Lecture Set 3 - Functions

Required Reading – HK (Hanly/Koffman), Chapter 3 (initially 3.1-3.4)

Then 3.5 to the end

Study Carefully:

The Area and Circumference Case Study

Section 3.2 on Library Functions, especially Table 3.1

The Simple Diagrams Case Study

Section 3.4 on Functions without arguments

You may skip the Washer Weight Problem

Required Assignments – Lab 3: Displaying Stick Figures; HW 3
We begin with a problem.

CIS 1057 – Block Letters Program
Objectives: Using functions within a program structure:

Block Initials Display: Write a program to display 3 different letters in block character form (see example below for H L W). Choose relevant letters such as your initials or the first 3 letters of your first or second name etc. Each letter is generated by a “block” function. For example, function block_W is coded as:
void block_W()

{

printf("* *\n");

printf(" * * * \n");

printf(" * * * * \n");

printf(" * * \n");

printf("\n");

}

Now we talk about how to solve this problem.

How do we begin?

=> Draw a behavior diagram and data table.

Now that we have the behavior diagram and data table, we introduce a new idea to help us write this program. The new idea is the concept of writing user-defined functions.

To write and use our own functions, there are three things we must do.

· Declare the Function: We do this with a function prototype, which declares the function so that the compiler knows about it. This declaration provides a complete description of the function interface. Function prototypes usually precede main. They tell the compiler and us what a function will do, but not HOW it will do it.

· Write the Function Definition: The definition consists of a body and a header. The header is virtually a repeat of the prototype. The body contains the declaration and the executable statements for the function.

· Write the Call(s) to the Function: These calls cause the function to execute and return values (if there are any to be returned). While there is one prototype and one definition per function, there may be many calls, with different arguments.

Note that the functions you write are totally disconnected from each other except for

· the prototype (needed by the compiler)

· the function call (“connects” one function to another during execution)

Before we look at all the rules related to these three aspects of writing functions, we look at an example.

Area of a Rectangle Example

A. Declare a prototype
1. The prototype is placed in the code before function main and has a semi-colon at the end of the line.

The prototype specifies the function

-- return type

-- name

 -- number and type of input arguments (formal parameters)

The prototype is the interface (sometimes called the signature or footprint) of the function and also declares how the function must be used used. It tells the compiler all it needs to know to properly translate the calls to the function. (We will better understand why this is a problem when we write functions with arguments).

 2. General form of the function prototype

 // Function to do x, y, and z (whatever they may be) …

type fname (formal-argument-type-list);

where:

type is the function return type

fname is the function name

formal-argument-type-list

 is the type and, optionally, name of each input argument

 is the function prototype terminator

This looks like something we have seen before in our programs.

What is it?

It is the declaration of an identifier – in this case, of a function name.

Recall – NO IDENTIFIER MAY BE USED BEFORE IT IS DECLARED.

This does not define the function (that is step two). It only defines the function interface.

 Example 1:

 // Print out instructions for the user

void instruct();

The function return type is void which means that the function does NOT return a value.

The function name is instruct.

The function formal-argument-type-list is empty which means that the function has no arguments.

 Example 2:

// Calculate the area of a figure given …

double find_area (char, double, double);

The function return type is double which means that the function will return a double value

The function name is find_area

The function formal-argument-type-list consists of a char type in the first position, a double type in the second position and a double type in the third position which means that the function is expecting 3 input arguments with the first of type char, the second of type double and the third of type double

 Example 3:

// Calculate area of a rectangle given its length and width

// Returns: The area of a rectangle

int calc_rectangle_area

 (int, // IN: length of the rectangle

 int); // IN: width of the rectangle

The function return type is int which means that the function will return an int value

The function name is calc_rectangle_area
The function formal-argument-type-list consists of an int type in the first position

and an int type in the second position which means that the function is expecting 2

input arguments with the first of type int and the second of type int.
Note that even though the first argument represents length and the second argument is named "width", there is no connection between these names and the names used as the formal arguments in the function definition or the names of the actual arguments passed in the call to the function itself!

The function return type is int which means that the function will return an int value

The function name is calc_rectangle_area
The function formal-argument-type-list consists of an int type in the first position

and an int type in the second position which means that the function is expecting 2

input arguments with the first of type int and the second of type int.
Note that even though the first argument is named "length" and the second argument is named "width", there is no connection between these names and the names used as the formal arguments in the function definition or the names of the actual arguments passed in the call to the function itself!

Example 4: Computes the value pk where p is a double precision value and k is an int

// Calculate the value of a double raised to an int power

// Returns: a double precision value

double powerFunc

 (double, // IN: a double precision value

 int); // IN: the integer power

OR

// Calculate value of a double raised to an int power

// Returns: a double precision value

double powerFunc

 (double dpv, // IN: a double precision value

 int k); // IN: the integer power

Note that here, the order and type of the arguments make a HUGE difference.

What is the result of the call x = powerFunc (1.5, 2) ?

The result is 2.25 (1.5 squared)?

What is the result of the call x = powerFunc (2, 1.5) ?

First, we note that neither argument is of the correct type, so the result would not be what was expected, 21.5 or 2.828… (Note that 21x20.5 = 21.5 ; The square root of 2 is 1.414 …) Instead, the constant two will promoted to double (2.0) and the constant 1.5 would probably be truncated to the integer 1. It is also possible that the use of 1.5 here where a type int argument was specified in the prototype could cause a compiler error.

How would you know what result would be produced by the above statement?

B. Define the function body

The second thing we must do in writing our own functions is define function implementation. The implementation consists of a header and a body.

1.
The function body is placed in the code after the end of the main function and uses curly braces { } to indicate the beginning and ending of the function body (Note that there is NO semi-colon at the end of the function body!)

2.
The function body specifies the function return type, name and number and type of input arguments (formal parameters) and contains the statements that will be executed when the function is called or used

 3.
General form of the function body

 // This is what the function does …

type fname (formal-argument-type-list)

 {

 executable-statements;

 return (return-value);

 }

where:

type is the function return type

fname is the function name

formal-argument-type-list

 is the type and name (now required) of the input argument list

executable-statements;

 are the statements that will be executed when the function is called

return (return-value);

 is the value returned by the function to the calling program code if the

 function is NOT void

4. If the function type is void then the function must NOT return a value to the calling program, void functions do NOT have a return statement at the end of the function

5. If the function type is NOT void then the function MUST return a value to the calling program code, non-void functions MUST have a return statement at the end of the function

6. The return value MUST be of the same type as the function

 Example 1:

 // This silly function does nothing useful

 void instruct ()

 {

 printf ("This function will instruct you");

 }

· The function return type is void which means that the function does NOT return a value so there is no return statement

· The function name is instruct

· The function formal-argument-type-list is empty which means that the function does NOT accept input arguments

· The printf will be executed when the function is called

Example 2:

// Function to compute the area of a rectangle

// given the height and width

// Returns: An integer representing the area

int calc_rectangle_area

 (int height, // IN: height of the rectangle

 int width) // IN: width of the rectangle

 {

 int area; // contains the area of the rectangle

 area = length * width;

 return (area);

 }

· The function return type is int which means that the function will return an int value to the calling program code and MUST therefore have a return statement

· The function name is calc_rectangle_area

· The function formal-argument-type-list consists of an int type named height in the first position and an int type named width in the second position which means that the function expects 2 input arguments with the first of type int and the second of type int

· The function declares a variable named area, calculates the area using the height and width passed in as arguments and returns the calculated area to the calling program code

· Note that the first argument is named "height" and the second argument is named "width", these are local variables that are "visible" inside the function but no where else and can be used within the function

· When the function is called or used the local variables length and width will be allocated in the function memory segment of RAM and they will be initialized to the values that were passed into the function when the function was called

C. Call the function

The third thing we need to do is call the function whenever we need it. Note that there is always just one function declaration and one implementation (definition). But there can be multiple calls to a given function.

1.
The function call can be used in the program code itself the same way that any other valid C statement can be used

2. Functions can be called in main or any other function and can be called as often as necessary or not at all

3. Function calls that return a value can be used either with or without the a return value but a function that does not return a value can NOT be used to return a value

Example 1: The function calc_rectangle_area defined above can be used as:

 /* Not using the return value from the function since

 we're calling the function without assigning or using

 the return value in any way. The return value is ignored

 */

 calc_rectangle_area (10, 20);

 or

 /* Using the return value as an integer value substituted

 into the printf string for the %d

 */

 printf ("Area = %d\n", calc_rectangle_area (10, 20));

 Example 2: The function instruct defined above can be used as:

 /* Not using the return value from the function since

 we're calling the function without assigning or using

 the return value in any way, it's ignored

 */

 instruct ();

but NOT

 /* Wrong, instruct can NOT return a value so we can't use

 it in the code where a value is expected

 */

 printf ("Instruct = %d\n", instruct ());

 because instruct is defined as a void function which means that the function does not

 return a value

Analyzing the “flow of execution” when functions are called …

 Example 1: Consider the following lines of code

#include <stdio.h>

/* Function prototypes */

// Draw a square

void draw_square();

// Draw a circle

void draw_circle();

// Draw a triangle

void draw_triangle();

int main()

{

 draw_circle(); // Draw a circle

 draw_triangle(); // Draw a triangle

 draw_square(); // Draw a square

 return (0);

 }

/* Function definitions */

/* Note that the order in which the function

 definitions appear is not important

*/

// Draws a square

void draw_square()

{

 printf("*******\n");

 printf("* *\n");

 printf("* *\n");

 printf("* *\n");

 printf("*******\n");

} // end draw_square

// Draws a triangle

void draw_triangle()

{

 printf(" * \n");

 printf(" * * \n");

 printf(" * * \n");

 printf("* *\n");

 printf("*******\n");

} // end draw_triangle

// Draws a circle

void draw_circle()

{

 printf(" *** \n");

 printf(" * * \n");

 printf("* *\n");

 printf(" * * \n");

 printf(" *** \n");

} // end draw_circle

 Execute the line of the main function beginning with the line

draw_circle();

 Transfer control to the draw_circle() function

 Execute the line of draw_circle - printf(" *** \n");

 Execute the line of draw_circle - printf(" * * \n");
 Execute the line of draw_circle - printf("* *\n");
 Execute the line of draw_circle - printf(" * * \n");

 Execute the line of draw_circle - printf(" *** \n");

 Transfer control back to the main function after draw_circle()

 Execute the main function line

draw_triangle();

 Transfer control to the draw_triangle() function

 Execute the line of draw_triangle - printf(" * \n");
 Execute the line of draw_triangle - printf(" * * \n");

 Execute the line of draw_triangle - printf(" * * \n");
 Execute the line of draw_triangle - printf("* *\n");

 Execute the line of draw_triangle - printf("*******\n");

 Transfer control back to the main function after draw_triangle()

 Execute the main function line - draw_square();
 Transfer control to the draw_square() function

 Execute the line of draw_square - printf("*******\n");
 Execute the line of draw_square - printf("* *\n");

 Execute the line of draw_square - printf("* *\n");

 Execute the line of draw_square - printf("* *\n");

 Execute the line of draw_square - printf("*******\n");

 Transfer control back to the main function after draw_square()

 Execute the main function line –

 return (0);

 End of program, transfer control back to the operating system

 Example 2: (Review of the area of a rectangle program)
 Example 3: Study the sequence of execution of a program to find the square root

 of a double precision value.

 2) Flow of execution for the program above

 Execute the line of the main function - printf ("Enter the length > ");

 Execute the line of the main function - scanf ("%d", &length);

 Execute the line of the main function - printf ("Enter the width > ");

 Execute the line of the main function - scanf ("%d", &width);

 Execute the line of the main function - area = calc_rectangle_area (length, width);

 Transfer control to the calc_rectangle_area function

 Allocate the function argument variables l and w (calc_rectangle_area

 function address space) and initialize them to the values that were "passed in"

 Allocate the local variable area (calc_rectangle_area function address space)

 Execute the line of calc_rectangle_area function - area = l * w;

 Execute the line of the main function - return (area);

 Transfer control back to the main function after the call to

 calc_rectangle_area() returning the value of the local variable area

 (calc_rectangle_area function address space) to the caller

 Assign the value returned from the call to calc_rectangle_area to the local

 variable area (main function address space)

 Execute the line of the main function - printf ("area = %d\n", area);
 Execute the line of the main function –

 printf ("calc_rectangle_area = %d\n",

 calc_rectangle_area (length, width));

 Transfer control to the calc_rectangle_area function

 Allocate the function argument variables l and w (calc_rectangle_area

 function address space) and initialize them to the values

 that were "passed in"

 Allocate the local variable area (calc_rectangle_area function address

 space)

 Execute the line of calc_rectangle_area function - area = l * w;

 Execute the line of the main function - return (area);

 Transfer control back to the main function after the call to

 calc_rectangle_area() returning the value of the local variable area

 (calc_rectangle_area function address space) to the caller

 Substitute the value returned from the call to calc_rectangle_area into the

 printf string and complete the printf

 Execute the line of the main function - return (0);

 End of program, transfer control back to the operating system

Complete Development of Program Using Functions with Input Arguments

Drawing male and female stick figures

Scope of identifiers

· The scope of an identifier determines where that identifier can be referred to in the program code

· Identifiers are variable or function names that are referred to in the program code.

 Example 1: Consider the following code.

 int global_function (int, double);

 int global_variable;

 int main ()

 {

 int local_variable;

 ...

 }

 Here, the identifiers (the function and variable names) main, global_function, global_variable

 and local_variable all have a specific and well-defined scope.

 We can understand that scope as follows:

 1.
Identifiers that are declared before the main function have a global scope and can be referred to anywhere in the program code

Normally, constants, macros, and functions are declared BEFORE the main function so that they have a "global" scope and are "visible" throughout the program code

2. Identifiers that are declared AFTER the main function have a "limited

 global" scope and can be referred to in any function code that occurs

 after the identifier is declared

3. Identifiers that are declared WITHIN a specific function have a "local"

 scope and are "visible" only within that specific function

 Function arguments are considered "local" to the function and are not

 "visible" outside that function

Review of the area of a rectangle program

The prototype or interface of a function tells a user all that he or

she needs to know to be able to correctly use the function. In

other words, the interface describes to the outside world all it needs

to know to use the function. It describes the “connection” between

the function and its users (callers). If the interface is not right or

not understood, nothing else will work!

This is different from writing the function interface. We are

now defining the implementation of the function – all the details

about how it works.

 -- The function name is defined (declared) in the prototype!

 -- The function implementation is defined in its definition!

