1. SELECT name FROM instructor
WHERE
dept_name = "Biology";

ILcme (c dept name = “Biology” (instructor))

{t)3 s < instructor (tfname] = s[name] A s[dept_name] = “Biology”)}

{<n>|3i,d,s(<in,ds >€ instructor Ad =" Biology')}

2.
SELECT title FROM course
WHERE dept_name = "Comp. Sci." AND credits = 3;

Mg (@ dept_name = “Comp. Sci.” credits=3 (course))

{t| 3 5 € course (t[title] = s[title] A s[dept name] = “Comp. Sc1.” A credits = 3)}

{<t>]|3cdcr(<ctd cr >€ course Ad =" Comp. Sci.'A cr = 3)}

SELECT course.course_id, title

FROM course, takes

WHERE course.course_id = takes.course_id
AND takes.ID = 12345;

ncnm"ss.cmﬂ_id.mm‘se.t:’t!e(Jtakss.fﬂ = 12345 (COHTSB Ncuurss.courss_id=takes.c'awrse_id tﬂkﬂ.‘}))

{t | 3s € course(t[course_id] = s[course_id] A t[title] = s[title] A Ju € takes(u[course id] =
s[course_id] Au[ID] =12345)

{<ct>]3d,cr(<ct.d cr >€ course A 3i,ci,si, s, y,g(< i,cisis,y.g >
€ takes Al = 12362 Ac = ci))}

4.

SELECT SUM(course.credits)

FROM course, takes

WHERE course.course_id = takes.course_id
AND takes.ID = 17424,

We did not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus.
5.

SELECT takes.ID, SUM(course.credits)
FROM course, takes

WHERE course.c

ourse_id = takes.course_id

GROUP BY takes.ID

We did not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus.
6.

SELECT DISTINCT S.name
FROM takes T, course C, student S
WHERE C.dept_name = 'Comp. Sci.' and T.course_id = C.course_id and T.ID = S.ID

Hﬂame (Jcaurse.depr_na me="Comp. Sci.” A takes.course_id=course.course_id » takesID=student.ID (

(course X takes) x student))

{t|3s € student(t[name] = s[name] A 3u € takes(s[ID] = u[ID] A 3v
€ course(u[course_id] = v[course_id] A v[dept_name]
= "Comp. Sci. "))}

{(<n>Fdtu<indt>
€ student
A3id, c,si,s,y,g(< id, c,si,5,y, g >€ takes A i
=id
A 3ci, ti, dn, cr(< ci, ti,dn, cr >€ course Ac =ciAdn
= 'Comp.Sci.")))}

7.

select id from instructor except
(select teaches.id from teaches, instructor where teaches.id = instructor.id)

I1;p, (instructor) - [Ty, (teaches)

{t|3s € instructor(t[ID] = s[ID] A ¥u € teaches(s[ID] = u[ID]))}

{<1>|3n,d,s(< i,n,d,s >€ instructor A ¥id, ¢, si, se, y(< id, ¢, si, se,y >
€ teaches Al = id))}

Intermediate SQL queries

1. SELECT min(enrollment) as min_enrol, max(enrollment) as maxEnrol
FROM (SELECT count(*) as enrollment
FROM takes
group by course_id, sec_id, semester, year) as countBySection

We id not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus. That being said,
MAX and MIN can be computed with the standard calculus.

SELECT course_id, sec_id, semester, year, count(*) AS MaxEnrollment
FROM takes
GROUP BY course_id, sec_id, semester, year

HAVING count(*) = (SELECT MAX(count)
FROM (SELECT COUNT(ID) AS count
FROM
takes
GROUP BY course_id, sec_id, semester, year)
AS studentCount)

3.

SELECT * FROM course
WHERE course_id LIKE "CS-1%";

Advanced SQL queries

1. CREATE VIEW faculty AS (SELECT ID, name, dept_name FROM instructor);
Views can be expressed with the assignment operator.
faculty «— Il name.dept_name (instructor)

faculty < {t| 3 s € mstructor (t[ID] = s[ID] A t[name] = s[name] ~
t[dept name] = s[dept name])}

faculty « {<1, n, d>| <1, n, d, s = instructor }

2.
CREATE VIEW CSinstructors AS (SELECT *
FROM instructor
WHERE dept_name = "Comp. Sci.");

CSinstructors < @ dept_name = “Comp. Sci.” (instructor)

CSInstructor « {t|t € instructor A t[dept,gmel =' Comp.Sci'}

CSimstructors < {<i, n, d, 5| <1, n, d, s> = mstructor n d =*“Comp. Sc1.”)}

	Intermediate SQL queries
	Advanced SQL queries
	3.

