1. SELECT name FROM instructor

WHERE
dept_name = "Biology";

$$
\begin{aligned}
& \left.\Pi_{\text {name }}\left(\sigma_{\text {dept_name }}=\text { "Biology" (instructor }\right)\right) \\
& \{\mathrm{t} \mid \exists \mathrm{s} \in \text { instructor }(\mathrm{t}[\text { name }]=\mathrm{s}[\text { name }] \wedge \mathrm{s}[\text { dept_name }]=\text { "Biology") }) \\
& \left\{<\mathrm{n}>\mid \exists \mathrm{i}, \mathrm{~d}, \mathrm{~s}\left(<\mathrm{i}, \mathrm{n}, \mathrm{~d}, \mathrm{~s}>\in \text { instructor } \wedge \mathrm{d}=^{\prime} \text { Biology' }\right)\right\} \\
& \text { 2. } \\
& \text { SELECT title FROM course } \\
& \text { WHERE dept_name = "Comp. Sci." AND credits = 3; }
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{\text {title }}\left(\sigma_{\text {dept_name }}=" \text { Comp. Sci." } \wedge\right. \text { credits=3 } \\
& (\text { course })) \\
& \{\mathrm{t} \mid \exists \mathrm{s} \in \text { course }(\mathrm{t}[\text { title }]=\mathrm{s}[\text { title }] \wedge \mathrm{s}[\text { dept_name }]=\text { "Comp. Sci." } \wedge \text { credits }=3)\}
\end{aligned}
$$

$$
\left\{<\mathrm{t}>\mid \exists \mathrm{c}, \mathrm{~d}, \mathrm{cr}\left(<\mathrm{c}, \mathrm{t}, \mathrm{~d}, \mathrm{cr}>\in \text { course } \wedge \mathrm{d}=^{\prime} \text { Comp. Sci. }{ }^{\prime} \wedge \mathrm{cr}=3\right)\right\}
$$

3.
```
SELECT course.course_id, title
FROM course, takes
WHERE course.course_id = takes.course_id
AND takes.ID = 12345;
\Pi}\mp@subsup{\mathrm{ course.cours_id,course.title}}{}{(}\mp@subsup{\sigma}{\mathrm{ takes.ID = 12345 (course }\mp@subsup{\bowtie}{\mathrm{ course.course_id=takes.course_id}}{}\mathrm{ takes }))}{
```

$\{t \mid \exists s \in$ course $(t[$ course_id $]=s[$ course_id $] \wedge t[t i t l e]=s[t i t l e] \wedge \exists u \in$ takes $(u[$ course_id $]=$ $s[$ course_id $] \wedge u[I D]=12345)$

$$
\begin{gathered}
\{\langle\mathrm{c}, \mathrm{t}>| \exists \mathrm{d}, \mathrm{cr}(<\mathrm{c}, \mathrm{t}, \mathrm{~d}, \mathrm{cr}>\in \text { course } \wedge \exists \mathrm{i}, \mathrm{ci}, \mathrm{si}, \mathrm{~s}, \mathrm{y}, \mathrm{~g}(<\mathrm{i}, \mathrm{ci}, \mathrm{si}, \mathrm{~s}, \mathrm{y}, \mathrm{~g}> \\
\in \operatorname{takes} \wedge \mathrm{i}=12362 \wedge \mathrm{c}=\mathrm{ci}))\}
\end{gathered}
$$

4.

SELECT SUM(course.credits)
FROM course, takes
WHERE course.course_id = takes.course_id
AND takes.ID = 17424;

We did not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus.
5.

SELECT takes.ID, SUM(course.credits)
FROM course, takes
WHERE course.c
ourse_id = takes.course_id
GROUP BY takes.ID

We did not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus.
6.

SELECT DISTINCT S.name
FROM takes T, course C, student S
WHERE C.dept_name = 'Comp. Sci.' and T.course_id = C.course_id and T.ID = S.ID

$$
\begin{aligned}
& \Pi_{\text {name }}\left(\sigma_{\text {course.dept_name }}=\text { "Comp. }^{\text {Sci." }} \text { ^ } \wedge \text { takes.course_id=course.course_id } \wedge \text { takes.ID }=\text { student.ID }(\right. \\
& (\text { course } \times \text { takes }) \times \text { student }))
\end{aligned}
$$

$\{\mathrm{t} \mid \exists \mathrm{s} \in \operatorname{student}(\mathrm{t}[$ name $]=\mathrm{s}[$ name $] \wedge \exists \mathrm{u} \in \operatorname{takes}(\mathrm{s}[\mathrm{ID}]=\mathrm{u}[$ ID $] \wedge \exists \mathrm{v}$
E course(u[course_id] = v[course_id] $\wedge v\left[d e p t _n a m e\right]$
$=$ 'Comp. Sci. ')))\}

$$
\begin{aligned}
\{<\mathrm{n}>\mid \exists \mathrm{i}, \mathrm{~d}, \mathrm{t} & (<\mathrm{i}, \mathrm{n}, \mathrm{~d}, \mathrm{t}> \\
& \in \text { student } \\
& \wedge \exists \mathrm{jid}, \mathrm{c}, \mathrm{si}, \mathrm{~s}, \mathrm{y}, \mathrm{~g}(<\mathrm{id}, \mathrm{c}, \mathrm{si}, \mathrm{~s}, \mathrm{y}, \mathrm{~g}>\in \operatorname{takes} \wedge \mathrm{i} \\
& =\mathrm{id} \\
& \wedge \exists \mathrm{ci}, \mathrm{ti}, \mathrm{dn}, \mathrm{cr}(<\mathrm{ci}, \mathrm{ti}, \mathrm{dn}, \mathrm{cr}>\in \operatorname{course} \wedge \mathrm{c}=\mathrm{ci} \wedge \mathrm{dn} \\
& \left.\left.\left.\left.={ }^{\prime} \text { Comp. } \mathrm{Sci} .^{\prime}\right)\right)\right)\right\}
\end{aligned}
$$

7.

select id from instructor except
(select teaches.id from teaches, instructor where teaches.id = instructor.id)

$\Pi_{I D}$ (instructor) $-\Pi_{I D}$ (teaches)

$\{\mathrm{t} \mid \exists \mathrm{s} \in$ instructor(t[ID] $=\mathrm{s}[$ ID $] \wedge \forall \mathrm{u} \in$ teaches $(\mathrm{s}[$ ID $] \neq u[$ ID] $])\}$
$\{\langle\mathrm{i}\rangle \mid \exists \mathrm{n}, \mathrm{d}, \mathrm{s}(<\mathrm{i}, \mathrm{n}, \mathrm{d}, \mathrm{s}\rangle \in$ instructor $\wedge \forall \mathrm{id}, \mathrm{c}, \mathrm{si}, \mathrm{se}, \mathrm{y}(\langle\mathrm{id}, \mathrm{c}, \mathrm{si}, \mathrm{se}, \mathrm{y}\rangle$ \in teaches $\wedge i \neq i d)$)\}

Intermediate SQL queries

1. SELECT min(enrollment) as min_enrol, max(enrollment) as maxEnrol FROM (SELECT count(*) as enrollment FROM takes
group by course_id, sec_id, semester, year) as countBySection

We id not cover aggregate queries in RA, Tuple Calculus, and Domain Calculus. That being said, MAX and MIN can be computed with the standard calculus.
2.

SELECT course_id, sec_id, semester, year, count(*) AS MaxEnrollment FROM takes
GROUP BY course_id, sec_id, semester, year

HAVING count(*) ${ }^{*}$ (SELECT MAX(count)
FROM (SELECT COUNT(ID) AS count
FROM
takes
GROUP BY course_id, sec_id, semester, year)
AS studentCount)
3.

SELECT * FROM course
WHERE course_id LIKE "CS-1\%";

Advanced SQL queries

1. CREATE VIEW faculty AS (SELECT ID, name, dept_name FROM instructor);

Views can be expressed with the assignment operator.
faculty $\leftarrow \Pi_{\text {ID,name,dept_name }}$ (instructor)
faculty $\leftarrow\{\mathrm{t} \mid \exists \mathrm{s} \in$ instructor $(\mathrm{t}[\mathrm{ID}]=\mathrm{s}[$ ID $] \wedge \mathrm{t}[$ name $]=\mathrm{s}[$ name $] \wedge$ t[dept_name] = s[dept_name]) \}
faculty $\leftarrow\{<\mathrm{i}, \mathrm{n}, \mathrm{d}\rangle|<\mathrm{i}, \mathrm{n}, \mathrm{d}, \mathrm{s}\rangle \in$ instructor $\}$
2.

CREATE VIEW CSinstructors AS (SELECT *
FROM instructor
WHERE dept_name = "Comp. Sci.");

CSinstructors $\leftarrow \sigma_{\text {dept_name }}=$ "Comp. Sci." (instructor)

$$
\text { CSInstructor } \leftarrow\left\{t \mid t \in \text { instructor } \wedge t\left[\text { dept }_{\text {name }}\right]={ }^{\prime} \text { Comp.Sci' }\right\}
$$

CSinstructors $\leftarrow\{<i, n, d, s>|<i, n, d, s\rangle \in$ instructor $\wedge d=$ "Comp. Sci." $)\}$
3.

