Assignment 3 - solutions

Problem 1.

What is the total capacity of RAID 0 with 10 drives?
RAID 0 - non-redundant (full capacity of drives) = drive capacity * $10=1 \mathrm{~TB} * 10=10 \mathrm{~TB}$
What is the total capacity of RAID 5 with 10 drives?

RAID 5 - parity redundancy - uses 1 drive for parity so have 9 data drives = drive capacity * 9 = 1 TB * 9 $=9 \mathrm{~TB}$

How many blocks are needed for spanned and unspanned records, respectively?
Unspanned

$$
\left\lfloor\frac{\text { block size }}{\text { record size }}\right\rfloor=\left\lfloor\frac{4096}{2050}\right\rfloor==1 \text { record/block (unspanned) }
$$

Spanned

$$
\frac{\text { block size }}{\text { record size }}=\frac{4096}{2050}=1.99 \text { record/block (spanned) }
$$

What is the block (space) utilization in both cases?

Unspanned

$$
\text { utilization }=\text { used space/total space }=\frac{1 \text { record per block } * 2050 \text { bytes per record }}{4096 \text { bytes per block }}=0.5
$$

Spanned
utilization $=$ used space/total space $=\frac{1.99 \text { records per block } * 2050 \text { bytes per record }}{4096 \text { bytes per block }}=0.995$
Assume that the disk has a read bandwidth of $1 \mathrm{~GB} / \mathrm{sec}$. Suppose that data is stored sequentially. What is the time to read all records in the unspanned configuration?

Unspanned

$\#$ of blocks in unspanned $=\frac{\# \text { records }}{\# \text { records per block }}=\frac{100,000}{1 \text { record }}=100,000$ blocks.
Transfer time $=\frac{\# \text { blocks } * \text { size of a block }}{\text { tranfer } \text { bandwidth }}=\frac{100.000 * 4096}{1 G B / \text { sec }}=38 \mathrm{sec}$

Problem 2.

1. Bytes/track $=$ (bytes/ sector) \times (sectors/track) $=1024 \times 100=102400$ bytes $=100 \mathrm{~KB}$.
2. Bytes/surface $=($ bytes $/$ track $) \times($ tracks $/$ surface $)=100 \mathrm{~KB} \times 4000=400,000 \mathrm{~KB}$.
3. Bytes/disk $=$ (bytes/surface) \times (surfaces/disk) $=400,000 \times 10 \times 2=80,000,000 \mathrm{~KB}$.
4. 4000 , i.e., same as the number of tracks.
5. One complete rotation takes $1 / 7200$ in a minute $=1 / 7200 \times 60$ seconds ≈ 0.0083 seconds $=8.3 \mathrm{~ms}$. The average rotational delay is half of the rotation time, i.e., 4.15 ms .
6. A track has 100 KB . It takes about 8.3 ms to make a revolution. Hence, transfer rate is $100 \mathrm{~KB} / 8.3 \mathrm{~ms} \approx$ $12.05 \mathrm{~KB} / \mathrm{ms}$.

If you are asked to give the TOTAL transfer time then this is given by:
Total transfer time $=$ seek time + latency + transfer time $=10 \mathrm{~ms}+4.15 \mathrm{~ms}+12.05 \mathrm{~ms}=26.2 \mathrm{~ms}$

Problem 3.

Insert Tree:

Delete Tree:

Problem 3.
$T 1: R(X), T 2: R(X), T 1: W(X), T 2: W(X)$.
It is:

- serializable (the outcome is equal to the outcome of T1 \rightarrow T2)
- not conflict serializable
- not view serializable: it fails the second condition for either $\mathrm{T} 1 \rightarrow \mathrm{~T} 2$ or $\mathrm{T} 2 \rightarrow \mathrm{~T} 1$.

T1:W(X), T2:R(Y), T1:R(Y), T2:R(X).
It is:

- serializable
- conflict-serializable
- view-serializable

T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y).
It is:

- serializable
- not conflict-serializable
- view-serializable

T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y).
It is:

- serializable
- not conflict-serializable
- view-serializable

