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Abstract—In this paper, we focus on the scheduling problem in
multichannel wireless networks, e.g., the downlink of a single cell
in fourth-generation (4G) OFDM-based cellular networks. Our
goal is to design practical scheduling policies that can achieve
provably good performance in terms of both throughput and delay,
at a low complexity. While a class of -complexity
hybrid scheduling policies is recently developed to guarantee both
rate-function delay optimality (in the many-channel many-user
asymptotic regime) and throughput optimality (in the general
non-asymptotic setting), their practical complexity is typically
high. To address this issue, we develop a simple greedy policy
called Delay-based Server-Side-Greedy (D-SSG) with a lower
complexity , and rigorously prove that D-SSG not only
achieves throughput optimality, but also guarantees near-optimal
asymptotic delay performance. Specifically, the rate-function of
the delay-violation probability attained by D-SSG for any fixed
integer delay threshold is no smaller than the maximum
achievable rate-function by any scheduling policy for threshold

. Thus, we are able to achieve a reduction in complexity (from
of the hybrid policies to ) with a minimal

drop in the delay performance. More importantly, in practice,
D-SSG generally has a substantially lower complexity than the
hybrid policies that typically have a large constant factor hidden
in the notation. Finally, we conduct simulations to validate
our theoretical results in various scenarios. The simulation results
show that in all scenarios we consider, D-SSG not only guarantees
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a near-optimal rate-function, but also empirically has a similar
delay performance to the rate-function delay-optimal policies.

Index Terms—Greedy algorithm, large deviations,multichannel,
near-optimal asymptotic delay, OFDM, optimal throughput,
practical, rate-function, scheduling, wireless networks.

I. INTRODUCTION

I N THIS paper, we consider the scheduling problem in a
multichannel wireless network, where the system has a

large bandwidth that can be divided into multiple orthogonal
subbands (or channels). A practically important example of
such a multichannel network is the downlink of a single cell of
a fourth-generation (4G) OFDM-based wireless cellular system
(e.g., LTE and WiMax). In such a multichannel system, a key
challenge is how to design efficient scheduling policies that can
simultaneously achieve high throughput and low delay. This
problem becomes extremely critical in OFDM systems that are
expected to meet the dramatically increasing demands from
multimedia applications with more stringent quality-of-service
(QoS) requirements (e.g., voice and video applications), and
thus look for new ways to achieve higher data rates, lower la-
tencies, and a much better user experience. Yet, an even bigger
challenge is how to design such high-performance scheduling
policies at a low complexity. For example, in the OFDM-based
LTE systems, the transmission time interval (TTI), within which
the scheduling decisions need to be made, is only 1 ms. On the
other hand, there are hundreds of orthogonal channels that need
to be allocated to hundreds of users. Hence, the scheduling
decision has to be made within a very short scheduling cycle.
We consider a single-cell multichannel system consisting

of channels and a proportionally large number of users,
with intermittent connectivity between each user and each
channel. We assume that the base station (BS) maintains a
separate first-in–first-out (FIFO) queue associated with each
user, which buffers the packets for the user to download. A
series of works studied the delay performance of scheduling
policies in the large-queue asymptotic regime, where the buffer
overflow threshold tends to infinity (see [1]–[4] and references
therein). One potential difficulty of the large-queue asymptotic
is that the estimates become accurate only when the queue
length or the delay becomes large. However, for a practical
system that aims to serve a large number of users with more
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stringent delay requirements (as anticipated in the 4G systems),
it is more important to ensure small queue length and small
delay [5]. Note that even in the wireline networks, there was
a similar distinction between the large-buffer asymptotic and
the many-source asymptotic [6], [7]. It was shown that the
many-source asymptotic provides sharper estimates of the
buffer violation probability when the queue-length threshold
is not very large. Hence, the delay metric that we focus on
in this paper is the decay-rate (or called the rate-function in
large-deviations theory) of the steady-state probability that the
largest packet waiting time in the system exceeds a certain
fixed threshold when the number of users and the number of
channels both go to infinity. [See (2) for the formal definition
of rate-function.] We refer to this setting as the many-channel
many-user asymptotic regime.
A number of recent works have considered a multichannel

system similar to ours, but looked at delay from different
perspectives. A line of works focused on queue-length-based
metrics: average queue length [8] or queue-length rate-function
in themany-channelmany-user asymptotic regime [5], [9]–[11].
In [8], the authors focused on minimizing cost functions over
a finite horizon, which includes minimizing the expected total
queue length as a special case. The authors showed that their
goal can be achieved in two special scenarios: 1) a simple
two-user system, and 2) systems where fractional server al-
location is allowed. In [5] and [9]–[11], delay performance is
evaluated by the queue violation probability and its associated
rate-function, i.e., the asymptotic decay-rate of the probability
that the largest queue length in the system exceeds a fixed
threshold in the many-channel many-user asymptotic regime.
Although [5] and [11] proposed scheduling policies that can
guarantee both throughput optimality and rate-function opti-
mality, there are still a number of important dimensions that
have space for improvement. First, although the decay-rate
of the queue violation probability may be mapped to that
of the delay-violation probability when the arrival process
is deterministic with a constant rate [4], this is not true in
general, especially when the arrivals are correlated over time.
Furthermore, [12]–[14] have shown through simulations that
good queue-length performance does not necessarily imply
good delay performance. Second, their results on rate-function
optimality strongly rely on the assumptions that the arrival
process is i.i.d. not only across users, but also in time, and
that per-user arrival at any time is no greater than the largest
channel rate. Third, even under this more restricted model,
the lowest complexity of their proposed rate-function-optimal
algorithms is . For more general models, no algorithm
with provable rate-function optimality is provided.
Similar to this paper, another line of work [12], [13], [15]

proposed delay-based scheduling policies1 and directly fo-
cused on the delay performance rather than the queue-length
performance. The performance of delay is often harder to char-
acterize because the delay in a queueing system typically does
not admit a Markovian representation. The problem becomes
even harder in a multiuser system with fading channels and
interference constraints, where the service rate for individual

1Delay-based policies were first introduced in [16] for scheduling problems
in input-queued switches and were later studied for wireless networks [14],
[17]–[22]. Please see [14] and references therein for more discussions on the
history and the recent development of delay-based scheduling policies.

queues becomes more unpredictable. In [12] and [13], the
authors developed a scheduling policy called Delay Weighted
Matching (DWM), which maximizes the sum of the delay of
the scheduled packets in each time-slot. It has been shown
in [12], [13], and [15] that DWM is not only throughput-op-
timal, but also rate-function delay-optimal (i.e., maximizing the
delay rate-function, rather than the queue-length rate-function
as considered in [5], [9]–[11]). Moreover, the authors of [13]
used the derived rate-function of DWM to develop a simple
threshold policy for admission control when the number of
users scales linearly with the number of channels in the system.
However, DWM incurs a high complexity , which
renders it impractical for modern OFDM systems with many
channels and users (e.g., on the order of hundreds). In [15], the
authors proposed a class of hybrid scheduling policies with a
much lower complexity , while still guaranteeing
both throughput optimality and rate-function delay optimality
(with an additional minor technical assumption). However,
the practical complexity of the hybrid policies is still high as
the constant factor hidden in the notation is typically
large due to the required two-stage scheduling operations and
the operation of computing a maximum-weight matching in
the first stage. Hence, scheduling policies with an even lower
(both theoretical and practical) complexity are needed in the
multiuser multichannel systems.
This leads to the following natural but important questions:

Can we find scheduling policies that have a significantly
lower complexity, with comparable or only slightly worse
performance? How much complexity can we reduce, and how
much performance do we need to sacrifice? In this paper, we
answer these questions positively. Specifically, we develop a
low-complexity greedy policy that achieves both throughput
optimality and rate-function near-optimality.
We summarize our main contributions as follows.
First, we propose a greedy scheduling policy, called

Delay-based Server-Side-Greedy (D-SSG). D-SSG, in an
iterative manner, allocates servers one by one to serve a con-
nected queue that has the largest head-of-line (HOL) delay.
We rigorously prove that D-SSG not only achieves throughput
optimality, but also guarantees a near-optimal rate-function.
Specifically, the rate-function attained by D-SSG for any fixed
integer threshold is no smaller than the maximum achiev-
able rate-function by any scheduling policy for threshold .
We obtain this result by comparing D-SSG to a new Greedy
Frame-Based Scheduling (G-FBS) policy that can exploit a key
property of D-SSG. We show that G-FBS policy guarantees a
near-optimal rate-function, and that D-SSG dominates G-FBS
in every sample-path. To the best of our knowledge, this is
the first work that shows a near-optimal rate-function in the
above form, and hence we believe that our proof technique is of
independent interest. Also, we remark that the gap between the
near-optimal rate-function attained by D-SSG and the optimal
rate-function is likely to be quite small. (See Section IV-C for
detailed discussion.)
D-SSG is a very simple policy and has a low complexity
. Note that the queue-length-based counterpart of D-SSG,

called Q-SSG, has been studied in [9] and [10]. However, there
the authors were only able to prove a positive (queue-length)
rate-function for restricted arrival processes that are i.i.d. not
only across users, but also in time. In contrast, we show that
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D-SSG achieves a rate-function that is not only positive but also
near-optimal, for more general arrival processes. Thus, we are
able to achieve a reduction in complexity (from
of the hybrid policies [15] to ) with a minimal drop
in the delay performance. More importantly, the practical com-
plexity of D-SSG is substantially lower than that of the hybrid
policies since we can precisely bound the constant factor in its
complexity.
Furthermore, we conduct simulations to validate our analyt-

ical results in various scenarios. The simulation results show
that in all scenarios we consider, D-SSG not only guarantees
a near-optimal rate-function, but also empirically has a similar
delay performance to the rate-function delay-optimal policies.
The remainder of the paper is organized as follows. In

Section II, we describe the details of our system model and
performance metrics. In Section III, we derive an upper bound
on the rate-function that can be achieved by any scheduling
policy. Then, in Section IV, we present our main results on
throughput optimality and near-optimal rate-function for our
proposed low-complexity greedy policy. Furthermore, we
conduct numerical simulations in Section V. Finally, we make
concluding remarks in Section VI.

II. SYSTEM MODEL

We consider a discrete-time model for the downlink of a
single-cell multichannel wireless network with orthogonal
channels and users. In each time-slot, a channel can be allo-
cated only to one user, but a user can be allocated with multiple
channels simultaneously. As in [5], [9]–[13], and [15], for ease
of presentation, we assume that the number of users is equal to
the number of channels. (If the number of users scales linearly
with the number of channels, the rate-function delay analysis
follows similarly. However, an admission control policy needs
to be carefully designed if the number of users becomes too
large [13].) We let denote the FIFO queue associated with
the th user, and let denote the th server.2 We consider
the i.i.d. ON–OFF channel model under which the connectivity
between each queue and each server changes between ON and
OFF from time to time. We also assume unit channel capacity,
i.e., at most one packet from can be served by when
and are connected. Let denote the connectivity be-
tween queue and server in time-slot . Then, can
be modeled as a Bernoulli random variable with a parameter

, i.e.,

with probability
with probability .

We assume that all the random variables are i.i.d. across
all the variables , , and . Such a network can be modeled as
a multiqueue multiserver system with stochastic connectivity,
as shown in Fig. 1. Furthermore, we assume that the perfect
channel state information (i.e., whether each channel is ON or
OFF for each user in each time-slot) is known at the BS. This
is a reasonable assumption in the downlink scenario of a single
cell in a multichannel cellular system with dedicated feedback
channels.
As in the previous works [5], [8], [9], [12], [13], [15], the

above i.i.d. ON–OFF channel model is a simplification and is
assumed only for the analytical results. The ON–OFF model is a

2Throughout this paper, we use the terms “user” and “queue” interchangeably,
and use the terms “channel” and “server” interchangeably.

Fig. 1. System model. The connectivity between each pair of queue and
server is “ON” (denoted by a solid line) with probability , and “OFF” (de-
noted by a dashed line) otherwise.

good approximation when the BS transmits at a fixed achiev-
able rate if the signal-to-interference-plus-noise ratio (SINR)
level is above a certain threshold at the receiver, and does not
transmit successfully otherwise. The subbands being i.i.d. is a
reasonable assumption when the channel width is larger than
the coherence bandwidth of the environment. Moreover, we be-
lieve that our results obtained for this channel model can provide
useful insights for more general models. Indeed, we will show
through simulations that our proposed greedy policies also per-
formwell in more general models, e.g., accounting for heteroge-
neous (near- and far-) users and time-correlated channels. Fur-
thermore, we will briefly discuss how to design efficient sched-
uling policies in general scenarios toward the end of this paper.
We present more notations used in this paper as follows. Let
denote the number of packet arrivals to queue in time-

slot . Let denote the cumulative arrivals to
the entire system in time-slot , and let
denote the cumulative arrivals to the system from time to
. We let denote the mean arrival rate to queue , and let

denote the arrival rate vector. We assume
that packets arrive at the beginning of a time-slot and depart
at the end of a time-slot. We use to denote the length
of queue at the beginning of time-slot immediately after
packet arrivals. Queues are assumed to have an infinite buffer
capacity. Let denote the delay (or waiting time) of the
th packet at queue at the beginning of time-slot , which
is measured from the time when the packet arrived to queue
until the beginning of time-slot . Note that at the end of

each time-slot, the packets that are still present in the system
will have their delays increased by one due to the elapsed time.
Furthermore, let (or if )
denote the HOL delay of queue at the beginning of time-slot
. Finally, we define , and use to denote
the indicator function.
We now state the assumptions on the arrival processes. The

throughput analysis is carried out under Assumption 1 only,
which is mild and has also been used in [15] and [19].
Assumption 1: For each user , the arrival

process is an irreducible and positive recurrent Markov
chain with countable state space and satisfies the Strong Law of
Large Numbers. That is, with probability one

(1)

We also assume that the arrival processes are mutually indepen-
dent across users (which can be relaxed for throughput analysis
as discussed in [19]).
The rate-function delay analysis is carried out under the fol-

lowing two assumptions, which have also been used in the pre-
vious works [12], [13], and [15].
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Assumption 2: There exists a finite such that
for any and , i.e., instantaneous arrivals are bounded.
Assumption 3: The arrival processes are i.i.d. across users,

and for any user . Given any and , there exist
, , and a positive function independent of

and such that

for all and .
Assumption 2 requires that the arrivals in each time-slot have

bounded support, which is indeed true for practical systems.
Assumption 3 is also very general and can be viewed as a
result of the statistical multiplexing effect of a large number
of sources. Assumption 3 holds for i.i.d. arrivals and arrivals
driven by two-state Markov chains (that can be correlated over
time) as two special cases (see [13, Lemmas 2 and 3]).

A. Performance Objectives

In this paper, we consider two performance metrics: 1) the
throughput, and 2) the steady-state probability that the largest
packet delay in the system exceeds a certain fixed threshold,
and its associated rate-function in the many-channel many-user
asymptotic regime.
We first define the optimal throughput region (or stability re-

gion) of the system for any fixed integer under Assump-
tion 1. As in [19], a stochastic queueing network is said to be
stable if it can be described as a discrete-time countable Markov
chain and theMarkov chain is stable in the following sense: The
set of positive recurrent states is nonempty, and it contains a fi-
nite subset such that with probability one, this subset is reached
within finite time from any initial state. When all the states com-
municate, stability is equivalent to theMarkov chain being posi-
tive recurrent [23]. The throughput region of a scheduling policy
is defined as the set of arrival rate vectors for which the network
remains stable under this policy. Then, the optimal throughput
region is defined as the union of the throughput regions of all
possible scheduling policies, which is denoted by . A sched-
uling policy is throughput-optimal if it can stabilize any arrival
rate vector strictly inside . For more discussions on the op-
timal throughput region in our multichannel systems, please
refer to [15].
Next, we consider the steady-state probability that the largest

packet delay in the system exceeds a certain fixed threshold
and its associated rate-function in the many-channel many-user
asymptotic regime. Assuming that the system is stationary and
ergodic, let denote the largest HOL
delay over all the queues (i.e., the largest packet delay in the
system) in the steady state, and then we define rate-function
as the decay-rate of the probability that exceeds any fixed
integer threshold , as the system size goes to infinity, i.e.,

(2)

Note that once we know this rate-function, we can then esti-
mate the delay-violation probability using

. The estimate tends to be more accurate as be-
comes larger. Clearly, for systems with a large , a larger value
of the rate-function implies a better delay performance, i.e., a

smaller probability that the largest packet delay in the system
exceeds a certain threshold. As in [12], [13], and [15], we define
the optimal rate-function as the maximum achievable rate-func-
tion over all possible scheduling policies, which is denoted by

. A scheduling policy is rate-function delay-optimal if it
achieves the optimal rate-function for any fixed integer
threshold .

III. UPPER BOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound of the rate-function
for all scheduling policies.
Let denote the asymptotic decay-rate of the prob-

ability that in any interval of time-slots, the total number of
arrivals is greater than , as tends to infinity, i.e.,

Let be the infimum of over all , i.e.,

Also, we define .
Theorem 1: Given the system model described in Section II,

for any scheduling algorithm, we have

Theorem 1 can be shown by considering two types of events
that lead to the delay-violation event no matter
how packets are scheduled, and computing their probabilities
and decay-rates. In the above expression of , the first term

is due to sluggish services, which corresponds to
the event that a queue with at least one packet is disconnected
from all of the servers for consecutive time-slots. The
second term is due to both bursty
arrivals and sluggish services, where corresponds to
the event that the arrivals are too bursty during the interval of

such that at the beginning of time-slot for
, there exists at least one packet remaining in the system,

say queue . Then, the term corresponds to the event that
the services are too sluggish such that queue is disconnected
from all of the servers for the following consecutive time-
slots. Clearly, both of the above events will lead to the delay-
violation event under all scheduling policies. We
provide the detailed proof in Appendix A.
Remark: Theorem 1 implies that is an upper bound on

the rate-function that can be achieved by any scheduling policy.
Hence, even for the optimal rate-function , we must have

for any fixed integer threshold .
Note that our derived upper bound is strictly pos-

itive in the cases of interest. For example, when ,
it has been shown in [15] that the optimal rate-function is

, and thus
for all integer . This holds for general arrival processes
under Assumptions 2 and 3, including two special cases of i.i.d.
Bernoulli arrivals and two-state Markov chain driven arrivals.
When , we can show that is strictly positive for the
special case of i.i.d. arrivals with feasible arrival rates
(please refer to our online technical report [24]); furthermore,
in Section V, our simulation results (Fig. 2) also demonstrate
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that the rate-function attained by D-SSG is strictly positive
under two-state Markov chain driven arrivals.

IV. DELAY-BASED SERVER-SIDE-GREEDY

In [15], it has been shown that a class of two-stage hybrid
policies can achieve both throughput optimality and rate-func-
tion delay optimality at a lower complexity
(compared to of DWM). The hybrid policies are con-
structed by combining certain throughput-optimal policies with
a rate-function delay-optimal policy DWM- (where is the
number of users or channels), which in each time-slot maxi-
mizes the sum of the delay of the scheduled packets among the
oldest packets in the system. For example, DWM- com-

bined with the Delay-based MaxWeight Scheduling (D-MWS)
policy [15], [19], [20] yields a complexity hybrid
policy, called the DWM- -MWS policy.
The above result leads to the following important questions:

Is it possible to develop scheduling policies with an even lower
complexity, while achieving comparable or only slightly worse
performance? If so, how much complexity can we reduce, and
how much performance do we need to sacrifice? In this section,
we answer these questions positively. We first develop a greedy
scheduling policy called Delay-based Server-Side-Greedy with
an even lower complexity . Under D-SSG, each
server iteratively chooses to serve a connected queue that
has the largest HOL delay. Then, we show that D-SSG not
only achieves throughput optimality, but also guarantees a
near-optimal rate-function. Hence, D-SSG achieves a reduction
in complexity (from of the hybrid policies to

) with a minimal drop in the delay performance. More
importantly, the practical complexity of D-SSG is substantially
lower than that of the hybrid policies.

A. Algorithm Description

Before we describe the detailed operations of D-SSG, we
would like to remark on the D-MWS policy in our multichannel
system, due to the similarity between D-MWS and D-SSG.
Under D-MWS, each server chooses to serve a queue that has
the largest HOL delay (among all the queues connected to this
server). Note that D-MWS is not only throughput-optimal,
but also has a low complexity . However, in [15], it has
been shown that D-MWS suffers from poor delay performance.
(Specifically, D-MWS yields a rate-function of zero in certain
scenarios, e.g., with i.i.d. 0–1 arrivals). The reason is that under
D-MWS, each server chooses to serve a connected queue that
has the largest HOL delay without accounting for the decisions
of the other servers. This way of allocating servers leads to
an unbalanced schedule. That is, only a small fraction of the
queues get served in each time-slot. This inefficiency leads to
poor delay performance.
Now, we describe the operations of our proposed D-SSG

policy. D-SSG is similar to D-MWS in the sense that it also
allocates each server to a connected queue that has the largest
HOL delay. However, the key difference is that, instead of al-
locating the servers all at once as in D-MWS, D-SSG allocates
the servers one by one, accounting for the scheduling decisions
of the servers that are allocated earlier. We will show that this
critical difference results in a substantial improvement in the
delay performance.

We present some additional notations, and then specify the
detailed operations of D-SSG. In each time-slot, there are
rounds, and in each round, one of the remaining servers is allo-
cated. Let , , and (or
if ) denote the length of queue , the delay of the
th packet of , and the HOL delay of after rounds
of server allocation in time-slot , respectively. In particular, we
have , , and .
Let denote the set of queues being connected to server
in time-slot , i.e., . Let

denote the set of indices of the queues that are connected
to server in time-slot and that have the largest HOL delay

at the beginning of the th round in time-slot , i.e.,
. Let de-

note the index of queue that is served by server in time-slot
under D-SSG.
D-SSG Policy: In each time-slot :
1) Initialize .
2) In the th round, allocate server to serve queue

, where . That
is, in the th round, the th server is allocated to
serve the connected queue that has the largest HOL
delay, breaking ties by picking the queue with the
smallest index if there are multiple such queues. Then,
update the length of to account for service,

i.e., set and

for all . Also, update the
HOL delay of to account for service, i.e., set

if ,

and otherwise, and set
for all .

3) Stop if equals . Otherwise, increase by 1 and repeat
step 2.

Remark: From the above operations, it can be observed that
in each round, D-SSG aims to allocate the available server with
the smallest index. Furthermore, when there are multiple queues
that are connected to the considered server and that have the
largest HOL delay, D-SSG favors the queue with the smallest
index. We specify such tie-breaking rules for ease of analysis
only. In practice, we can break ties arbitrarily.
We highlight that D-SSG has a low complexity of

due to the following operations. Assume that each packet con-
tains the information of its arriving time. At the beginning of
each time-slot, it requires addition operations to update the
HOL delay of each of the queues (i.e., increasing it by one).
In each round , it takes time to check the connectivity be-
tween server and the queues, another up to time to find
the connected queue with the largest HOL delay, and one more
basic operation to update the HOL delay of the queue chosen
by server . Since there are rounds, the overall complexity
is .
Note that the queue-length-based counterpart of D-SSG,

called Q-SSG, has been studied in [9], [10]. Under Q-SSG,
each server iteratively chooses to serve a connected queue
that has the largest length. It has been shown that Q-SSG not
only achieves throughput optimality, but also guarantees a
positive (queue-length) rate-function. However, their results
have the following limitations: 1) a positive rate-function may
not be good enough since the gap between the guaranteed
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rate-function and the optimal is unclear; 2) good queue-length
performance does not necessarily translate into good delay
performance; 3) their analysis was only carried out for re-
stricted arrival processes that are not only i.i.d. across users,
but also in time. In contrast, in this section we will show that
D-SSG achieves a rate-function that is not only positive but
also near-optimal [in the sense of (3)] for more general arrival
processes, while guaranteeing throughput optimality.

B. Throughput Optimality

We first establish throughput optimality of D-SSG in general
nonasymptotic settings with any fixed value of . Note that in
Section IV-C, we will analyze the delay performance of D-SSG
in the asymptotic regime, where goes to infinity. Hence, even
if the convergence rate of the delay rate-function is fast (as is
typically the case), the throughput performancemay still be poor
for small to moderate values of . As a matter of fact, for a fixed
, a rate-function delay-optimal policy (e.g., DWM- ) may not
even be throughput-optimal [15]. To this end, we first focus
on studying the throughput performance of D-SSG in general
nonasymptotic settings.
We remark that the throughput performance of scheduling

policies has been extensively studied in various settings, in-
cluding the multichannel systems that we consider in this paper.
Specifically, for such multichannel systems, [15] proposed a
class of Maximum Weight in the Fluid limit (MWF) policies
and proved throughput-optimality of the MWF policies in very
general settings (under Assumption 1). The key insight is that to
achieve throughput-optimality in such multichannel systems, it
is sufficient for each server to choose a connected queue with a
large enough weight (i.e., queue-length or delay) such that this
queue has the largest weight in the fluid limit [25].
Next, we prove that D-SSG is throughput-optimal in general

nonasymptotic settings (for a system with any fixed value of )
by showing that D-SSG is an MWF policy.
Theorem 2: D-SSG policy is throughput-optimal under

Assumption 1.
The proof of Theorem 2 is straightforward. Hence, we omit

the proof and provide it in our online technical report [24].

C. Near-Optimal Asymptotic Delay Performance

In this section, we present our main result on the near-op-
timal rate-function. We first define near-optimal rate-function,
and then evaluate the delay performance of D-SSG.
A policy is said to achieve near-optimal rate-function if

the delay rate-function attained by policy for any fixed
integer threshold is no smaller than , the optimal
rate-function for threshold . That is

(3)

We next present our main result of this paper in the following
theorem, which states that D-SSG achieves a near-optimal
rate-function.
Theorem 3: Under Assumptions 2 and 3, D-SSG achieves a

near-optimal rate-function, as given in (3).
We prove Theorem 3 by the following strategy: 1) motivated

by a key property of D-SSG (Lemma 1), we propose theGreedy
Frame-Based Scheduling (G-FBS) policy, which is a variant of
the FBS policy [12], [13] that has been shown to be rate-function

delay-optimal in some cases; 2) show that G-FBS achieves a
near-optimal rate-function (Theorem 4); 3) prove a dominance
property of D-SSG over G-FBS. Specifically, in Lemma 2, we
show that for any given sample path, by the end of each time-
slot, D-SSG has served every packet that G-FBS has served.
We now present a crucial property of D-SSG in Lemma 1,

which is the key to proving a near-optimal rate-function for
D-SSG.
Lemma 1: Consider a set of packets satisfying that no more

than packets are from the same queue, where is
any integer constant independent of . Consider any strictly
increasing function such that and

. Suppose that D-SSG is applied to schedule these
packets. Then, there exists a finite integer such that

for all , with probability no smaller than
, D-SSG schedules at least packets, in-

cluding the oldest packets among the packets.
To prove Lemma 1 and thus near-optimal rate-function of

D-SSG (Theorem 3), we introduce another greedy scheduling
policy called Delay-based Queue-Side-Greedy (D-QSG) and a
sample-path equivalence property between D-QSG and D-SSG
(Lemma 3). Please refer to Appendix B for details.
We provide the proof of Lemma 1 in Appendix C and ex-

plain the importance of Lemma 1 as follows. We first recall
howDWM is shown to be rate-function delay-optimal (for some
cases) in [12], [13]. Specifically, the authors of [12] and [13]
compare DWM to another policy FBS. In FBS, packets are filled
into frames with size in a first-come–first-serve (FCFS)
manner such that no two packets in the same frame have a delay
difference larger than time-slots, where is a suitably
chosen constant independent of and . The FBS policy
attempts to serve the entire HOL frame whenever possible. The
authors of [12] and [13] first establish the rate-function opti-
mality of the FBS policy. Then, by showing that DWM domi-
nates FBS (i.e., DWM will serve the same packets in the entire
HOL frame whenever possible), the delay optimality of DWM
then follows.
However, this comparison approach will not work directly

for D-SSG. In order to serve all packets in a frame whenever
possible, one would need certain back-tracking (or rematching)
operations as in a typical maximum-weight matching algorithm
like DWM. For a simple greedy algorithm like D-SSG that does
not do back-tracking, it is unlikely to attain the same proba-
bility of serving the entire frame. In fact, even if we reduce the
maximum frame size to , we are still unable to show
that D-SSG can serve the entire frame with a sufficiently high
probability. Thus, we cannot compare D-SSG to FBS as in [12]
and [13].
Fortunately, Lemma 1 provides an alternate avenue. Specifi-

cally, for a set of packets, even though D-SSG may not serve
any given subset of packets with a sufficiently high
probability, it will serve some subset of packets with a
sufficiently high probability. Furthermore, this subset must con-
tain the oldest packets for a large , if we choose in
Lemma 1 such that for large . Note that D-SSG
still leaves (at most) packets to the next time-slot. If we
can ensure that in the next time-slot, D-SSG serves all of these

leftover packets, we would then at worst suffer an ad-
ditional one-time-slot delay. Indeed, Lemma 1 guarantees this
with high probability. Intuitively, we would then be able to show
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that D-SSG attains a near-optimal delay rate-function as given
in (3).
To make this argument rigorous, we next compare D-SSG to

a new policy calledGreedy Frame-Based Scheduling . Note that
G-FBS is only for assisting our analysis and will not be used as
an actual scheduling algorithm. We first fix a properly chosen
parameter . In the G-FBS policy, packets are grouped into
frames satisfying the following requirements.
1) No two packets in the same frame have a delay difference
larger than time-slots. This guarantees that in a frame, no
more than packets from the same queue can be
filled into a single frame.

2) Each frame has a capacity of packets, i.e.,
at most packets can be filled into a frame.

3) As packets arrive to the system in each time-slot, the
frames are created by filling the packets sequentially.
Specifically, packets that arrive earlier are filled into the
frame with a higher priority, and packets from queues
with a smaller index are filled with a higher priority when
multiple packets arrive in the same time-slot.

Once any of the above requirements is violated, the current
frame will be closed and a new frame will be open. We also
assume that there is a “leftover” frame, called L-frame for sim-
plicity, with a capacity of packets. The L-frame is for
storing the packets that were not served in the previous time-slot
and were carried over to the current time-slot.
At the beginning of each time-slot, we combine the HOL

frame and the L-frame into a “super” frame, called S-frame for
simplicity, with a capacity of packets. It is easy to see that in
the S-frame, no more than packets are from the same queue.
Note that if there are less than packets in the S-frame, we can
artificially add some dummy packets with a delay of zero at the
end of the S-frame so that the S-frame is fully filled, but still
need to guarantee that no more than packets from the same
queue can be filled into the S-frame. In each time-slot, G-FBS
runs the D-SSG policy, but restricted to only the packets of
the S-frame. We call it a success if D-SSG can schedule at
least packets, including the oldest packets, from the
S-frame, where is any function that satisfies that

and . In each time-slot,
if a success does not occur, then no packets will be served.
When there is a success, the G-FBS policy serves all the packets
that are scheduled by D-SSG restricted to the S-frame in that
time-slot. Lemma 1 implies that in each time-slot, a success
occurs with probability at least . A
success serves all packets from the S-frame, except for at most

packets, and these served packets include the
oldest packets. The packets that are not served will be
stored in the L-frame and carried over to the next time-slot (ex-
cept for the dummy packets, which will be discarded).
Remark: Although G-FBS is similar to FBS policy [12], [13],

it exhibits a key difference from FBS. In the FBS policy, in each
time-slot, either an entire frame (i.e., all the packets in the frame)
will be completely served, or none of its packets will be served.
Hence, it does not allow packets to be carried over to the next
time-slot. In contrast, G-FBS allows leftover packets and is thus
more flexible in serving frames. This property is the key reason
that we can use lower-complexity policies like D-SSG. On the
other hand, it leads to a small gap between the rate-functions
achieved by G-FBS and delay-optimal policies (e.g., DWM and

the hybrid policies). Nonetheless, this gap can be well charac-
terized. Specifically, in the G-FBS policy, an L-frame contains
at most packets that are not served whenever there is a
success. Furthermore, these (at most) leftover packets
will be among the oldest packets (in the S-frame) in the
next time-slot for large , due to our choice of .
Hence, another success will serve all the leftover packets. This
implies that at most successes are needed to completely
serve frames, for any finite integer . In fact, this prop-
erty is the key reason for a one-time-slot shift in the guaranteed
rate-function by G-FBS, which leads to the near-optimal delay
rate-function, as we show in the following theorem.
Theorem 4: Under Assumptions 2 and 3, G-FBS policy

achieves a near-optimal rate-function, as given in (3).
The proof of Theorem 4 follows a similar line of argument

as in the proof for rate-function delay optimality of FBS
([13, Theorem 2]). We consider all the events that lead to the
delay-violation event , which can be caused by
two factors: bursty arrivals and sluggish service. On the one
hand, if there are a large number of arrivals in certain period,
say of length time-slots, which exceeds the maximum number
of packets that can be served in a period of time-slots,
then it unavoidably leads to a delay-violation. On the other
hand, suppose that there is at least one packet arrival at certain
time, and that under G-FBS, a success does not occur in any
of the following time-slots (including the time-slot when
the packet arrives), then it also leads to a delay-violation. Each
of these two possibilities has a corresponding rate-function for
its probability of occurring. Large-deviations theory then tells
us that the rate-function for delay-violation is determined by
the smallest rate-function among these possibilities (i.e., “rare
events occur in the most likely way”). We can then show that

for any integer , where
is the rate-function attained by G-FBS, is the upper

bound that we derived in Section III, and is the optimal
rate-function, respectively. We provide the detailed proof of
Theorem 4 in Appendix D.
Remark: Note that the gap between the optimal rate-function

and the above near-optimal rate-function is likely to be quite
small. For example, in the case where the arrival is either 1 or 0,
the near-optimal rate-function implies
since we have for this case [15].
Finally, we make use of the following dominance property of

D-SSG over G-FBS.
Lemma 2: For any given sample path and for any value of ,

by the end of any time-slot , D-SSG has served every packet
that G-FBS has served.
We prove Lemma 2 by contradiction. The proof follows a

similar argument as in the proof of [13, Lemma 7] and is pro-
vided in our online technical report [24]. Then, the near-optimal
rate-function of D-SSG (Theorem 3) follows immediately from
Lemma 2 and Theorem 4.
Remark: Note that D-SSG combined with DWM- policy

can also yield an -complexity hybrid policy that
is both throughput-optimal and rate-function delay-optimal. We
omit the details since the treatment follows similarly as that for
hybrid DWM- -MWS policy [15].
So far, we have shown that our proposed low-complexity

D-SSG policy achieves both throughput optimality and near-op-
timal delay rate-function. In Section V, we will show through



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Performance comparison of different scheduling policies in the case
with homogeneous i.i.d. channels, for delay threshold .

simulations that in all scenarios we consider, D-SSG not only
exhibits a near-optimal delay rate-function, but also empiri-
cally has a similar delay performance to the rate-function delay-
optimal policies such as DWM and the hybrid DWM- -MWS
policy.

V. SIMULATION RESULTS

In this section, we conduct simulations to compare scheduling
performance of our proposed D-SSG policy to DWM, hybrid
DWM- -MWS (called Hybrid for short), D-MWS, and Q-SSG.
We simulate these policies in Java and compare the empirical
probabilities that the largest HOL delay in the system in any
given time-slot exceeds an integer threshold , i.e.,
.
Same as in [15], we consider bursty arrivals that are driven

by a two-state Markov chain and that are correlated over time.
(We obtained similar results for i.i.d. arrivals and omit
them here.) For each user, there are five packet-arrivals when
the Markov chain is in state 1, and there are no arrivals when it
is in state 2. The transition probability of the Markov chain is
given by the matrix [0.5, 0.5; 0.1, 0.9], and the state transitions
occur at the end of each time-slot. The arrivals for each user
are correlated over time, but they are independent across users.
For the channel model, we first assume i.i.d. ON–OFF channels
with unit capacity, and set . We later consider more
general scenarios with heterogeneous users and bursty channels
that are correlated over time. We run simulations for a system
with servers and users, where . The
simulation period lasts for 10 time-slots for each policy and
each system.
The results are summarized in Fig. 2, where the complexity of

each policy is also labeled. In order to compare the rate-function
as defined in (2), we plot the probability over the number

of channels or users, i.e., , for a fixed value of threshold .
The negative of the slopes of the curves can be viewed as the
rate-function for each policy. In Fig. 2, we report the results
only for , and the results are similar for other values of
threshold . From Fig. 2, we observe that D-SSG has a similar
delay performance to that of DWM and Hybrid, which are both
known to be rate-function delay-optimal. This not only sup-
ports our theoretical results that D-SSG guarantees a near-op-
timal rate-function, but also implies that D-SSG empirically
performs very well while enjoying a lower complexity. Fur-
thermore, we observe that D-SSG consistently outperforms its
queue-length-based counterpart, Q-SSG, despite the fact that

Fig. 3. Performance comparison of different scheduling policies in the case
with homogeneous i.i.d. channels, for channels or users.

in [9], it has been shown through simulations that Q-SSG em-
pirically achieves near-optimal queue-length performance. This
provides a further evidence that good queue-length performance
does not necessarily translate into good delay performance. The
results also show that D-MWS yields a zero rate-function, as
expected.
We also plot the probability for delay threshold as in [5],

[9], [10], [12], [13], and [15] to investigate the performance of
different policies for fixed . In Fig. 3, we report the results for

, and the results are similar for other values of . From
Fig. 3, we observe that D-SSG consistently performs closely to
DWM and Hybrid for almost all values of that we consider.
We also observe that D-SSG consistently outperforms its queue-
length-based counterpart, Q-SSG.
In addition, we compute the average time required for the

operations of each policy within one scheduling cycle, when
. Running simulations in a PC with Intel Core i7-2600

3.4 GHz CPU and 8 GB memory, D-SSG requires roughly
0.3 ms to finish all of the required operations within one
scheduling cycle (which, for example, is 1 ms in LTE systems),
while the two-stage Hybrid policy needs 7–10 times more.
This, along with the above simulation results, implies that in
practice D-SSG is more suitable for actual implementations
than the hybrid policies, although D-SSG does not guarantee
rate-function delay optimality.
Furthermore, we evaluate scheduling performance of dif-

ferent policies in more realistic scenarios, where users are
heterogeneous and channels are correlated over time. Specifi-
cally, we consider channels that can be modeled as a two-state
Markov chain, where the channel is “ON” when the Markov
chain is in state 1, and is “OFF” when it is in state 2. We
assume that there are two classes of users: users with an odd
index are called near-users, and users with an even index
are called far-users. Different classes of users see different
channel conditions: Near-users see better channel condition,
and far-users see worse channel condition. We assume that
the transition probability matrices of channels for near-users
and far-users are [0.833, 0.167; 0.5, 0.5] and [0.5, 0.5; 0.167,
0.833], respectively. The arrival processes are assumed to be
the same as in the previous case.
The results are summarized in Fig. 4. We observe similar

results as in the previous case with homogeneous users and
i.i.d. channels in time. In particular, D-SSG exhibits a rate-func-
tion that is similar to that of DWM and Hybrid, although its
delay performance is slightly worse. Note that in this scenario,
a rate-function delay-optimal policy is not known yet. Hence,
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Fig. 4. Performance comparison of different scheduling policies in the case
with Markov-chain driven heterogeneous channels, for delay threshold .

for future work, it would be interesting to understand how to
design rate-function delay-optimal or near-optimal policies in
general scenarios.

VI. CONCLUSION

In this paper, we developed a practical and low-complexity
greedy scheduling policy (D-SSG) that not only achieves
throughput optimality, but also guarantees a near-optimal delay
rate-function, for multichannel wireless networks. Our studies
reveal that throughput optimality is relatively easier to achieve
in such multichannel systems, while there exists an explicit
tradeoff between complexity and delay performance. If one
can bear a minimal drop in the delay performance, lower-com-
plexity scheduling policies can be exploited.
The analytical results in this paper are derived for the i.i.d.

ON–OFF channel model with unit channel capacity. An inter-
esting direction for future work is to study general multirate
channels that can be correlated over time. We note that this
problem will become much more challenging. For example,
even for an i.i.d. channel model with channel capacity

, it is still unclear whether there exists a scheduling policy
that can guarantee both optimal throughput and optimal/near-
optimal asymptotic delay performance. Another direction for
future work is to consider heterogeneous users with different ar-
rival processes and different delay requirements. In these more
general scenarios, it may be worth exploring how to find ef-
ficient schedulers that can guarantee a nontrivial lower bound
of the optimal rate-function, if it turns out to be too difficult
to achieve or prove the optimal asymptotic delay performance
itself. Nonetheless, we believe that the results derived in this
paper will provide useful insights for designing high-perfor-
mance scheduling policies for more general scenarios.

APPENDIX A
PROOF OF THEOREM 1

We consider event and a sequence of events implying
the occurrence of event .
Event : Suppose that there is a packet that arrives to the net-

work in time-slot . Without loss of generality, we assume
that the packet arrives to queue . Furthermore, suppose that

is disconnected from all the servers in all the time-slots
from to 1.
Then, at the beginning of time-slot 0, this packet is still in the

network and has a delay of . This implies

. Note that the probability that event occurs can be com-
puted as

Hence, we have

and thus

Event : Consider any fixed . Fix any
, and choose such that .
Suppose that from time-slot to , the total number
of packet arrivals to the system is greater than ,
and let denote the probability that this event occurs. Then,
from the definitions of and , we know

Clearly, the total number of packets that are served in any time-
slot is no greater than . Hence, at the end of time-slot ,
there are at least packets remaining in the system.
Moreover, at the end of time-slot , the system contains
at least one packet that arrived before time-slot . Without
loss of generality, we assume that this packet is in . Now, as-
sume that is disconnected from all the servers in the next
time-slots, i.e., from time-slot to . This occurs with prob-
ability , independently of all the past history.
Hence, at the beginning of time-slot 0, there is still a packet that
arrived before time-slot . Hence, we have in this
case. This implies . Note that the probability
that event occurs can be computed as

Hence, we have

and thus

Since the above inequality holds for any and
all , by letting tend to 0 and taking the minimum over all

, we have

Considering both event and events , we have

APPENDIX B
D-QSG AND SAMPLE-PATH EQUIVALENCE

Delay-based Queue-Side-Greedy policy, in an iterative
manner too, schedules the oldest packets in the system
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one-by-one whenever possible. In this sense, D-QSG can be
viewed as an intuitive approximation of the Oldest Packet First
(OPF) policies3 [15] that have been shown to be rate-function
delay-optimal. We later prove an important sample-path equiv-
alence result (Lemma 3) that will be used in proving Lemma 1
and thus the main result of this paper (Theorem 3).
We start by presenting some additional notations. In the

D-QSG policy, there are at most rounds in each time-slot .
By slightly abusing the notations, we let , and

denote the length of queue , the delay
of the th packet of , and the HOL delay of after the
th round in time-slot under D-QSG, respectively. Let

denote the set of indices of the available servers at
the beginning of the th round, and let denote the set
of queues that have the largest HOL delay among all the
queues that are connected to at least one server in at

the beginning of the th round, i.e.,

. Also, let be the index of the

queue that is served in the th round of time-slot , and let
be the index of the server that serves in that

round. We then specify the operations of D-QSG as follows.
D-QSG Policy: In each time-slot :
1) Initialize and .
2) In the th round, allocate server to , where

That is, in the th round, we consider the queues that have
the largest HOL delay among those that have at least one
available server connected (i.e., the queues in set ),
and break ties by picking the queue with the smallest index
(i.e., ). We then choose an available server that is
connected to queue and break ties by picking the
server with the smallest index (i.e., server ) to serve

. At the end of the th round, update the length
of to account for service, i.e., set

and for
all . Also, update the HOL delay of ,
by setting if

, and otherwise, and setting

for all .
3) Stop if equals . Otherwise, increase by 1, set

, and repeat step 2.
Remark: Note that D-QSG is only used for assisting the rate-

function delay analysis of D-SSG and may not be suitable for
practical implementation due to its complexity. This is
because there are at most rounds, and in each round, it takes

time to find a queue that has at least
one connected and available server (which takes time to
check for all queues) and that has the largest HOL delay (which
takes time to compare).
The following lemma states the sample-path equivalence

property between D-QSG and D-SSG under the tie-breaking
rules specified in this paper.

3A scheduling policy is said to be an OPF policy if in any time-slot, policy
can serve the oldest packets in that time-slot for the largest possible value

of .

Lemma 3: For the same sample path, i.e., same realizations
of arrivals and channel connectivity, D-QSG and D-SSG pick
the same schedule in every time-slot.

Proof: We prove Lemma 3 by induction. It suffices to
prove that for any given system, i.e., for any given set of packets
after arrivals and for any channel realizations, both D-SSG
and D-QSG pick the same schedule. Suppose that there are
packets in the system. Let denote the th oldest packet in
the system. We want to show that packet is either served by
the same server under both D-SSG and D-QSG, or is not served
by any server under both D-SSG and D-QSG. We denote the
set of the oldest packets by , and denote

the set of the first servers by . Let
denote the server allocated to serve the th oldest packet under
D-QSG. We prove it by induction method.
Base Case: Consider packet , i.e., the oldest packet, and

consider two cases: under D-QSG, 1) packet is served by
; 2) packet is not served by any server.

In Case 1), we want to show that packet is also served
by the same server under D-SSG. Note that packet is
the oldest packet in the system and is the first packet to be con-
sidered under D-QSG. Since it is served by , from the tie-
breaking rule of D-QSG, we know that the queue that contains
packet is disconnected from all the servers in set ex-
cept server . Now, we consider the server allocation under
D-SSG, which allocates servers one by one in an increasing
order of the server index. Since all the servers in set ex-
cept for server are disconnected from the queue containing
packet , these servers cannot be allocated to packet in the
first rounds under D-SSG. While in the th round,
D-SSG must allocate server to packet since the queue
that contains packet is the queue that has the largest HOL
among the queues that are connected to server .
In Case 2), packet is the first packet to be considered

under D-QSG, but is not served by any server. This implies that
no servers are connected to the queue that contains packet .
Hence, packet cannot be served under D-SSG either.
Combining the above two cases, we prove the base case.
Induction Step: Consider an integer .

Suppose that every packet in set is either served by the same
server under both D-QSG and D-SSG, or is not served by any
server under both D-QSG and D-SSG. We want to show that
this also holds for every packet in set . Clearly, it suffices
to consider only packet (i.e., the th oldest packet in
the system), as the other packets all satisfy the condition from
the induction hypothesis. We next consider two cases: under
D-QSG, 1) packet is scheduled by a server under D-QSG;
2) is not served by any server.
In Case 1), suppose that packet is served by server

under D-QSG.Wewant to show that packet is also
served by server under D-SSG.We first show that under
D-SSG, packet cannot be served in the first
rounds. Note that under D-QSG, packet is served by server

. This implies that any server in set is either
disconnected from the queue that contains packet or has
already been allocated to packets in set under D-QSG. This,
along with the induction hypothesis, further implies that under
D-SSG, in the first rounds, the servers under con-
sideration are either disconnected from the queue that contains
packet or allocated to packets in set . Hence, packet
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cannot be scheduled in the first rounds under
D-SSG. Next, we want to show that packet must be served
by server in the th round under D-SSG. Let

denote the set of packets among the oldest packets
that are not served under both D-QSG and D-SSG. Then, all
the queues that contain packets in set must be disconnected
from server , otherwise some packet should be
served by server under D-QSG. On the other hand, the
induction hypothesis implies that any packet must
be served by some server , under D-SSG, where

. Hence, D-SSG does not allocate server to any
packet in set . Therefore, in the th round, D-SSG must
allocate server to packet since the queue that con-
tains packet has the largest HOL delay among the queues
that are connected to server .
In Case 2), packet is not served by any server under

D-QSG. This implies that the queue that contains packet
is disconnected from all the servers in set

, i.e., the set of available servers when considering packet
. On the other hand, the induction hypothesis implies that

under D-SSG, all the servers in set are
also allocated to packets in set . Hence, packet
cannot be served by any server under D-SSG either.
Combining the above two cases, we prove the induction step.

This completes the proof.
Note that under D-SSG, in each round, when a server has

multiple connected queues that have the largest HOL delay, we
break ties by picking the queue with the smallest index. Presum-
ably, one can take other arbitrary tie-breaking rules. However, it
turns out to be much more difficult to directly analyze the rate-
function performance for a greedy policy from the server side
(like D-SSG) without using the above equivalence property. For
example, as we mentioned earlier, the authors of [9] and [10]
were only able to prove a positive (queue-length) rate-function
for Q-SSG in more restricted scenarios. Hence, our choice of
the above simple tie-breaking rule is in fact quite important
for proving the above sample-path equivalence result, which in
turn plays a critical role in proving a key property of D-SSG
(Lemma 1) and thus near-optimal rate-function of D-SSG (The-
orem 3). Nevertheless, we would expect that one can choose ar-
bitrary tie-breaking rules for D-SSG in practice.

APPENDIX C
PROOF OF LEMMA 1

We then divide the proof into two parts (Lemmas 4 and 5).
Lemma 4: Consider a set of packets. Consider any function

, which is strictly increasing with . The D-SSG
policy is applied to schedule these packets. Then, there exists
a finite integer such that for all , with
probability no smaller than , D-SSG
schedules all the oldest packets among the packets.

Proof: Since Lemma 4 is focused on the oldest
packets in the set, it is easier to consider the D-QSG policy in-
stead, which in an iterative manner schedules the oldest packets
first. Due to the sample-path equivalence between D-SSG and
D-QSG (Lemma 3), it is sufficient to prove that the result of
Lemma 4 holds for D-QSG.
Suppose that the oldest packets among the packets are

from different queues, where . It is easy to see that if

each of the queues is connected to no less than servers,
then all of these oldest packets will be served. Specifically,
because D-QSG gives a higher priority to an older packet, the
above condition guarantees that when D-QSG schedules any
of the oldest packets, there will always be at least one
available server that is connected to the queue containing this
packet.
Now, consider any queue . We want to compute the proba-

bility that is connected to no less than servers. We first
compute the probability that is connected to less than
servers

Next, choose such that
and for all .
Such an exists because
and , hence we have

and thus
for large enough ;

similarly, because and
, hence we

have and
thus for large enough
. Then, the probability that each of the queues is connected
to no less than servers is

for all , where (a) is from our choice of and
the fact that , (b) is from our choice of and
Bernoulli’s inequality (i.e., for every real
number and every integer ), and (c) is from our
choice of . This completes the proof.
Lemma 5: Consider a set of packets satisfying that no more

than packets are from the same queue, where is any
integer constant independent of . The D-SSG policy is applied
to schedule these packets. Then, there exists a finite integer

such that for all , with probability no smaller
than , D-SSG schedules at least packets
among the packets.

Proof: Consider the D-SSG policy. We first compute
the probability that some packets are not scheduled
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by D-SSG, which is equivalent to the event that some
servers are not allocated to any packet by D-SSG.
Consider any arbitrary set of servers

, where if . Clearly, we have
for all . Consider

the th server . Then, the number of remaining packets is
at least at the beginning of the th round. Since
no more than packets are from the same queue, there
are at least queues that are nonempty at
the beginning of the th round. Then, the probability that
server is not allocated to any packet is no greater than

. Hence

Since , there exists an such that
for all . Such

an exists because and
, hence
and thus

for large enough .
Then, we can compute the probability that some servers
are not allocated as

for all , where the last inequality is due to our choice
of .
Therefore, we have

for all .
By applying Lemmas 4 and 5, and choosing

, where is such that
for all , we show that for all , with

probability no smaller than , D-SSG
schedules at least packets including the oldest
packets among the packets.

APPENDIX D
PROOF OF THEOREM 4

The proof follows a similar argument for the proof of
[13, Theorem 2].
We start by defining

. Consider any fixed , and define

.
Then, we have .
We then choose the value of parameter for G-FBS based

on the statistics of the arrival process. We fix and
. Then, from Assumption 3, there exists a positive function

such that for all and , we
have

for any integer . We then choose

The reason for choosing the above value of will become clear
later on. Recall from Assumption 2 that is the maximum
number of packets that can arrive to a queue in any time-slot
. Then, is the maximum number of packets that can
arrive to a queue during an interval of time-slots and is thus the
maximum number of packets from the same queue in a frame.
This also implies that in the S-frame, no more than packets
are from the same queue.
Next, we define the following notions associated with the

G-FBS policy. Let denote the number of unserved frames
in time-slot , and let denote the remaining available space
(where the unit is packet) in the end-of-line frame at the end
of time-slot . Also, let denote the indicator function of
whether a success occurs in time-slot . That is,
if there is a success, and otherwise. Recall that

. Then, we can write a recursive equation for

(4)

(5)

Let denote the number of packets in the
L-frame at the beginning of time-slot , and let
denote the number of packets in the HOL frame at the begin-
ning of time-slot . Then, at the beginning of time-slot , the
number of packets in the S-frame is equal to . Let

denote the number of packets served from
the S-frame if a success occurs in time-slot . Then, we have the
following recursive equation for :

if
otherwise.

Also, we let
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denote the the total number of successes in the interval from
time-slot to when the S-frame is nonempty (i.e., the
number of unserved frames is greater than zero or the L-frame
is nonempty).
Note that the arriving time of a frame is the time when its first

packet arrives. Let denote the available space in
the end-of-line frame at the end of time-slot . Then, we let

denote the number of new frames that arrive from
time-slot to . When , we use to denote

for notational convenience.
Let be the last time before , when the number of

unserved frames is equal to zero. Then, given that
, where , the number of unserved frames never

becomes zero during interval . Let denote
the indicator function of whether at time-slot 0 the L-frame con-
tains a packet that arrives before time-slot , i.e.,
if at time-slot 0 the L-frame contains a packet that arrives be-
fore time-slot , and otherwise. Let denote
the event that the number of frames that arrive during interval

is greater than the total number of successes
during interval when the S-frame is nonempty, i.e.,

Let denote the event that the number of frames that arrive
during interval is equal to the total number
of successes during interval when the S-frame is
nonempty, and at time-slot 0 the L-frame contains a packet that
arrives before time-slot , i.e.,

Letting , we have

(6)
By taking the union over all possible values of and ap-
plying the union bound, we have

(7)

We fix a finite time as

(8)

where

(9)

and

(10)

Then, we split the summation in (7) as

where

We divide the proof into two parts. In Part 1, we show that
there exist a constant and a finite such that for
all , we have

where is a function satisfying that
and . In Part 2, we show that there exists a finite

such that for all , we have

Finally, combining both Parts, we have

for all . By letting tend to 0, and
taking logarithm and limit as goes to infinity, we obtain

, and thus the
desired results. For a detailed proof, please refer to our online
technical report [24].
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