Assignment 3

Problem 1.

What is the total capacity of RAID 0 with 10 drives?
RAID 0 - non-redundant (full capacity of drives) = drive capacity * $10=1 \mathrm{~TB}$ * $10=10 \mathrm{~TB}$
What is the total capacity of RAID 5 with 10 drives?
RAID 5 - parity redundancy - uses 1 drive for parity so have 9 data drives = drive capacity * $9=1 \mathrm{~TB}$ * 9 $=9 \mathrm{~TB}$

How many blocks are needed for spanned and unspanned records, respectively?
Unspanned

$$
\left\lfloor\frac{\text { block size }}{\text { record size }}\right\rfloor=\left\lfloor\frac{4096}{2050}\right\rfloor==1 \text { record/block (unspanned) }
$$

Spanned

$$
\frac{\text { block size }}{\text { record size }}=\frac{4096}{2050}=1.99 \text { record/block (spanned) }
$$

What is the block (space) utilization in both cases?
Unspanned
utilization $=$ used space/total space $=\frac{1 \text { record } \text { per block } * 2050 \text { bytes per record }}{4096 \text { bytes } \text { per } \text { block }}=0.5$
Spanned
utilization $=$ used space/total space $=\frac{1.99 \text { records per block } * 2050 \text { bytes per record }}{4096 \text { bytes } \text { per block }}=0.995$
Assume that the disk has a read bandwidth of $1 \mathrm{~GB} / \mathrm{sec}$. Suppose that data is stored sequentially. What is the time to read all records in the unspanned configuration?

Unspanned
$\#$ of blocks in unspanned $=\frac{\# \text { records }}{\# \text { records per block }}=\frac{100,000}{1 \text { record }}=100,000$ blocks.
Transfer time $=\frac{\# \text { blocks } * \text { size of a block }}{\text { tranfer bandwidth }}=\frac{100.000 * 4096}{1 G B / \mathrm{sec}}=38 \mathrm{sec}$

Problem 2

1. Bytes/track $=$ (bytes/ sector) \times (sectors/track) $=1024 \times 100=102400$ bytes $=100 \mathrm{~KB}$.
2. Bytes/surface $=($ bytes $/$ track $) \times($ tracks $/$ surface $)=100 \mathrm{~KB} \times 4000=400,000 \mathrm{~KB}$.
3. Bytes/disk $=($ bytes $/$ surface $) \times($ surfaces $/$ disk $)=400,000 \times 10 \times 2=80,000,000 \mathrm{~KB}$.
4. 4000 , i.e., same as the number of tracks.
5. One complete rotation takes $1 / 7200$ in a minute $=1 / 7200 \times 60$ seconds ≈ 0.0083 seconds $=8.3 \mathrm{~ms}$. The average rotational delay is half of the rotation time, i.e., 4.15 ms .
6. A track has 100 KB . It takes about 8.3 ms to make a revolution. Hence, transfer rate is $100 \mathrm{~KB} / 8.3 \mathrm{~ms} \approx$ $12.05 \mathrm{~KB} / \mathrm{ms}$.

If you are asked to give the TOTAL transfer time then this is given by:
Total transfer time $=$ seek time + latency + transfer time $=10 \mathrm{~ms}+4.15 \mathrm{~ms}+12.05 \mathrm{~ms}=26.2 \mathrm{~ms}$

Problem 3

Insert Tree:

Delete Tree:

Problem 4

1. $\mathrm{M}=1$

2.

76 will be inserted in bucket A2. We need to split the bucket. Since local is 4 and global is 3 we need to double the size of the directory. The new index is below.

3. 25 and 101 will both go into bucket B, 25 ends in 001 and 101 ends in 101 . We need to split the bucket after we insert 101. The directory does not double in size because local and global are equal to 3 .

