKI. Basic features such
as the ability to generate certificates and CRLs are not addressed by the current version.
Third party vendors provide extensions that can fill in the missing pieces. In Section
4.3.2.3, Bouncy Castle’s crypto software was presented. Present PKI support in the mobile
segment is very limited. Currently, even generation of cryptographic keys is infeasible to
do in software on a smartphone. Java Specification Request (JSR) 177 [26] is intended to
bring better PKI capabilities to mobile clients.

The widespread use of PKI is not only being stalled by technological problems, political
and economical issues must also be resolved. In terms of politics, the notion of trust is
at the centre of attention. Who should be responsible for the deployment and day-to-day
operation of the infrastructure? If the PKI is to be used for a single service, such as
Internet banking, it can be perfectly reasonable to let the bank operate the infrastructure.
As soon as you intend to use the PKI for a wider range of services, you cannot allow a
provider of one service to operate the entire machinery. A bank should not be given the
possibility to access sensitive medical records. Financially, the biggest obstacle is to make
the PKI cost effective. Developing and maintaining a PKI is very expensive. The BankID
PKI has already cost more than NOK 100 million [60]. It should also be noted that this

CHAPTER 4. TOWARDS MORE SECURE INTERNET BANKING 55

figure only covers an initial investment, the PKI still hasn’t been set in operation. Once in
production, the infrastructure is estimated to cost NOK 20-30 million a year [60]. Several
solutions have been sketched to give the BankID constellation a return on their investment.
The alternatives include billing the end user for each digital signature, or for each CRL
download.

4.5 Summary
Current Internet banking solutions employ weak client authentication. New systems
are on the way, such as BankID, but they seem to emphasis service needs instead of
solving present security problems. Strong client authentication procedures can be
implemented in Java with the help of a PKI and third party libraries. A PKI can offer
increased security, but technological, political, and economical challenges must be overcome
to ensure widespread use.

In Chapter 5, the underlying infrastructure is used as a basis for the SSL protocol.

Chapter 5

Transport Security

The widely deployed SSL protocol offers authentication, integrity, and confidentiality ser-
vices. In order to work, SSL relies on an underlying infrastructure to provide server and
client certificates. In the following, the PKI developed in Chapter 4 is the foundation
in an implementation of the SSL protocol. Various techniques and information presented
throughout the thesis, including NIO, Java security fundamentals, the JSSE API, and basic
operations in a PKI, make up the core ingredients in the development of an SSL prototype.

The chapter starts with a look at a current deployment of SSL. Next, a quick glance
at the internal workings of the protocol is provided. The last part of the chapter describes
the prototype.

More information on SSL can be found in “SSL and TLS essentials—Securing the Web”
[56] and RFC 2246 [20]. For those interested in the protocol in a Java context, the “Java
Secure Sockets Extension (JSSE) Reference Guide” [28] is priceless.

5.1 Background
The application code in Section 4.3.2.8 shows how a PKI can be used to realize mutual
authentication between communicating peers. The purpose of the example was to illus-
trate how an underlying PKI can be used to offer security services. Once you have the
infrastructure in place, you can build your own protocols that best fit the needs of your
system. When it comes to the primary security services, people have been experimenting
with different approaches for quite a while. At present, developers rely heavily on SSL to
implement these services. With an industry-wide approval of a standard that has been
tested and updated by software makers since the mid-90s, there’s no need to create your
own protocol. In fact, designing security protocols is a difficult task. The common scenario
for new protocols is to go through several revisions before they are recognized as production
quality software. The history of SSL is no different, the protocol is now in version 3.1.

Almost all shopping on the Internet is done using SSL. The seller acquires a certificate
from an allegedly trustworthy CA, and uses it to set up a secure communication channel
with customers. The merchant does not care who you are, only that you can present a

57

CHAPTER 5. TRANSPORT SECURITY 58

valid credit card.1 The buyer has two main reasons to feel comfortable trading on-line:

1. She can authenticate the seller (=web server) by examining the certificate used to
create the SSL session. Currently, the domain name of the server is bound to a public
key by an assumingly trusted third party.

2. SSL sets up a secure communication channel preventing others from viewing or al-
tering the sensitive information you exchange.

While it may be satisfactory for both parties to trade goods using the above-mentioned
approach, some agreements cannot be effectively handled by the scheme. Any form of
contract signing or access to sensitive information such as medical records necessitates
authentication of the client. Also, today’s practice in on-line shopping, where possession
of credit card information enables anyone to bill the owner of the card is far from ideal.
A better solution would be to require a digital signature on each purchase. This way an
identity is bound to the transaction, making the settlement of any subsequent disputes
easier.

As an example of current usage of SSL among providers of Internet banking, we shall
look at Sparebanken Vest’s on-line banking system. From their main site [50], you can
navigate a link to a login site for Internet banking. This link sends you to the server
nettbank.edb.com, which communicates with clients over HTTPS. An SSL session is
established over HTTP, where server side authentication is enabled. As of April 3rd 2005,
the server uses the certificate depicted in Fig. 5.1. Current browser technology verifies the
certificate after completing 3 checks:

1. Current date must be within the validity time-interval of the certificate,

2. the DN of the certificate must match the hostname of the server, and

3. the issuing CA must be recognized by the browser so that the certificate’s signature
can be verified.

The certificate in Fig. 5.1 is within the time-interval, and was issued by Verisign.
Since this particular Verisign certificate is trusted by the most popular browsers, the
SSL connection is silently established. The client can now communicate securely with
nettbank.edb.com.

Lets assume that you trust Verisign. The certificate in Fig. 5.1 creates a binding
between the domain name nettbank.edb.com and a public key. There’s no reason for you
to trust the identity nettbank.edb.com, you should only be convinced that you’re presently
communicating with nettbank.edb.com. Should you give this server your username and
password? Put in a similar way: do you trust every server on the Internet that has
a certificate issued by Verisign with your login credentials? The obvious answer is no.

1Validity is determined based on credit card number, expiration date, and occasionally a security
number known as CV2.

CHAPTER 5. TRANSPORT SECURITY 59

Figure 5.1: EDB Business Partner ASA’s server certificate

Sparebanken Vest believes you should trust this certificate because it belongs to one of
their business associates: EDB Business Partner ASA.

An adversary can exploit the bank’s SSL practice by intercepting redirects to
nettbank.edb.com. Instead users can be referred to the attacker’s newly registered
nettbank.ed6.com site, holding a certificate from Verisign. A set of mock-up web pages
can be created to simulate the real customer login. After the potential victim has given
the adversary his username, password, and one-time PIN, the user can be sent to an error
page advising him to try another login later. Meanwhile the attacker can log into the user’s
account through the real login site.

5.2 The SSL Protocol
A full description of SSL is outside the scope of this thesis, but a few aspects of the protocol
must be understood to follow the code to be described in Section 5.3. Especially important
is the initial procedure of setting up a secure communication channel between the client
and server, better known as the Handshake Protocol. Depending on the mode of operation,
a predefined set of messages are exchanged in this phase. We want both server and client
authentication, which require the messages shown in Fig. 5.2 to be transmitted.

In short, the Handshake Protocol enables the parties to:

• Verify each others certificates,

• decide which algorithms to use for encryption and MAC, and

CHAPTER 5. TRANSPORT SECURITY 60

1. ClientHello

2. ServerHello

3. Certificate

4. CertificateRequest

5. ServerHelloDone

6. Certificate

7. ClientKeyExchange

8. CertificateVerify

9. ChangeCipherSpec

10. Finished

11. ChangeCipherSpec

12. Finished

CLIENT SERVER

T
im
e

Figure 5.2: SSL Handshake Protocol

CHAPTER 5. TRANSPORT SECURITY 61

• generate secret cryptographic keys.

Upon successful completion of the Handshake Protocol, the client and server can securely
exchange application data.

5.3 JSSE
SSL functionality in Java is provided through the JSSE API. It was first introduced in
version 1.4 of the Java platform, but has been drastically changed in the 5.0 release. The
problem with the initial JSSE implementation was its dependency on stream-oriented I/O,
i.e., SSL in Java was too closely coupled with the transport mechanism. The problem
caught everyone’s attention with the introduction of the NIO API, which uses a different
approach to I/O. Prior to the latest major release of Java it was almost impossible to get
JSSE to work with NIO. In Java 5.0 the problem was fixed by making JSSE independent
of the underlying transport. The price developers have to pay for this new flexibility is
increased complexity in the JSSE API.

5.3.1 SSL in Java 1.4

Originally, the idea was to make SSL sockets as easy to use as standard sockets. If you had
previously developed a communication model using the ordinary socket API, you should
then be able to make it secure by replacing the sockets. In practice, you also had to specify
the keystore from which to load your own key material and a truststore holding certificates
of the CAs you recognize. These are both loaded from keystores. The information in the
truststore is later used to verify certificates of others you decide to communicate with.

Assuming that the certificate of a CA you trust is located in the file /Keystores/CA.ks
and the password to the keystore is wHEh8eXp, the following code initializes the trust
material:

char[] caStorePass = "wHEh8eXp".toCharArray();
KeyStore caKs = KeyStore.getInstance("JKS");
caKs.load(new FileInputStream("/Keystores/CA.ks"), caStorePass);

TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
tmf.init(caKs);

Management and trust decisions are handled by TrustManagers. These can be created
by subclassing the TrustManager class or through a TrustManagerFactory. The example
above illustrates the last option. The trust material is coupled with the manager through
the init(Keystore ks) method of the factory. Initializing your own key material is done
in the same manner using the KeyManagerFactory class. The only difference is that you
need to supply the password protecting the private key in the keystore when you initialize
the manager.

CHAPTER 5. TRANSPORT SECURITY 62

The connection between the trust and key material, and the SSL protocol is established
in an SSLContext. Two lines of code create that bond:

SSLContext sslCon = SSLContext.getInstance("TLS");
sslCon.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);

You must specify which version of the SSL protocol to use in the getInstance(String
algorithm) method of the SSLContext class. Next, the context is initialized with key and
trust managers, and possibly a source of randomness. The latter is used when setting up
new SSL sessions with this SSLContext. In the code above, null is passed instead of an
instance of the SecureRandom class, causing the default implementation to be used. Sun’s
cryptographically strong pseudo random number generator [24] complies to FIPS 140-2
[10] and RFC 1750 [19].

After successfully initializing the SSLContext, you can get an SSLSocketFactory to cre-
ate SSL sockets by invoking the context’s getSocketFactory() and getServerSocket \
Factory() methods. The rest of the programming involved in setting up the SSL com-
munication channel mimic that of setting up a scheme not using SSL, and is left to the
reader.

In summary, developers didn’t need to know anything at all about the actual workings
of the SSL protocol to get it to work in Java 1.4. All the details were left up to providers to
implement. One of the providers distributed with releases of the Java platform implements
SSL: com.sun.net.ssl.internal.ssl.Provider. For more information on providers,
please see Section 3.3.1.

5.3.2 The New SSL API

With the release of Java SDK 5.0, Sun introduced a new approach to SSL. Key and
trust material must still be initialized with an SSLContext, as described in the previous
section. The most important new addition is the SSLEngine class which encapsulates a
state-machine for SSL sessions. Depending on the current state, an instance of this class
produces and handles SSL specific data. It is up to the developer to transport data to
and from the engine, making it transport-independent. Santos gives a brief introduction to
the new API in “Using SSL with Non-Blocking IO” [43]. A more thorough treatment can
be found in the JSSE reference guide [28]. If you’re planning to write your own scalable
application using SSL, sample code for a NIO-based HTTPS server is distributed with the
Java 5.0 JDK. The code can be found in JDK_HOME/sample/nio/server, where JDK_HOME
points to the installation directory of your JDK.

5.3.2.1 The Handshake Protocol

Assuming that both communicating parties have initialized an SSLContext, the next step
is to perform the Handshake Protocol. All the data necessary to execute the protocol is
generated by an SSLEngine. This class is retrieved from an SSLContext:

CHAPTER 5. TRANSPORT SECURITY 63

SSLEngine sslEngine = sslc.createSSLEngine();

In the setUseClientMode(Boolean) method you specify if you’re setting up the client or
server side of the Handshake Protocol. Client side authentication also needs to be explicitly
set:

sslEngine.setNeedClientAuth(true);

The workings of the SSLEngine is presented in Fig. 5.3. The data produced and consumed
by the engine is handled by 4 ByteBuffers. Data coming from the network is read into
the inNet buffer. The outNet buffer holds information that should be transported over
the communication channel. Application data coming from the network or ready to be
dispatched over the network is held by the inApp and outApp buffers, respectively. All
4 buffers are managed by the SSLEngine through the wrap and unwrap methods. An
invocation of wrap(outApp, outNet) causes the state machine to put handshake data,
corresponding to the current state of the protocol, and application data contained in the
outApp buffer into the outNet buffer. If we’re handshaking, there’s usually no need to
send any application data along with the handshake data. In the same manner, invoking
unwrap(inNet, inApp) will feed any handshake data to the SSLEngine and application
data is filled in the inApp buffer.

Each call to wrap and unwrap returns an SSLEngineResult. This class encapsulates
two indicators on SSLEngine status:

1. Overall SSLEngine status, represented by the nested class SSLEngineResult.Status.

2. Handshake status, represented by the nested class SSLEngineResult.HandshakeStatus.

The overall status can be any of the following:

• BUFFER_OVERFLOW, indicates that the SSLEngine was unable to perform an
operation, because the destination buffer is too small to hold the data produced.

• BUFFER_UNDERFLOW, happens when the engine receives a partial SSL message.
Necessitates reading of more data from the network.

• CLOSED, the SSLEngine is closed and can no longer be used.

• OK, the operation was completed successfully. The engine is now ready to process
more calls.

The handshake status can be

• FINISHED, indicates that the engine has just completed handshaking.

• NEED_TASK, one or more tasks have to be run before handshaking can proceed.
These tasks are retrieved by an invocation of the getDelegatedTasks() method of
the SSLEngine.

CHAPTER 5. TRANSPORT SECURITY 64

inNet

outNet

state
machine

WRAP

UNWRAP

SSLEngine

outApp

inApp

HS data

H
S

da
ta

Communication
channel

Figure 5.3: JSSE communication model

• NEED_WRAP, the engine needs to send handshake data over the network.

• NEED_UNWRAP, the engine is expecting handshake data from the network.

• NOT_HANDSHAKING, indicates that this instance of SSLEngine is not currently
handshaking. It does not state whether the handshake has been completed or not.

Looking again at Fig. 5.3, lets assume that you are implementing the server side of
the Handshake Protocol. According to Fig. 5.2, the first message from the client is
’ClientHello,’ which is read into the inNet buffer. At this time the handshake sta-
tus of the server side should be either NOT_HANDSHAKING or NEED_UNWRAP, which can be
resolved by invoking the getHandshakeStatus() method of the engine. In the first case,
you need to start the handshake by calling the beginHandshake() method, which updates
the handshake status to NEED_UNWRAP. Next, you need to unwrap:

SSLEngineResult result = sslEngine.unwrap(inNet, inApp);

Ideally, the call feeds the hello message from the client to the engine, and any application
data is sent to the inApp buffer. Both the overall and handshake status of the engine is
updated, and can be queried with these calls:

SSLEngineResult.Status overallStatus = result.getStatus();
SSLEngineResult.HandshakeStatus hsStatus= result.getHandshakeStatus();

If everything executed nicely, the overall status should now be OK and the handshake
status should be NEED_WRAP. These results indicate that the SSLEngine has received the
’ClientHello’ message and needs to send data to the client. This is achieved through a
wrap:

CHAPTER 5. TRANSPORT SECURITY 65

SSLEngineResult result = sslEngine.wrap(outApp, outNet);

Any data contained in the outApp buffer is copied to the outNet buffer, along with hand-
shake data from the SSLEngine. From Fig. 5.2 we can see that the handshake data con-
sists of the 4 messages: ’ServerHello,’ ’Certificate,’ ’Certificate Request,’ and
’ServerHelloDone.’ After invoking wrap, the developer must query the result to see
what to do next. In most cases the SSLEngine will now be waiting for data from the client,
meaning that the handshake status is NEED_UNWRAP.

The client side of the Handshake Protocol is implemented in the same way: testing on
the overall and handshake status of the client’s SSLEngine and creating appropriate code
to act on the various states.

5.3.2.2 Exchanging application data

After the handshake has been completed, application data can be exchanged in a secure
fashion. Secure meaning that the underlying SSL connection provides the primary security
services. Lets assume that a client and server have established an SSL session, and have
finished the Handshake Protocol. They are now ready to send and receive application data.
The following steps are required to send a message:

1. The data must be transferred to a ByteBuffer. E.g., the information you want to
send is contained in the String variable sensitiveIntel. The data can be put into
a buffer by invoking: ByteBuffer.wrap(sensitiveIntel.getBytes())

2. Feed the data to the previously initialized SSLEngine. E.g., assuming the result
of the call in step 1 was assigned to the ByteBuffer named outAppBB, you invoke
SSLEngineResult result = sslEngine.wrap(outAppBB, outNetBB).

3. The overall status of the engine must be consulted to see if further handling is re-
quired. E.g., in case of a BUFFER_OVERFLOW, the outNetBB buffer is too small to hold
the encrypted data, and must be resized.

4. The data contained in outNetBB must be sent over the network. E.g., by invoking
write(outNetBB) on a SocketChannel until the buffer is emptied.

Reading data from a communication peer involves reading from the network, and using
the SSLEngine to unwrap data to the inAppBB buffer:

SSLEngineResult result = sslEngine.unwrap(inNetBB, inAppBB)

If the overall status of the operation is OK, then data can be retrieved from inAppBB.

CHAPTER 5. TRANSPORT SECURITY 66

5.3.2.3 Pitfalls

Following the guidelines above should get you started in developing your own applications
using the new SSL API. However, there are a few pitfalls that are likely to cause headache
and frustration. The biggest obstacle is to get the unwrap method of the SSLEngine to
work properly. As illustrated in Fig. 5.3, any application data is placed in the inAppBB
ByteBuffer. The catch is that this buffer must be empty before performing the unwrap. If
it contains any data when an unwrap is attempted, the overall status of the engine will be
set to BUFFER_OVERFLOW, indicating that there is not enough space in the inAppBB buffer.
Normally, you would proceed by making the buffer larger. This will not solve the problem.
As long as inAppBB hasn’t been cleared, a call to unwrap(inNetBB, inAppBB) will update
the result variable to indicate BUFFER_OVERFLOW. The bottom line is that application
data must be drained from the inAppBB buffer after each unwrap that returns status OK.
After retrieving the information, the buffer must be cleared by invoking inAppBB.clear().
As it turns out, the problem was identified on Sun’s java-security forum [25] prior to the
JDK 5.0 release. It hasn’t been fixed yet, meaning that developers either must consume
application data on the fly or create an additional buffer to hold the intermediary data.

It is also important to realize that data from the network are often read in chunks,
meaning that many SSL packets can be read into the inNetBB buffer in one invocation of
read(inNetBB). Each call to unwrap(inNetBB, inAppBB) will only handle a single SSL
packet. Therefore, one read can necessitate many unwraps.

5.3.3 The Prototype

In March 2005, the author and Yngve Espelid2 started a project whose goal was to combine
SSL and NIO in order to make a security framework in Java. We have now completed a
prototype that successfully runs the SSL Handshake Protocol. Upon completion of the
protocol, users can securely exchange application data. It should be stressed that the
project is a work in progress. It can be followed from Espelid’s web site [44]. Currently, the
prototype successfully combines NIO, PKI and SSL to secure client-server communications.
The intersection of these technologies has the potential to strengthen for instance Internet
banking. Please note that the prototype encapsulates limited functionality and that it is
merely a start towards a fully functional framework. No effort has been made to deal with
abrupt termination of the SSL protocol, the code has not been tested, no benchmarking
against stream-oriented Java applications has been done, and no CRL checking is performed
during validation of certificates. These are all issues that should be dealt with later.

5.4 SSL and PKI
SSL is the single-most important protocol when it comes to securing e-commerce. Despite
its widespread use, SSL is not a complete security solution in itself. In fact, the protocol

2Yngve Espelid is a Ph.D. student in The NoWires Research Group.

CHAPTER 5. TRANSPORT SECURITY 67

needs an underlying PKI to provide authentication, integrity, and confidentiality services.
If you’re developing a PKI where other services are needed, other protocols must also be
implemented. The BankID team has decided to not use the SSL protocol at all. Their PKI
is implemented with proprietary protocols [60]. The result is that a BankID client can only
communicate with a BankID server. The BankID PKI is therefore a closed infrastructure,
limiting its application domain to banking services.

The relationship between a PKI and the SSL protocol is important to understand. A
security solution should not be trusted merely because it uses SSL. Trust must come from
the underlying PKI. Today’s software makers focus on crafting good-looking and easy-to-
use applications in order to capture market shares. Security issues are sacrificed to ensure
usability. In Sparebanken Vest’s Internet Banking system, important trust decisions are
automated in software. As described in Section 5.1, the browser automatically accepts
the server nettbank.edb.com’s certificate. The key point is that while SSL provides its
services for data in transit, the protocol cannot be used directly to deduce trust.

5.4.1 Side-effects of client side authentication

Requiring clients to authenticate to the server forces each client to manage keys and certifi-
cates. In particular, a client’s private key should not be disclosed to anyone. This means
that users must be educated in protecting sensitive information. In today’s Internet bank-
ing schemes, users are already accustomed to keeping information secret. Sparebanken
Vest have equipped their customers with passwords and cards with one-time PINs. Cur-
rent research, such as the paper mentioned in Section 4.2 [12], recommends that the private
key should be stored on a smart card. Through using a card reader, the private key can be
loaded into the memory of a computer. If the bank develops software to handle the process
of using the private key in establishing the SSL connection, users are not bothered with
any cryptographic details. So from a usability standpoint, a PKI solution doesn’t seem to
impose a greater burden on the end user.

Client side authentication can become a substantial threat to client privacy. Using
the techniques applied throughout the thesis to develop a large-scale PKI, will make the
infrastructure a powerful surveillance tool in some settings. Imagine a PKI operated by
a government. Assume that citizens are encouraged to use the infrastructure to perform
tasks they traditionally have accomplished through meetings in person with different gov-
ernmental departments. Examples include filing tax returns, ordering passports, change
home address, and getting a new drivers license. By collecting this information, the gov-
ernment can follow the inhabitants closely. Not only can it do so, the process can also
be automated in software. As more and more services are added, the government will get
more information and control over its citizens. To counter this effect, the PKI can offer
anonymous certificates, where there is no binding between the certificate and an identity.
Canada’s E-government initiative uses anonymous certificates indexed by a Meaningless
But Unique Number (MBUN) [30]. No association between the certificate and the owner’s
identity is made before enrolling with a particular department or service. During enroll-

CHAPTER 5. TRANSPORT SECURITY 68

ment, the MBUN is mapped to a Social Insurance Number.3 Individuals are free to re-use
the certificates or throw them away after each communication session. One-time use pro-
vides citizens with the highest degree of privacy, but results in more overhead as you would
have to register and enroll every time.

5.4.2 SSL on a compromised host

Some people argue that a user’s computing environment must be assumed to be com-
promised, meaning that the private key cannot be read into the memory of the host. In
“Pocket device for authentication and data integrity on Internet banking applications” [41],
the authors argue the need for an offline trusted computing device. The main idea is that
the private key should never be read into the memory of a device connected to the Internet.
An offline device with a keyboard and screen is suggested to replace the computer when it
comes to cryptographic operations involving the private key. When logging into the bank,
the user must input a challenge on the device, and then feed the computed result back
to the on-line computer. This approach will effectively thwart viral attacks, but at the
expense of degraded usability.

Using the technique above in conjunction with the SSL and NIO project, impacts the
CertificateVerify message in Fig. 5.2, which is a digital signature on a hash constructed
using the key information and all previously exchanged SSL messages. If an RSA certificate
is used, the length of the signed hash information is 36 bytes [56], which translates to way
too many characters for a user to input on the offline device and the computer. Such a
scheme is clearly not viable in an Internet banking setting. In the before-mentioned SSL
and NIO project [44], we are currently investigating other possible solutions.

5.5 Summary
Through the use of an underlying PKI, the SSL protocol can be used to provide the
primary security services for data in transit over a network. Current deployment
of SSL in e-commerce is mostly set up to authenticate servers to customers, but the
protocol can be configured to authenticate clients as well. Sparebanken Vest’s Internet
banking solution uses SSL to authenticate an outsourced server to clients, which reveals
a highly questionable trust model. The JSSE API was used in Section 5.3 to show
readers how to implement SSL in Java. The code enables mutual authentication, integrity,
and confidentiality of data.

3A Social Insurance Number is Canada’s equivalent to a US Social Security Number.

Chapter 6

Summary and Conclusions

6.1 Summary
A thick-client version of the client-server paradigm can be used to create a communication
framework for Internet banking. With the introduction of the NIO API, it is now possible
to implement highly scalable applications in Java. As a programming language, Java is a
good choice when it comes to the development of secure systems. The Java security model
encapsulates functionality to take proactive measures against malicious hackers. A number
of APIs bring advanced security mechanisms to the programming platform. In particular,
J2SE contains PKI capabilities.

Safeguarding information on the Web is a particularly challenging task due to the
availability requirements the software must meet. In the banking industry the production
of good-quality code is further hindered by the development paradigm, which prohibits
software makers to publish algorithms and protocols. The financial industry is clearly
practicing security through obscurity.

Current Internet banking systems employ weak security mechanisms. Clients are au-
thenticated based on credentials that can be easily generated by a powerful adversary.
Servers are authenticated to users through certificates, as an intermediary step in the
SSL protocol. In Sparebanken Vest’s system, the identity credentials in the certificate do
not appear to be the bank itself. Presently, an initiative by the name BankID aims to
bring a complete PKI solution to the Norwegian Internet banking industry. The project’s
outspoken goal is not to improve security, but to offer customers a wider range of services.

Through the use of core Java classes and the third party provider known as Bouncy
Castle, a PKI can be set up and managed in Java. In addition to showing readers how to
set up such an infrastructure, an example on how to enable mutual authentication between
PKI members was given in Section 4.3.2.8.

SSL is a well-suited protocol to run on top of a PKI to provide the primary security
services. Current usage of SSL in on-line banking is for servers to authenticate themselves
to clients, but SSL can also be configured to achieve mutual authentication. By combining
the NIO and JSSE libraries, a scalable and secure server can be implemented in Java.

69

CHAPTER 6. SUMMARY AND CONCLUSIONS 70

6.2 Academic Progression and Uniqueness
This section outlines the author’s academic development throughout the work with the
thesis. The discussion includes both theoretical and technological progress. Also, a brief
comment on the uniqueness of the work is given.

6.2.1 Progression

Considerable time went into understanding the inner workings of the Java security model.
While it is easy to give an elegant overview of the security principles in Java, which
usually entails a presentation of the sandbox analogy, a thorough treatment of the matter
is challenging. Sun’s choice to make every new version of Java compatible with earlier
releases has introduced redundancy and awkward workarounds into the security model.
An example is the existence of both an access controller and a security manager. The best
way to learn more about Java security is through programming.

A number of APIs have been investigated, ranging from client-server communication in
NIO to SSL specific code in JSSE. In addition, PKI capabilities in the java.security.cert
package and a handful of classes from Bouncy Castle were studied.

A great deal of effort has gone into researching PKI. The theoretical background given
in the thesis was intentionally cut to the bone in order to concentrate on the primary
security services. The translation from theory to practice is not trivial. The technology,
Java in this case, dictates the design of the PKI. This means that developers must know
about the programming language’s shortcomings prior to the initial design.

The last part of the project focused on SSL. Before J2SE 5.0, setting up an SSL commu-
nication scheme was a walk in the park. The expense coders had to pay in earlier releases
was lost flexibility. An example is that NIO and SSL could not be combined. Version
5.0 gave programmers more flexibility, but introduced a significant amount of complexity.
The JSSE API is now an advanced API, requiring a good understanding of both Java
programming and SSL. The complexity is further increased by the PKI component.

6.2.2 Contributions

The uniqueness of the project is the combination of client-server communication (NIO), a
security infrastructure (PKI), and a protocol using the security services provided by the
infrastructure (SSL). This thesis also introduces strong client side authentication in SSL
as a way to strengthen Internet banking. In terms of that technique, it is important to
understand the close relationship between the PKI and SSL. A well-functioning foundation
encompassing procedures to administer certificates is an absolute necessity for the scheme
to work. On top of an explanation of the theory behind the technology is a step-by-step
implementation of the concepts in Java.

CHAPTER 6. SUMMARY AND CONCLUSIONS 71

6.3 Conclusions
Today’s Norwegian on-line banking systems fail to provide basic security services. The
existence of very simple attacks, such as the one described in Selmersenteret’s report [14]
and the design-flaw identified in Section 5.1, indicate that security was not a high priority
for the parties responsible for developing these applications. The production of secure and
robust software is a challenging problem. The Internet banking industry could benefit
from disclosing details on protocols and algorithms used in their programs to independent
security researchers. Emphasis must also be shifted from service-minded development to a
security-minded approach.

PKI is a security infrastructure that appears suitable to strengthen current Internet
banking systems. It should be primarily viewed as a foundation that can provide various
security mechanisms to a system.

The application code developed in this thesis demonstrate how PKI can be used to
improve security in current Internet banking systems. The PKI architecture given in the
text is not locked to a specific scenario, and can easily be used for other purposes than
on-line banking. Care should be taken when deciding whether or not to use Java to
implement a PKI in a business setting. The limited support for PKI in core Java libraries
force programmers to rely on Bouncy Castle’s APIs or to implement the missing pieces
themselves. Both alternatives constitute a great deal of work.

6.4 Further Work
On top of the to-do list is a continuation of the NIO and SSL project. As of May 2005, no
extensive evaluation of the two technologies combined has been published. By refining the
prototype we can possibly create a competitive and more secure alternative to the PIN-SSL
solutions used in current Internet banking applications. It also remains to see how well the
system scales. Benchmarking the application on a multi-processor architecture will answer
that question. The test results can be compared to existing open-source and commercial
servers.

In terms of PKI, the services of authorization and non-repudiation are interesting.
Neither of them were treated in any depth in the thesis. Authorization is a necessity in
an on-line banking setting, and non-repudiation has potential to revolutionize the way we
sign information. Besides adding new services to the infrastructure, an expansion of end-
user functionality would be interesting. In a large-scale PKI with numerous providers of
functionality, privacy issues would become very important.

With the expected growth in the smartphone market, an approach to replace desk-
top clients with high end cell phones could be very rewarding. The limited computation
capabilities in current products, makes an offloading of responsibilities to the server side
very likely. PKI in combination with resource-constrained devices is a new research field,
both in terms of theory and technology. In particular, the ongoing project of The NoWires
Research Group [55] looks very interesting.

CHAPTER 6. SUMMARY AND CONCLUSIONS 72

A closer look at the BankID project would be of great interest. Due to the scarce
information available on the system, an extensive analysis cannot be performed at the
time being. Such an effort will have to wait until a full documentation of the system is
released, or more realistically: when the project is set into production.

Bibliography

[1] Carlisle Adams and Steve Lloyd, Understanding PKI—Concepts, Standards, and De-
ployment Considerations. Pearson Education, Inc, second edition 2003.

[2] Ross Anderson, “Why Cryptosystems Fail,” ACM 1st Conf.- Computer and Comm.
Security 1993.

[3] Ross Anderson, Alan Blackwell, Alashdair Grant, and Jeff Yan, “Password Memorabil-
ity and Security—Empirical Results,” IEEE Security and Privacy, September/October
2004.

[4] BankID.no. Retrieved January 21, 2005, from bankid.no. http://www.bankid.no/

[5] Building Secure Software—Best practices in software security. Retrieved May 16,
2005, from Cigital.
http://www.cigital.com/presentations/roots/bss05/index_files/frame.html

[6] Tin-Wo Cheung and Samuel T. Chanson, “Design and Implementation of a PKI-based
End-to-End Secure Infrastructure for Mobile E-Commerce”, World Wide Web Journal,
Volume 4, No. 4, pp. 235-254, 2001.

[7] Code. Retrieved April 15, 2005, from ii.uib.no.
http://www.ii.uib.no/∼larshn/static/code.html

[8] Dagbladet.no. Den digitale bankhverdagen. Retrieved March 6, 2005, from db.no.
http://www.dagbladet.no/dinside/2005/02/27/424662.html

[9] Encyclopædia Britannica. Cryptology. Retrieved May 3, 2004, from Encyclopædia
Britannica Online. http://www.search.eb.com/eb/article?eu=117762

[10] FIPS PUB 140-2 Security Requirements for Cryptographic Modules. Retrieved
November 1, 2004, from Computer Security Division, NIST.
http://csrc.nist.gov/cryptval/140-2.htm

[11] Stuart McClure, Joel Scambray, and George Kurtz, Hacking Exposed—Network Se-
curity Secrets & Solutions. McGraw-Hill, fourth edition 2003.

73

BIBLIOGRAPHY 74

[12] Alain Hiltgen, Thorsten Kramp, and Thomas Weigold, “Secure Internet Banking Au-
thentication,” submitted to IEEE Security & Privacy, Nov., 2004.

[13] Ron Hitchens, Java NIO. O’Reilly, first edition 2002.

[14] Kjell J. Hole, Vebjørn Moen, Thomas Tjøstheim, “Security in Norwegian Internet
Banks,” submitted to IEEE Security & Privacy, April, 2005.

[15] Russ Housley and Tim Polk, Planning for PKI—Best Practices Guide for Deploying
Public Key Infrastructure. John Wiley & Sons, Inc., 2001.

[16] How to Implement a Provider for the Java Cryptography Architecture. Retrieved
November 25, 2004, from sun.com.
http://java.sun.com/j2se/1.5.0/docs/guide/security/HowToImplAProvider.h
tml

[17] Internet RFC/FYI/STD/BCP Archives. RFC 768. Retrieved August 27, 2004, from
Internet FAQ Archives - online education.
http://www.faqs.org/rfcs/rfc768.html

[18] Internet RFC/FYI/STD/BCP Archives. RFC 793. Retrieved August 27, 2004, from
Internet FAQ Archives - online education.
http://www.faqs.org/rfcs/rfc793.html

[19] Internet RFC/FYI/STD/BCP Archives. RFC 1750. Retrieved April 28, 2005, from
Internet FAQ Archives - online education.
http://www.faqs.org/rfcs/rfc1750.html

[20] Internet RFC/FYI/STD/BCP Archives. RFC 2246. Retrieved March 24, 2005, from
Internet FAQ Archives - online education.
http://www.faqs.org/rfcs/rfc2246.html

[21] Internet RFC/FYI/STD/BCP Archives. RFC 3280. Retrieved November 9, 2004, from
Internet FAQ Archives - online education.
http://www.faqs.org/rfcs/rfc3280.html

[22] ISP Telenor cripples zombie PC network. Retrieved May 16, 2005, from Computer-
world. http://www.computerworld.com/printthis/2004/0,4814,95847,00.html

[23] Java 2 Microedition security. Retrieved August 30, 2004, from Java 2 microedition
security. http://www.kenti.org/nowires/

[24] Java 2 Platform, Standard Edition, v 1.5 API Specification. Retrieved October 18,
2004, from sun.com.
http://java.sun.com/j2se/1.5/docs/api/index.html

BIBLIOGRAPHY 75

[25] Java-Security@sun.com archives. Retrieved April 4, 2005, from archives.java.sun.com.
http://archives.java.sun.com/cgi-bin/wa?A2=ind0403&L=java-security&F=&S
=&P=4272

[26] Java Community Process—JCP Home. Retrieved April 12, 2005, from www.jcp.org.
http://www.jcp.org/en/jsr/detail?id=177

[27] Java Cryptography Extension. Retrieved November 29, 2004, from sun.com.
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html

[28] Java Secure Sockets Extension (JSSE)—Reference Guide. Retrieved November 28,
2004, from sun.com.
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.ht
ml

[29] Java Cryptography Architecture—API Specification & Reference. Retrieved Novem-
ber 23, 2004, from sun.com.
http://java.sun.com/j2se/1.5.0/docs/guide/security/CryptoSpec.html

[30] Mike Just and Danielle Rosmarin, “Meeting the Challenges of Canada’s Secure Deliv-
ery of E-Government Services,” in Pre-Proceedings to 4th Annual PKI R&D Work-
shop: Multiple Paths to Trust, Gaithersburg, MD, April 2005.

[31] Kazakhstan Hacker Sentenced to Four Years Prison for Breaking into Bloomberg Sys-
tems and Attempting Extortion. Retrieved May 16, 2005, from U.S. Department of
Justice. http://www.usdoj.gov/criminal/cybercrime/zezevSent.htm

[32] Keytool - Key and Certificate Management Tool. Retrieved February 3, 2005, from
sun.com. http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

[33] Pankaj Kumar, J2EE Security—For Servlets EJBs, and Web Services. Prentice Hall
PTR, first edition 2004.

[34] James F. Kurose and Keith Ross, Computer Networking—A Top-Down Approach
Featuring the Internet. Pearson Education, Inc., second edition 2003.

[35] Wenbo Mao, Modern Cryptography—Theory & Practice. Prentice Hall PTR, first edi-
tion 2004.

[36] Merriam-Webster OnLine. Client. Retrieved August 6, 2004, from Merriam Webster
OnLine. http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=client&
x=15&y=15

[37] Merriam-Webster OnLine. Server. Retrieved August 6, 2004, from Merriam Webster
OnLine.
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary&va=server&x=15&y=
15

BIBLIOGRAPHY 76

[38] Norsk BankID sertifikat policy for sertifikater til personkunder, v 1.0. Bankenes Stan-
dardiseringskontor, July 2004.

[39] Nowires.org. Hvor sikre er norske nettbanker? Retrieved January 19, 2005, from
Nowires.org. http://www.nowires.org/nettbanker/index.html

[40] Scott Oaks, Java Security. O’Reilly, second edition 2001.

[41] F. de la Puente, J.D. Sandoval, and P. Hernandez, “Pocket device for authentication
and data integrity on Internet banking applications,” in proceedings for IEEE 37th
annual 2003 International Carnahan Conference, 14-16 Oct. 2003, pps: 43 - 50.

[42] Nuno Santos. Building Highly Scalable Servers with Java NIO. Retrieved October 5,
2004, from onjava.com.
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html

[43] Nuno Santos. Using SSL with Non-Blocking IO. Retrieved March 10, 2005, from on-
java.com. http://www.onjava.com/pub/a/onjava/2004/11/03/ssl-nio.html

[44] Secure and scalable client-server communication using SSL and NIO. Retrieved April
15, 2005, from ii.uib.no. http://www.ii.uib.no/∼yngvee/?sslnio

[45] Secure Network Time Protocol (stime). Retrieved April 14, 2005, from the Internet En-
gineering Task Force. http://ietf.org/html.charters/OLD/stime-charter.html

[46] Share of individuals having ordered/bought goods or services for private use
over the Internet in the last three months. Retrieved May 16, 2005, from Eurostat.
http://epp.eurostat.cec.eu.int/portal/page?_pageid=1996,39140985&_dad=p
ortal&_schema=PORTAL&screen=detailref&language=en&product=EU_yearlies&r
oot=EU_yearlies/yearlies/I/I5/ecb15632

[47] Share of individuals with Internet access having encountered
security problems. Retrieved May 16, 2005, from Eurostat.
http://epp.eurostat.cec.eu.int/portal/page?_pageid=1996,39140985&_dad=p
ortal&_schema=PORTAL&screen=detailref&language=en&product=Yearlies_new_
industry&root=Yearlies_new_industry/D/D7/ecb16656

[48] Simon Singh, The Code Book—The Secret History of Codes and Code-Breaking. Dou-
bleday, first edition 1999.

[49] Ian Sommerville, Software Engineering. Addison-Wesley, sixth edition 2001.

[50] Sparebanken Vest. Retrieved April 3, 2005, from spv.no. http://spv.no

[51] William Stallings, Cryptography and Network Security—Principles and Practices.
Prentice Hall, third edition 2003.

BIBLIOGRAPHY 77

[52] Douglas R. Stinson, Cryptography—Theory and Practice. Chapman & Hall/CRC, sec-
ond edition 2002.

[53] Thawte. Retrieved November 19, 2004, from thawte.com. www.thawte.com

[54] The Legion of the Bouncy Castle. Retrieved January 23, 2005, from bouncycastle.org.
http://www.bouncycastle.org/index.html

[55] The SWAP Project. Retrieved May 26, 2005, from nowires.org.
http://www.nowires.org/SWAP/Intro.html

[56] Stephen Thomas. SSL and TLS Essentials—Securing the Web. John Wiley & Sons,
Inc., first edition 2000.

[57] User Authentication and Authorization in the Java Platform. Retrieved November 28,
2004, from sun.com. http://java.sun.com/security/jaas/doc/acsac.html

[58] Verisign. Retrieved November 19, 2004, from verisign.com. www.verisign.com

[59] World Internet Usage Statistics and Population Stats. Retrieved May 16, 2005, from
internetworldstats.com. http://www.internetworldstats.com/stats.htm

[60] Jon Ølnes, “Status for PKI i Norge ved utgangen av 2004,” IBM, January 2005.
www.norid.no/pki/pki-norge2004.pdf

[61] Andre Årnes, Mike Just, Svein J. Knappskog, Steve Lloyd, Henk Meijer, “Selecting Re-
vocation Solutions for PKI,” in Proceedings NORDSEC 2000 Fifth Nordic Workshop
on Secure IT Systems, Reykjavik, 2000.

