
Virtual Network Function Deployment in
Tree-structured Networks

Yang Chen, Jie Wu, and Bo Ji
Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu, boji}@temple.edu

Abstract—Network Function Virtualization (NFV) evolves the
implementation of network functions from expensive hardwares
to software middleboxes. These software middleboxes, also called
Virtual Network Functions (VNFs), are executed on switch-
connected servers. Efficiently deploying such VNFs is challenging,
because VNFs must fully process all flows with their traffic
rates before they reach their destinations while VNF locations
are restricted by the constraint of vertex capacity. In addition,
each network function offers heterogeneous VNF types with
different configurations of processing volumes and costs. This
paper focuses on minimizing the total cost of deploying VNF
instances for providing a specific network function to all flows
in tree-structured networks. First we prove the NP-hardness of
heterogeneous VNF deployment in a tree topology and propose a
dynamic programming based solution with a pseudo-polynomial
time complexity. Then we narrow down to three simplified cases
by focusing on homogeneous VNFs or the linear line topology.
Specifically, three algorithms are introduced: an improved dy-
namic programming based algorithm for deploying homogeneous
VNFs in a tree topology, a performance-guaranteed algorithm for
deploying heterogeneous VNFs in a linear line topology, and an
optimal greedy algorithm for deploying homogeneous VNFs in
a linear line topology. Extensive simulations are conducted to
evaluate the performance of our algorithms.

Index Terms—Deployment, NFV, SDN, tree-structured net-
works, VNFs.

I. INTRODUCTION

Network Function Virtualization (NFV) addresses the prob-
lems of traditional purpose-built hardware appliances [1] by
leveraging virtualization technologies to implement network
functions in software [2] such as firewalls, network ad-
dress translator, proxies, and deep packet inspection. Software
middleboxes, also called Virtual Network Functions (VNFs)
[3], are provisioned most commonly in modern networks
to demonstrate their increasing importance [4]. With the
emergence of Software Defined Networking (SDN), there
is a tendency to incorporate SDN and NFV in concerted
ecosystems [5]. SDN maneuvres traffic through appropriate
VNFs and allows VNFs to pick service locations from multiple
available servers; on the other hand, traditional hardwares
leave no choice for allocations [6]. This results in a flexible
architecture and has the potential to significantly reduce capital
and operating expenses, shorten product release cycle, and
improve service agility.

This paper studies the VNF deployment problem with a
given set of flows in tree-structured networks, whose switch-
connected servers have limited capacities (the maximum num-
ber of deployed VNF instances). Tree-structured topologies

f1 f2

f3
f4

v1

v2

v4 v5

f4

(a) Unlimited vertex capacity.

f1 f2

f3
f4

v1

v2 v3

v4 v5

f4

(b) Limited vertex capacity
of one instance.

Fig. 1: A motivating example.

are quite common in streaming services and Content Delivery
Networks (CDNs) [7]. Additionally, it is proven NP-hard to
minimize the total number of VNF instances even to deploy
one service function in a general topology [10]. Thus, we
narrow down to tree-structured networks and provide stronger
algorithmic results in this paper. We assume that all flows are
upstream (destination is closer to the root than source) and re-
quire an identical network function, which has heterogeneous
VNF types with different configurations of processing volumes
and costs [11]. The processing volume of a VNF instance
can be shared by multiple flows. A flow can be fractionally
processed by several instances before its destination [10]. Our
objective is to minimize the total deployment cost when all
flows are fully processed with their traffic rates before reaching
destinations.

However, most existing works assume that the vertex capac-
ity is unlimited or the number of instances is much smaller
than the vertex capacity. We use an example in Fig. 1 to illus-
trate the complexity of the VNF deployment problem without
and with the limited server capacity constraint. The topology
of the toy example is a binary tree with five vertices. There are
four flows, f1, f2, f3, and f4, whose sources, destinations, and
paths are shown in Fig. 1. Their traffic rates are 3, 3, 4, and 2,
respectively. We are given a single type of VNF instance m
(grey square box) with a processing volume 4 and a cost 1.
We aim at minimizing the total cost of deploying m when the
traffic rates of all flows are fully processed before destinations.
Fig. 1(a) shows the optimal deployment with unlimited vertex
capacities by applying the algorithm in [10]. The full traffic
rate of f1 and 1 traffic rate of f2 are processed by the deployed
instances on v2, while the rest rates are processed by the
two instances deployed on v1. The total cost is 3 because of
deploying 3 instances. As for the limited server capacity case,
if each server can place at most one instance, one optimal
deployment with a minimum cost of 4 is shown in Fig. 1(b).



Compared to Fig. 1(a), one more instance is deployed since
v1 can deploy only one instance. In order to fully process all
flows before destinations, both instances on v1 and v4 waste
1 processing volume while the one on v3 wastes 2. The waste
is unavoidable because of the vertex capacity limitation and
the service requirement.

The main challenges of our deployment problem lie in
the selection of VNF locations and the allocation of each
deployed VNF processing volume. The vertex capacity con-
straint complicates the deployment, since flows have to be
fully processed before reaching their destinations. Intuitively,
if we deploy the instances too close to the root of the tree, the
processing volume is more likely to be used up, while flows
with destinations far from the root may not be processed; if
too far from the root, the opportunity of sharing the processing
volume of an instance is scarce so that some will be wasted
and more VNFs are needed. Additionally, heterogeneous VNF
types of configurations for a network function, which have
not been studied in the deployment problem, offer more
deployment options and make the problem more complex.

In this paper, we first solve the heterogeneous VNF deploy-
ment problem in a tree topology with a dynamic programming
based method. Because of NP-hardness of the problem, the
solution is pseudo-polynomial and its time complexity is not
easily tractable. Then we study a special case of homogeneous
VNF deployment and improve the dynamic programming
solution with an acceptable time complexity. Additionally,
the heterogeneous VNF deployment problem in a linear line
topology can be transformed to the classic submodular set
cover problem so that we introduce a performance-guaranteed
greedy strategy. An optimal greedy algorithm is designed for
the simple case: homogeneous VNF deployment in a linear
line topology.

Our main contributions are summarized as follows:
• We prove the NP-hardness of the heterogeneous VNF

deployment problem in the tree-structured network.
• We propose four pseudo-polynomial algorithms in dif-

ferent settings of topologies and VNF types of con-
figurations, shown in Tab. I with properties and time
complexities1. Since |M | (total number of VNF types
of configurations) and cmax (largest vertex capacity) are
small and integer-valued, while wmax (largest single VNF
instance setup cost) is in an arbitrary precision and order
of magnitude, the first algorithm is computationally hard,
and the complexities of the rest of the three algorithms
are dramatically improved.

• Extensive simulations are conducted to evaluate the effi-
ciency of our proposed algorithms.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model,
formulates the problem, and shows hardness. Section IV intro-

1An algorithm has pseudo-polynomial time if its running time is a polyno-
mial in the numeric value of the input (the largest integer present in the input)
(e.g., cmax in Tab. I), instead of the length of the input (the number of bits
required to represent it) (e.g., V in Tab. I), which is the case for polynomial
time algorithms.

TABLE I: Our proposed solutions and time complexities.
HHHHTopo

Type Heterogeneous Homogeneous

Tree DP Optimal DP Optimal
O(|V |4×(cmax×wmax)3) O(|V |4×(cmax)3)

Line Greedy Approximate Greedy Optimal
O(|V |2×|M |×cmax) O(|V |×cmax)

duces our deployment algorithms in tree-structured topologies.
In Section V, we handle cases in line topologies. Section VI
includes the experiments, and Section VII concludes the paper.

II. RELATED WORK

NFV frameworks have drawn a lot of attention, especially
in the area of VNF deployment problem. Various objectives
with different backgrounds are conduced in recent years. In
this section, we give a brief review of state-of-art works.

Casado et al. [12] propose a model for deploying a single
type of VNFs and present a heuristic algorithm to solve
the deployment problem. [10] studies the joint deployment
and allocation of a single type of VNFs, where flows can
be split and fractionally served by several VNF instances.
They propose several performance-guaranteed algorithms to
minimize the number of VNF instances. However, they treat
all servers with unlimited capacities such that they are able
to hold an arbitrary number of VNF instances, which is
not practical. [13] is the first to study the VNF deployment
problems taking the effects of changing traffic volume into
consideration. It also studies the multiple VNF deployment of
different dependency relationships. They target load balancing
through VNF deployment and flow-routing path selection.
However, this work only processes a single flow and takes
no consideration of the limited VNF processing volume. It
results in exclusive instances for each flow, which is wasteful
of server resources.

There are other types of service coverage for each flow,
such as service chain where each flow has to be covered by a
sequence of services with or without particular order, instead
of single service used in our model. Rost et al. [14] prove the
NP-completeness and inapproximability of the service chain
deployment under different constraint settings, extended from
the virtual network embedding problem. They initiate the
study of approximation algorithms and propose a performance-
guaranteed solution under the offline setting (given multiple
flows), based on randomized rounding of Linear Programming,
to maximize the total profit of satisfied flows in [15]. Since our
model is special with one service in a service chain, the results
obtained in this paper are more specific. In tree-structured
networks, we propose optimal DP-based solutions of the VNF
deployment.

III. MODEL AND FORMULATION

A. Network Model

We first present our model of the directed tree-structured
network, T = (V,E), where V = {v} is a set of vertices (i.e.,
switches), and E = {e} is a set of directed edges (i.e., links).



We use v to denote a single vertex and vertices are labeled of
1, 2, ..., |V | by the Breadth-First-Search (BFS). (We use | · | to
denote the cardinality of a set.) Each vertex vi is connected to
a capacity-limited server. The vertex capacity, denoted as ci,
represents the maximum number of VNF instances that can
be deployed on vi. For each location on vi, we can deploy
one VNF instance with any type of configuration. We use two
definitions of tree data structure to simplify our discussion.

Definition 1 (height, subtree): The height of a vertex is 1
plus the difference between the depth of the tree and the depth
of the vertex. A subtree Ti of a vertex vi in a tree T is a tree
consisting of vi and all its descendants in T .

Take the tree in Fig. 1(a) as an example. The height of v1

is 3 and the heights of v3 and v4 are 2 and 1, respectively.
The subtree T2 consists of v2, v4 and v5.

We are given a set of flows F = {f} and all flows request
to be processed by an identical network function (service).
All flows are upstream flows, i.e. the source of a flow is a
descendant of its destination. We use f to denote a flow with
a source of srcf , a destination of dstf , and an initial traffic
rate of rf . We say that a flow is satisfied when its initial traffic
rate is fully processed before reaching its destination.
M = {m} is the set of VNF types with different config-

urations for the requested network function (service). Each
VNF type m has a processing volume, αm, which is the
maximum total traffic rate that one m instance can process, and
a setup cost wm for setting up one VNF instance of type m.
Different VNF types of configurations for a network function
provide the same network service, but have various processing
volumes and setup costs. We simplify the types of different
configurations as different types in the following.

Definition 2 (heterogeneous, homogeneous): VNFs are
called heterogeneous if the number of VNF types is more than
one; otherwise, they are called homogeneous.

We assume each flow can be fractionally processed by
several VNF instances of any type deployed on vertices along
its path. We introduce the definition of the deployment plan
and its feasibility.

Definition 3 (deployment plan, feasibility): A deployment
plan of v, denoted as Ωv , is a set of VNF instances with
different types deployed on v. These instances are labeled by
1, 2, ..., |Ωv|. A deployment plan of the tree T , denoted as Ω,
is the union set of Ωv, ∀v ∈ V , i.e. Ω = {Ωv|v ∈ V }. We call
a deployment plan feasible when all flows are fully processed
before destinations.

Note that we can check the existence of a feasible de-
ployment plan by deploying all the VNF instances with the
maximum processing volume in all available locations of
servers. If this deployment plan is still not feasible, then no
feasible deployment exists.

We use m(v, j)∈ Ωv to record the jth placed VNF instance
on v after the labeling. The processing volume and setup cost
of m(v, j) are expressed as α(v, j), and w(v, j), respectively.
Let λfm(v,j) denote the amount of f ’s traffic rate processed
by the jth VNF instance deployed on v. Here each packet
of flows should only be processed by instances once, because

TABLE II: Symbols and Definitions.

Symbols Definitions

V,E, F,M the set of vertices, edges, flows, and VNF types
v, f,Ω a vertex, a flow, and a deployment plan
Ωv , cv the deployment plan and vertex capacity of v
srcf , dstf , rf source, destination, initial traffic rate of f
m(v, j) the jth placed instance on v
t(v, j),α(v, j),w(v, j) type, volume and cost of jth instance on v
λf
m(v,j)

traffic rate of f processed by m(v, j)

being processed by any instance will add an extra transmission
delay, which should be avoided. In the following, we use the
superscript max to denote the maximum value in a set such
as wmax = maxm∈M wm and cmax = maxv∈V cv . For the
ease of reference, we summarize notations in Tab. II.

B. Problem Formulation

In this paper, we study the VNF deployment problem: given
a set of flows F in a tree-structured network T , we deploy
heterogeneous VNFs with the minimum total cost to satisfy
all requests of flows.

Definition 4 (total cost): The total cost of a deploy-
ment plan Ω is the summed-up cost of setting up all VNF
instances, denoted by cost(Ω), which satisfies cost(Ω) =∑

v∈V
∑

m(v,j)∈Ωv
w(v, j).

Our problem can be formulated as:

min cost(Ω) (1)
s.t. |Ωv| ≤ cv ∀v ∈ V (2)∑

v∈V

∑
j

λfm(v,j) ≥ rf ∀f ∈ F (3)∑
f∈F

λfm(v,j) ≤ α(v, j) ∀m(v, j) ∈ Ωv, v ∈ V (4)

Our objective is to minimize the total cost of deployed VNF
instances in Eq. (1). Eq. (2) states that the total number of
deployed instances of each vertex is within its capacity. Eq.
(3) guarantees each flow being fully processed by its initial
traffic rate. Eq. (4) requires that the sum of processed traffic
rate by each VNF instance is no more than its processing
volume on all vertices.

C. Problem Hardness Analysis

In a general topology with homogeneous VNF instances,
[10] proves that it is NP-hard to minimize the total deployed
instance number, which is equivalent to minimizing the total
cost of the deployment. Here we study the hardness of
deploying the heterogeneous VNFs and we have:

Theorem 1: The heterogeneous VNF deployment with the
minimum cost is NP-hard even in a line topology.

The proof can be found in Appendix A. It is worth mention-
ing that we can apply the PTAS solutions in [16] if all flows
have the same paths, i.e., the topology is a line. However,
whether there exist PTAS solutions for the case with general
topologies remains an open question.



IV. VNF DEPLOYMENT IN A TREE TOPOLOGY

This section studies the deployments of heterogeneous and
homogeneous VNFs in tree-structured topologies.

A. Heterogeneous VNF deployment in a tree topology

First we handle the most general case. We propose a dy-
namic programming based solution of the heterogeneous VNF
deployment problem in a tree topology, called Heterogeneous
Dynamic Programming algorithm (HeteDP).

Before the recurrence, we define some notations. Let
OPT (i, w) denote the minimum total unprocessed rate going
out of node vi by deploying VNFs with a total cost w in the
subtree of vi. If we are unable to fully process flows having
dstf ∈ Ti by a total cost w, we have OPT (i, w) = ∞. This
is because the destination is the last chance of a flow to be
processed. We prioritize processing flows with smaller-height
destinations since their opportunities of being processed are
less. We use w(l) and w(r) to denote the allocated costs of
vi’s left and right subtrees, respectively. Deploy(i, w) denotes
the maximum total processing volume by deploying instances
with a total cost w on vi. The relation of the minimum total
unprocessed traffic rates out of vi and its children can be
formulated as:

OPT (i, w) = max{0, min
w(l)+w(r)≤w
w(l),w(r)≥0

{
∑

srcf=vi

rf +OPT (2i, w(l))+

OPT (2i+ 1, w(r))−Deploy(i, w − w(l)− w(r))}} (5)

Eq. (5) states that OPT (i, w) equals 0 if there is a deploy-
ment plan able to process all unprocessed rates by deploying
instances with a total cost w in the subtree of vi; otherwise, it
equals the minimum total unprocessed traffic rate out of node
vi. We combine all possible allocations of the total cost w
among vi’s children and itself by changing w(l) and w(r).

To prove its optimality, let’s consider one of the optimal
deployments as Ω∗ when given a VNF deployment problem.
Here are some observations of Ω∗: (i) If Ω∗ deploys instances
with a fixed total cost w in the subtree of a vertex v, it should
process as much traffic rate as possible. In other words, the
total unprocessed traffic rate going out of v (upwards to its
parent) should be minimized with the allocated cost w. This
is because the more unprocessed traffic rate is out of v, the
larger cost the deployment of v’s ancestors is likely to have.
(ii) The unprocessed traffic rate passing through v comes from
two kinds of flows: flows with srcf = v (flows start at v) and
flows with some unprocessed traffic rate and srcf ∈ Tv\ v
(not-fully-processed flows coming up from its subtrees). (iii)
The total deployment costs of all subtrees of v’s children must
be no more than w. Suppose each child vertex vi deploys
instances with a total cost wi in the optimal deployment Ω∗,
then instances with a total cost w −

∑
vi∈Tv

wi ≥ 0 will
be deployed on vertex v. (iv) With a fixed value of wi for
the subtree of vi, its deployment plan should also have the
minimum total unprocessed traffic rate going upwards out of
vi in order to lower the potential cost of deployed instances of
vi’s ancestors. (v) As the optimal deployment should have the

Algorithm 1 Heterogeneous DP (HeteDP)

In: Sets of vertices V , edges E, flows F , VNFs M ;
Out: The minimum total cost of deployed VNFs and the

deployment plan Ω;

1: Initiate the array of OPT ;
2: Generate the array of Deploy;
3: for each node vi from bottom-up do
4: for w ∈ [0,

∑
v∈Ti

cv × wmax] do
5: Use the recurrence Eq. (5) to compute OPT (i, w);
6: if OPT (i, w) = 0 then break;
7: Find Ω with the minimum w making OPT (1, w) = 0;
8: return The deployment plan Ω.

minimized unprocessed traffic rate going out of v, the deployed
instances on v with a total cost w −

∑
vi∈Tv

wi should have
the maximum total processing volume.

With the insights above, our objective of the deployment
problem is equivalent to finding the minimum cost of making
the unprocessed traffic rate out of v1 as low as 0. Moreover,
the optimal deployment of a tree T with the root v1 is able to
be separated into a polynomial number of subproblems in its
children. The optimal solutions of its children with different
allocated cost combinations yield an optimal deployment to
v1, and we can build up solutions to these subproblems using
a recurrence. It is worth mentioning that there are exponential
combinations of the costs that are allocated to the vertex itself
and all subtrees of its children when the total cost is fixed. In
order to generate the optimal deployment plan, we need to list
all such combinations, which is exponential of the number
of v’s children and w. In this paper, we only discuss the
binary tree topology to reduce the number of combinations
to polynomial of w. As a result, we can generate an optimal
solution with an acceptable time complexity.

As for the item Deploy(i, w−w(l)−w(r)) in Eq. (5), we
should maximize it in order to minimize the total unprocessed
traffic rate out of vi. It means to process the maximum total
traffic rate by deploying VNF instances on vi with a cost of
(w − w(l)− w(r)), which can be formulated as following:

max
∑

m(i,j)∈Ωi

α(i, j) (6)

s.t.
∑

m(i,j)∈Ωi

wi(j) ≤ w − w(l)− w(r) (7)

|Ωi| ≤ ci (8)

The formulation is the same as the classic knapsack problem
[17] except the second constraint. In the knapsack problem,
we are given a set of items, each of which has a non-negative
weight and a distinct benefit. We need to find a subset with the
maximum total benefit subject to the constraints that the total
weight of the subset should not exceed specific values. The
processing volume αm and the setup cost wm correspond to
the benefit and weight in the knapsack problem, respectively.
We slightly modify the dynamic programming solution of the



knapsack problem proposed in [18]. We use vol(w) to denote
the maximum total processing volume that can be attained
with a total deployment cost no more than w. The value of
vol(w−w(l)−w(r)) is the solution to our problem. Suppose
vol(0) = 0, then the recurrence can be justified as vol(w) =
maxm∈M{αm +vol(w−wm)}. When the number of selected
items reaches cv , the total processing volume vol(w) keeps
unchanged by not adding more items even when the weight
w is not used up. This is because we need to control not only
the total cost less than w−w(l)−w(r), but also the number
of selected items less than the vertex capacity. Thus, we list
all combinations of possible deployments on vi and find the
feasible one with the largest processing volume as Ωv .

Lemma 1: The worst time complexity of generating the
Deploy array is O((cmax)2 × wmax).

Proof: The modified knapsack problem can be solved in
O(cv × (w−w(l)−w(r))) time complexity. We find that the
solution of our modified knapsack problem is independent of
the deployment plan. In order to lower the time complexity
of HeteDP, we can calculate the Deploy array in advance and
refer to its values when applying the HeteDP algorithm. The
worst time complexity of the modified knapsack problem is
O(cmax × (cmax × wmax)) = O((cmax)2 × wmax). This is
because the maximum deployment on a vertex is to deploy
the most expensive VNF on all available locations. �

We propose the HeteDP algorithm in Alg. 1. We initiate
all value of OPT (i, w) as 0 in line 1. We calculate the
recurrence in Eq. (5) for each vertex from bottom-up in lines
3-5. Whenever OPT (i, w) = 0, we break the current loop and
continue to do the next loop in line 6. We find the minimum w
making OPT (1, w) = 0 in line 7 and return the corresponding
deployment plan Ω by tracing back in line 8. We analyze the
time complexity of our algorithm as follows.

Theorem 2: The worst time complexity of HeteDP algo-
rithm is O(|V |4 × (cmax × wmax)3).

Proof: HeteDP algorithm is a pseudo-polynomial time al-
gorithm using dynamic programming method. First, all |V |
vertices need to be traversed so that the algorithm has |V |
iterations. Second, in each iteration of a vertex from bottom-
up, we try all possibilities of the cost value w. The maximum
cost value is O(

∑
v∈V cv×wmax) = O(|V |× cmax×wmax).

Next for a fixed cost value w for the subtree of a vertex v, we
need to list all combinations of allocating the cost w to itself
and its two children while ensuring w(l) + w(r) ≤ w. There
are at most O((|V |×cmax×wmax)2) combinations. Then for
each combination, we need a constant time to calculate the
value of

∑
srcf=vi

rf +OPT (2i, w(l))+OPT (2i+1, w(r))−
Deploy(i, w − w(l) − w(r)) by referring to the OPT array
as well as the Deploy array. As discussed in Lemma 1, the
generation of all values in the Deploy array takes at most
O((cmax)2×wmax) time and we only need to calculate it once.
We determine the minimum value by traversing the values of
all combinations in a O((|V | × cmax × wmax)2) time and
calculate the value of OPT (i, w). Finally, the worst time com-
plexity is the number of iterations, times the maximum number
of cost value, times the maximum number of combinations of

a fixed cost value, which is O(|V | × (|V | × cmax ×wmax)×
(|V | × cmax × wmax)2) = O(|V |4 × (cmax × wmax)3). �

Note that we can also lower the time complexity by stopping
increasing w of OPT (i, w) in two cases: the first case is when
the smallest w for the vertex vi appears making OPT (i, w) =
0; the second case is when w reaches

∑
v∈Ti

cv×wmax. This is
because OPT (i, w) = 0 means that there is no unprocessed
traffic rate out of vi, meaning that instances with a cost w
can process all flows in the subtree of vi. A larger w is
unable to process any more flows, since no unprocessed flow
exists. In addition, finding the minimum value of w making
OPT (1, w) = 0 is our objective. The second case states the
natural upper bound of w that all available locations in the
subtree of Ti are deployed by the most expensive instance.

Theorem 3: HeteDP is optimal for heterogeneous VNF
deployment in a tree topology.

The detailed proof is omitted due to the optimal property
of the dynamic programming method.

B. Homogeneous VNF deployment in a tree topology

First we present a lemma to transform our objective into a
simpler equivalent form when there is only one type of VNFs.

Theorem 4: Minimizing the total cost of deployed instances
with homogeneous VNFs is equivalent to deploying the min-
imum number of instances.

Proof: As there is only a single type of VNF m, our cost
function can be converted to cost(Ω) =

∑
v∈V |Ωv| × wm =

|Ω|×wm. Since wm is a constant, it is the same as minimizing
|Ω|, which is the total number of deployed instances. �

Our objective is transformed to minimizing the total number
of deployed VNF instances when there is only a single type
of VNF m. Inspired by HeteDP, we also propose a dy-
namic programming based algorithm, called HomoDP, which
is simpler and more tractable than HeteDP. We replace the
total cost w by the total number of deployed instances n in
each subtree of vertices. We use OPT (i, n) to denote the
minimum total unprocessed traffic rate going out of node
vi by deploying n VNF instances altogether in the subtree
of node vi. Our target is to find the minimum n making
OPT (1, n) = 0. If flows with destinations within the subtree
of vi are unable to be fully processed by deploying n instances,
we have OPT (i, n) =∞. We also prioritize processing flows
with smaller-height destinations. We use n(l) and n(r) to
denote the deployed instances in vi’s left and right subtrees,
respectively. There are n − n(l) − n(r) VNF instances to be
deployed on vi. We replace the Deploy(i, w − w(l) − w(r))
by (n − n(l) − n(r)) × αm. HomoDP’s similar recursive
formulation is omitted because of limited space.

Here we use the topology in Fig. 1(b) with the same
setting as an example to show the deployment procedure.
The tree has five nodes with capacities cv = 1,∀v ∈ V .
There are four flows f1, f2, f3 and f4 with initial traffic rates
as r1 = 3, r2 = 3, r3 = 4, and r4 = 2. There is only
one type of VNF m with αm = 4. We aim to find the
smallest n such that OPT (1, n) = 0. For ease of reference,
we list the values of OPT (i, j) in Table III. We traverse



TABLE III: The values of OPT (i, n).
PPPPPPi

n 0 1 2 3 4

1 ∞ ∞ ∞ ∞ 0
2 ∞ 6 2 0 0
3 2 0 0 0 0
4 3 0 0 0 0
5 3 0 0 0 0

vertices from bottom-up by first calculating OPT (5, 0) =
r2 − 0 = 4. We have OPT (5, 1) = max{0, r2 − 1 × αm} =
max{0, 3 − 4} = 0. As c5 = 1, more than one instance are
unable to be deployed resulting in OPT (5, n) = 0, ∀n≥2.
Similarly, we can calculate OPT (3, n) and OPT (4, n), ∀0≤
n≤ 4. Since f2 with dst2 = v2 is not processed by not
deploying any VNF in the subtree of v2 (n = 0), we
have OPT (2, 0) = ∞ indicating the infeasibility of the
deployment. The detailed calculation of OPT (2, 1) is that
OPT (2, 1) = max{0,min{r3+OPT (4, 1)+OPT (5, 0)−0×
αm, r3 +OPT (4, 0)+OPT (5, 1)−0×αm, r3 +OPT (4, 0)+
OPT (5, 0)− 1×αm}} = max{0,min{4 + 3 + 0− 0, 4 + 3 +
0−0, 4+3+3−4} = 6. Similarly, we calculate other values of
OPT array in Tab. III. The smallest n making OPT (1, n) = 0
is 4. By tracing back the table, the optimal deployment Ω is
as shown in Fig. 1(b).

Theorem 5: The worst time complexity of the HomoDP
algorithm is O(|V |4 × (cmax)3).

Proof: As HomoDP is simplified from HeteDP when wmax

is a constant, then the complexity in Theorem 2 is reduced to
O(|V |4 × (cmax)3). �

Theorem 6: HomoDP is optimal for homogeneous VNF
deployment in a tree topology.

The detailed proof is omitted due to the optimal property
of the dynamic programming method.

V. VNF DEPLOYMENT IN A LINE TOPOLOGY

In this section, we simplify the tree-structured topologies
into lines in order to generate more efficient algorithms.

A. Heterogeneous VNF deployment in a line topology

In this subsection, we simplify the tree topology into a line
and propose a performance-guaranteed algorithm of deploying
heterogeneous VNFs. We are given a line topology L = (V,E)
with |V | nodes (vertices), which are labeled 1, 2, ..., |V | by a
line coordinate axis. For simplicity, we say that one vertex is
smaller (larger) than another vertex if its coordinate is smaller
(larger) and vice versa. Assume the source of each flow is
smaller than its destination no matter where its source and
destination reside in the line. This means that flows transfer
from left to right. When deploying one new instance of type m
on v, we omit the sequence number of the jth instance m(v, j)
by denoting the instance as m(v). The new deployment plan
is expressed as Ω ∪m(v). Before proposing our solution, we
introduce two definitions.

Definition 5 (benefit function): The benefit func-
tion, denoted as b(Ω), indicates the total processed traf-
fic rate of a deployment plan Ω, which satisfies b(Ω) =∑

v∈V
∑

m(v,j)∈Ωv

∑
f∈F λ

f
m(v,j).

Definition 6 (marginal benefit): The marginal benefit,
denoted as bΩ(m(v)) = b(Ω ∪ m(v)) − b(Ω), indicates the
marginal contribution of processing flows by deploying a new
instance of type m on v beyond the current deployment Ω.

We analyze the property of the benefit function b(Ω). A
function f is submodular if and only if ∀S ⊆ T ⊆ N, ∀e ∈
N \ T , fT (e) ≤ fS(e). Then we prove that ∀m(v) /∈ Ω′, if
Ω ⊆ Ω′, the submodular property holds, i.e., b(Ω ∪m(v)) −
b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′).

Theorem 7: b(Ω) is a submodular function.
Proof: b(Ω) is an non-decreasing function, which is mono-

tone. Suppose two deployment Ω and Ω′ with Ω ⊆ Ω′.
It is intuitive that the more instances are selected, the less
unprocessed traffic rates remain, since the newly added m can
only process the unprocessed rate. The maximum marginal
benefit of a VNF instance m is αm because of its processing
volume limitation. If the newly added instance processes no
traffic rate in both Ω and Ω′, then b(Ω ∪ m(v)) − b(Ω) =
b(Ω′ ∪m(v))− b(Ω′) = 0. As long as m process some flows
in Ω′, it will process no less traffic rate in Ω. Then we have
b(Ω∪m(v))− b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′). Thus, b(Ω) is a
submodular function. �

Here we explain that our problem formulation in Section
III(B) can be transformed to the classic submodular set cover
problem [19]. Our objective cost(Ω) in Eq. (1) is an non-
decreasing function. The two constraints in Eqs. (2) and (4)
are included in the definition of our b(Ω) function. Specifi-
cally, the ground set of the benefit function b(Ω) limits the
available deploying locations within each vertex’s capacity,
and the marginal benefit limits the largest contribution of an
instance no more than its processing volume. b(Ω) is the non-
decreasing, submodular set function proved in Theorem 7. The
constraint in Eq. (3) corresponds to the covering requirement
of the set cover problem that each flow needs to be fully
processed. Then our problem can be transformed as:

min cost(Ω) (9)

s.t. b(Ω) ≥
∑
f∈F

rf (10)

Before introducing the solution, we sort flows in an alpha-
betical order of a tuple < dstf , srcf > (the ascending order
of destination and the descending order of source). We include
two new definitions.

Definition 7: (prior, superior) A flow f is prior to a flow
f ′ if: (1) dstf < dstf ′ ; (2) dstf = dstf ′ and srcf > srcf ′ .
A flow f is superior if no flow is prior to f .

The priority of flows indicates their order to achieve the
processing volume of an instance, and superior flows should
be processed first because of their small destinations or shorter
path lengths. We propose a greedy algorithm in Alg. 2, called
Heterogeneous VNF deployment in Line algorithm (HVPL)
to solve the deployment problem. We initiate the deployment
plan as an empty set in line 1. In lines 2-3, we iteratively
select m(v) with the minimum value of wm/bΩ(m(v)) to
handle superior flows. Then we add the deployment of the



TABLE IV: The values of cost(m)/bΩ(m(v)).
HHHHΩ

m(v)
m(1) m(2) m(3) m(4) m(5) m′(1) m′(2) m′(3) m′(4) m′(5) m′′(1) m′′(2) m′′(3) m′′(4) m′′(5)

∅ 2 2 2 2 2 3 1.5 1.5 1.5 1.5 4 1 1 2 2
{m′′(2)} 2 ∞ 2 2 2 3 ∞ 1.5 1.5 1.5 4 ∞ 2 2 2

{m(3),m′′(2)} ∞ ∞ ∞ 2 2 ∞ ∞ ∞ 3 3 ∞ ∞ ∞ 4 4

Algorithm 2 Heterogeneous VNF deployment in Line

In: Sets of vertices V , edges E, flows F and VNFs M ;
Out: The deployment plan Ω (initialized to ∅);

1: while not all flows are fully processed do
2: Select m(v) with minm∈M

v∈V
cost(m(v))/bΩ(m(v)) to

handle superior flows;
3: Ω = Ω +m(v);
4: return The deployment plan Ω.

v1 v2 v3 v4 v5
f2

f1
f3 f4

m'' m' m

Fig. 2: Illustration of the HVPL algorithm.

new instance to the current plan Ω until all flows are fully
served. The deployment plan Ω returns in line 4.

Theorem 8: The worst time complexity of HVPL algorithm
is O(|V |2 × |M | × cmax).

Proof: In each round, we have at most |V | vertices and
|M | types of VNFs. The maximum number of rounds is to
place VNF instances in every available location in servers,
which is

∑
v∈V cv = O(cmax × |V |). Thus, the worst time

complexity of HVPL is the maximum number of rounds times
the choices in each round, which is O(|V | × |M | × (cmax ×
|V |) = O(|V |2 × |M | × cmax). �

To better understand Alg. 2, we use an example shown in
Fig. 2 to illustrate the deployment procedure. In this example,
the line topology has 5 vertices with cv = 1,∀v ∈ V . We
are given a set of heterogeneous VNFs, M = {m,m′,m′′}.
Their processing capacities are α = 1, α′ = 2 and α′′ = 4,
and setup costs are w = 2, w′ = 3, and w′′ = 4, respectively.
There are four flows f1, f2, f3 and f4, whose paths are shown
in Fig. 2 and initial traffic rates are r1 = 1, r2 = 4, r3 = 1
and r4 = 1, respectively. The alphabetical order of flows
is f2 > f1 > f4 > f3. For each round, we calculate
wm/bΩ(m(v)), ∀v ∈ V,m ∈ M . For example, the algorithm
is then conducted as: (1) we list all possible deployments over
the current empty deployment plan Ω = ∅ in the second
row of Tab. IV. The smallest one is w′′/b(m′′(2)) = 1.
As a result, we deploy a m′′ instance on v2. We prioritize
processing the superior flowf2. (2) referring to the second row
of Tab. IV, the smallest one is w′/b{m′′(2)}(m

′(3)) = 1.5. As
a result, we deploy a m′ instance on v3 to process f1 and
f4. (3) referring to the third row of Tab. IV, the smallest is
w/b{m′′(2),m′(3)}(m(4)) = 2. Thus, we deploy a m instance
on v4 and so all flows are satisfied. We return the feasible
deployment plan Ω = {m′′(2),m′(3),m(4)}.

Theorem 9: The proposed Alg. 2, HVPL, can achieve a
deployment with at most H(maxm(v) b∅(m(v))) times of the
minimum cost, where H(d) =

∑d
i=1

1
i .

Proof: Our VNF deployment problem has the same formu-
lation of submodular set cover [19] and the deployment plan
Ω is chosen exactly corresponding to its greedy algorithm in
Section 2 in [19]. Hence, the approximation ratio follows from
Theorem 1 in [19]. maxm(v) b∅(m(v)) is the maximum benefit
of only deploying a specific instance m. (∅: empty set) �

B. Homogeneous VNF deployment in a line topology

Theorem 10: Minimizing the total cost of deployed in-
stances with homogeneous VNFs is also equivalent to mini-
mizing the total amount of wasted processing volume.

Proof: From Theorem 4, |Ω| is minimized. Because∑
f∈F rf is a fixed value and αm is also a constant, |Ω| ×

αm −
∑

f∈F rf , which is the total waste processing volume
of deployed VNFs, is also minimized. �

Here we further simplify the settings by deploying ho-
mogeneous VNF in a line topology. We propose a greedy
algorithm, called Greedy VNF Plan (GVP), and prove its
optimality for minimizing the deployment cost. The algorithm
is shown in Alg. 3. The insight of GVP is to minimize the
total processing volume waste based on Theorem 10 when all
flows are satisfied. Superior flows are the first to be processed,
and GVP only deploys instances when no processing volume
is wasted or the superior flow reaches its destination. In GVP,
we sort flows in an alphabetical order in line 1. In lines 2-
10, we traverse vertices from left to right. When the vertex
v has remaining capacities and the total unprocessed traffic
rate of superior flows passing v can use up a new instance’s
processing volume αm in line 3, we deploy one new instance
on v in line 4. In lines 5-9, we handle the case that the superior
flows can not use up the processing volume of a new instance.
We reallocate the processing volumes of deployed VNFs in
line 10 while the deployment plan Ω is returned in line 11.

Theorem 11: The worst time complexity of GVP algorithm
is O(|V | × cmax).

Proof: We deploy VNFs for |V | vertices, and for each vertex
v, we place at most cv instances. In each loop we place at
least one instance in a constant time. The maximum number
of loops is

∑
v∈V cv = O(|V | × cmax). Thus, the worst time

complexity of Alg. 3 is the maximum number of loops, which
is O(|V | × cmax). �

For a better understanding, we use an example shown in
Fig. 3 to illustrate the deployment procedure. Each vertex
has a capacity of 1, i.e. cv = 1, ∀v ∈ V . There are
four flows f1, f2, f3 and f4, whose initial traffic rates are
r1 = 1, r2 = 4, r3 = 1, and r4 = 1, respectively. There is
only one type of VNF m with a processing volume αm = 2.



Algorithm 3 Greedy VNF Placement (GVP)

In: VNF m and sets of vertices V , edges E, flows F ;
Out: the deployment plan Ω;

1: Sort flows in the alphabetical order;
2: for each vertex v from 1 to |V | do
3: while the sum of unprocessed traffic rate of superior

flows passing v is no less than αm and cv > 0 do
4: Allocate one new instance on v;
5: if the superior flow f with dstf ≤ v have some

unprocessed traffic rate then
6: if cv′ ≤ 0, ∀srcf ≤ v′ ≤ v then
7: return Non-existence of a feasible plan;
8: else
9: Allocate one VNF on max v′,∀cv′ > 0, v′ < v;

10: Reallocate the processing volumes of all deployed
VNFs from left to right for flows in alphabetical order;

11: return The deployment plan Ω.

v1 v2 v3 v4 v5
f2

f1 f3 f4

m m m m

Fig. 3: Illustration of the GVP algorithm.

The alphabetical order of flows is f2 > f1 > f4 > f3.
First, we deploy one instance on v2 because f2 is the superior
flow and its unprocessed traffic rate is larger than αm. The
same happens to v3 so that we deploy one new instance. f2

is satisfied and f1 becomes the superior flow. Since v2 and
v3 have no remaining capacities, v1 is the largest vertex with
c1 > 0 and one VNF is deployed on v1. After that, f4 and f3

become the superior flows, whose sum of unprocessed traffic
rates is larger than αm on v4. Then we deploy one VNF on
v4. All flows are satisfied, shown in Fig. 3.

Lemma 2: By applying Alg. 3, a VNF instance on v has
some remaining volume only when: suppose f has the lowest
priority among all satisfied flows, then no flow f ′ with srcf ′ ≤
v and dstf ′ ≥ dstf has any unprocessed traffic rate. All flows
prior to f ′ certainly use up the capacity from the next vertex
of v to dstf .

Proof: Alg. 3 deploys a new instance on a vertex v only
when: (1) unprocessed traffic rate of superior flows passing
v is larger than the processing volume of a VNF instance;
(2) one flow f has some unprocessed traffic rate and there
is no capacity left from the next vertex of v to dstf . The
first situation has no processing volume waste. In the second
situation, the last instance with the remaining processing
volume has to be deployed; otherwise, the flow f cannot
be satisfied before it reaches its destination, since no vertex
capacity is available from v to its destination. �

Theorem 12: Alg. 3 is optimal for deploying the homoge-
neous VNF in a line topology.

Proof: We prove the optimality of Alg. 3 by induction. In
Theorem 10, we demonstrate that the objective is equivalent to
minimizing the total waste of deployed instances. We list all

10 20 30 40 50 60
Vertex number

60

80

100

120

140

160

To
ta

l c
os

t

HeteDP
HomoDP
HVPL
GVP

Fig. 4: The impact of topology scale.

situations that instances have remaining processing volumes.
Suppose v1 is the smallest vertex with such an instance, then
all the other instances deployed on and before v1 have no
remaining volume. From Lemma 2, the instance has to be
deployed and no more unprocessed traffic rate goes right from
the vertex v1. Thus, there is no deployment that has the waste
less than Ω. Assume it is true for all vertices less than vk,
which indicates that no more superior unprocessed traffic rate
goes right from the vertex vk. Then the situation of the next
vertex, having an instance with some remaining volume, is
the same as the situation of the first vertex v. This is because
there is no unprocessed traffic rate of a flow f with srcf ≤ vk,
making us able to treat the next vertex of vk as the new origin.
Repeatedly, we find the smallest v > vk with an instance
having the remaining capacity. Additionally, we have proven
that it is true for the smallest v. So it is also true for the
vk+1 with an instance having the remaining capacity. To sum
up, Alg. 3 has the least amount of wasted volume, which is
equivalent to deploying the least number of VNFs. �

VI. EVALUATION

Simulations are conducted to evaluate the performances of
our proposed algorithms. After presenting the network and
flow settings, the results are shown from different perspectives.

A. Settings

Topology: We test the impact of the topology scale with
a fixed flow number of 1000 and basic settings as follows,
and the results are shown in Fig. 4. All their total costs
have little variance with the vertex number increment. Thus,
we only conduct our simulations in a line topology and a
random-generated tree topology, both of which empirically
have fixed 20 vertices. Each switch vertex is connected to a
server with an identical capacity of 10, i.e. cv = 10, ∀v ∈ V .
Additionally, traditional data center networks and WAN design
over-provision the network with 30−40% average network
utilization in order to handle traffic demand changes and
failures [20]. As a result, we assume each link has enough
bandwidth to hold all flows. This assumption eliminates link
congestion and ensures that the transmission of all flows is
successful, since routing failure is not the concern in this paper.

VNFs: We conduct the simulations with two sets of VNFs,
M and M ′. The first set M only includes one type of VNF m,
i.e. M = {m}. Its required server resource is 2, i.e. wm = 2.
The processing volume of one m instance is 8, i.e., αm = 8.
The second set M ′ includes three types of VNFs, i.e. M =



500 1000 1500 2000
Number of flows

50

100

150

200
# 

of
 p

la
ce

d 
VN

Fs
GFT
Radom-fit
HeteDP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

60

80

100

120

140

160

180

To
ta

l c
os

t

GFT
Radom-fit
HeteDP

(b) Total cost.

Fig. 5: Heterogeneous VNF deployment in a tree topology.

500 1000 1500 2000
Number of flows

10

20

30

40

50

60

# 
of

 p
la

ce
d 

VN
Fs

GFT
Radom-fit
HomoDP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

4

6

8

10
Av

er
ag

e 
se

rv
er

 re
qu

ire
d 

vo
lu

m
e

GFT
Radom-fit
HomoDP

(b) Average server required volume.

Fig. 6: Homogeneous VNF deployment in a tree topology.

{m,m′,m′′}. Their processing volumes are α = 6, α′ = 8
and α′′ = 10, and costs are w = 1, w′ = 2 and w′′ = 3.

Traffic: All flows’ paths are fixed and their traffic rates are
also known a prior. Under the tree topology, the source of each
flow is a descendant of its destination. We adopt the flow size
distribution of Facebook data centers, which is collected in
10-minute packet traces of three different node types: a Web-
server rack, a single cache follower, and a Hadoop node [21].
More than 88% flows are less than 7 Mbps. As a result, the
traffic rate ranges from 0.1 to 6 Mbps with a granularity of
0.1 Mbps and is generated randomly in this paper.

B. Comparison algorithm and performance metrics

We include two benchmark schemes in our simulations:
• Sang et al. [10] propose algorithm GFT for deploying

only one type of VNF without the constraint of vertex
capacity. VNFs are not deployed until it is the destination
of some flows that need to be served.

• Random-fit randomly deploys heterogeneous VNFs on
random nodes on the paths until all flows are fully served.

GFT is only designed for deploying the homogeneous VNF
instances. When we need to deploy heterogeneous VNFs,
we randomly select a single type of VNFs each time and
apply GFT to deploy the instances. Additionally, if the vertex
capacity is not enough, we simply deploy the VNFs in its
nearest descendants with enough remaining capacities until all
flows are a hundred percent served.

We use three performance metrics: the total number of de-
ployed instances, the total cost (heterogeneous VNFs), and the
average server utilization (homogeneous VNF) for benchmark
comparisons. The total number of deployed instances is the
sum of deployed VNFs of each type. We also evaluate the total
cost corresponding to our objective function as shown in Eq.

500 1000 1500 2000
Number of flows

50

100

150

200

# 
of

 p
la

ce
d 

VN
Fs

GFT
Radom-fit
HVPL

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

50

100

150

200

To
ta

l c
os

t

GFT
Radom-fit
HVPL

(b) Total cost.

Fig. 7: Heterogeneous VNF deployment in a line topology.

500 1000 1500 2000
Number of flows

0

20

40

60

80

# 
of

 p
la

ce
d 

VN
Fs

GFT
Radom-fit
GVP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

4

6

8

10

Av
er

ag
e 

se
rv

er
 re

qu
ire

d 
vo

lu
m

e

GFT
Radom-fit
GVP

(b) Average server required volume.

Fig. 8: Homogeneous VNF deployment in a line topology.

(1). Since all vertex capacity settings are identical, the average
required server volume is equivalent to the total consumed
server volume divided by the total number of servers.

C. Results of the VNF deployment in a tree topology

Fig. 5 shows the results of the heterogeneous VNF de-
ployment in a tree topology. We have tested the algorithms
with 350 to 2010 flows. All their sources and destinations
are randomly generated. As for the total number of instances,
HeteDP deploys the fewest VNFs and outperforms signifi-
cantly better than the other two as shown in Fig. 5(a). The
numbers of deployed instances by the three methods are
approximately 3 times the numbers when we only need to
deploy a single type of VNFs. In Fig. 5(b), HeteDP has the
smallest average server utilization ratio. When there are 2100
flows, HeteDP uses 19.8% less of the total cost than Random-
fit and 17.8% less than GFT. This is because HeteDP checks
all possible deployment cases and selects the optimal one with
the minimum cost. Note that the execution time of HeteDP is
tens of GFT and Random-fit because of DP’s optimality.

Fig. 6 is the result of homogeneous VNF deployment in
a tree topology. We use the same flow set as the one in
Fig. 5. The results are shown in Fig. 6(a) and Fig. 6(b),
respectively. The number of deployed instances by HomoDP
ranges from 11 to 53, which is always much smaller than
the other two. When there are 2100 flows, HomoDP deploys
18.5% less VNFs than Random-fit and 16.7% less than GFT.
The gap among these three methods becomes larger with more
flows involved in the network. We also notice that GFT has a
much more similar performance to Random-fit in the general
topology. It can be explained that GFT is designed for the
tree topology and requires no constraint of vertex capacity. In
terms of the average server utilization, HomoDP is at least
17.1% less than the other two no matter how many flows are



500 1000 1500 2000
Number of flows

50

100

150

200
To

ta
l c

os
t

GFT
Radom-fit
HeteDP

(a) Heterogeneous VNFs in a tree.

500 1000 1500 2000
Number of flows

0

20

40

60

80

100

120

To
ta

l c
os

t

GFT
Radom-fit
HomoDP

(b) Homogeneous VNFs in a tree.

500 1000 1500 2000
Number of flows

50

100

150

200

To
ta

l c
os

t

GFT
Radom-fit
HVPL

(c) Heterogeneous VNFs in a line.

500 1000 1500 2000
Number of flows

0

50

100

150
To

ta
l c

os
t

GFT
Radom-fit
GVP

(d) Homogeneous VNFs in a line.

Fig. 9: Total cost.

generated because HomoDP considers the allocation of the
vertex capacity resources.

D. Results of the VNF deployment in a line topolgy

Fig. 7 shows the result of the heterogeneous VNF deploy-
ment in a line topology. Alg. HVPL also performs better
than GFT and Random-fit. We have tested the algorithms
with 350 to 2100 flows. The advantage of our algorithm
becomes sharper when there are more flows in the network.
This is because it is less possible to waste the spare processing
volumes in the deployed VNFs. With more flows, the traffic
load is so heavy that the total cost increases significantly.
This illustrates that the capacities in all servers are almost
used up and more processing volumes of deployed VNFs are
wasted. When there are 2100 flows, the total cost of our HVPL
algorithm is 32.0% less than Random-fit.

The results of the homogeneous VNF deployment in a line
topology are shown in Fig. 8(a) and Fig. 8(b). In Fig. 8(a),
the numbers of deployed VNFs by the three methods are
approximately one third of the numbers when we only need to
deploy heterogeneous VNFs. As the capacity in the server is
relatively sufficient, the increasing tendencies of the results are
gentle. Our GVP method has the best performance both in the
number of deployed VNFs and the average server utilization.
The difference is more obvious when the number of flows is
larger. This is because GVP is optimal to deploy a single type
of VNFs with the constraint of vertex capacity while the other
two are not. When there are 2100 flows, GVP deploys 21.6%
fewer VNFs than Random-fit and 14.4% fewer than GFT. In
terms of the server utilization, GVP always has the least ratio.

E. Results with a larger vertex capacity

To evaluate the impacts of vertex capacity, we enlarge each
vertex’s capacity from 10 to 20, i.e., cv = 20,∀v ∈ V , and

other settings remain unchanged. Due to space limitation, we
only list the results of the total cost in all four cases of topolo-
gies and VNF types of configurations. The basic tendencies of
all curves are similar to the results with cv = 20,∀v ∈ V . Our
algorithms and GFT improve their performances with a smaller
total cost. It’s worth mentioning that the difference between
GFT and each of our algorithms is reduced. This is because
a larger vertex capacity is closer to the case without the
vertex capacity constraint, where GFT is the optimal solution.
However, we find that Random-fit performs even a little worse
because of more available locations.

In summary, the simulations verify the correctness and
efficiency of our proposed algorithms in the tree and line
topologies. They also show that only considering a single type
of VNF deployment is too one-sided, because all types of
VNFs need to share the limited server resources. It is worth
mentioning that our HVPL and GVP can be used as efficient,
greedy algorithms with significant insights in all kinds of tree
topologies and traffic distributions. Additionally, the general
topologies can also be transformed to the combination of
several trees by grouping flows and then apply our algorithms.

VII. CONCLUSION

We study the joint VNF deployment and flow allocation
problem. We aim at minimizing the total cost of deploying
VNF instances when all flows are fully processed. We assume
that all flows request the same type of network functions. We
study the heterogeneous VNF deployment in tree topologies.
First, we prove the NP-hardness of the deployment and pro-
pose a DP solution. Then we introduce an improved DP solu-
tion for homogeneous VNFs in a tree topology. We reformulate
the deployment of heterogeneous VNFs in a line and propose a
performance-guaranteed strategy. An optimal greedy solution
is designed for homogeneous VNF deployment in a line.

It is worth mentioning that the vertex capacity constraint
in terms of the maximum number of VNF instances can be
extended to a constraint on the total resource capacity. Setting
up each type of VNF instance needs different amounts of the
vertex resource besides different setup costs. Hence, our DP
solution, HeteDP, needs to include one more dimension of
the available resource in the current vertex. In this case, the
Deploy item in the DP formulation becomes a 2-D knapsack
problem. Although the extension can still be addressed in a DP
formulation, we leave detailed treatment to our future work.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1629746, CNS-1651947, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and CNS 1439672.

APPENDIX
PROOF OF THEOREM 1

Here we prove our theorem 1. First, checking the feasibility
of a deployment plan is in a polynomial time, since we can
check in O(|F |) time to make sure that all flows are fully
processed before their destinations.



Second, we show that Unbounded Subset Sum [22] is
reducible to the heterogeneous VNF deployment. Consider
a case of Unbounded Subset Sum with n numbers W =
{w1, w2, ..., wn} and a target w. In constructing an equivalent
case of the heterogeneous VNF deployment, we simplify the
deployment problem by having a line topology with unlimited-
capacity vertices. We are given a set of flows F , all of whose
source and destination are the leftmost and rightmost nodes in
the line. Each flow has an initial traffic rate rf and requests
the same network function. We assume the total traffic rate∑

f∈F rf is equal the target w of the Unbounded Subset Sum,
i.e.

∑
f∈F rf = w. We are given a set of VNF types M

with n types for the requested network function. The setup
costs of the VNF types are w1, w2, ..., wn, and their processing
volumes are the same to the setup costs, meaning αi = wi. The
sum of the processing volumes of the deployed VNF instances
should be no less than w since all flows needs to be fully
processed. When there is no processing volume wasted in a
deployment plan, the sum of the processing volumes is exactly
w. The total cost of the deployment is

∑
αj =

∑
wj = w,

which is also the minimum. If we can find such a deployment
of VNFs with the costs of w′1, w

′
2, ..., w

′
k adding up to the total

cost w, then the corresponding numbers in the Unbounded
Subset Sum instance can also add up to exactly w.

Conversely, if there are numbers w′1, w
′
2, ..., w

′
k ∈W adding

up to exactly w in the Unbounded Subset Sum, then we can
deploy the corresponding VNF instances with setup costs
w′1, w

′
2, ..., w

′
k; this is a feasible deployment plan with the

minimal total cost w. Consequently, since the Unbounded
Subset Sum is an NP-complete problem, our heterogeneous
VNF deployment is NP-hard. The theorem holds.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar, “Making middleboxes someone else’s problem:
Network processing as a cloud service,” in SIGCOMM 2012.

[2] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ra-
makrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice:
Dynamic backpressure and scheduling for NFV service chains,”
in SIGCOMM 2017.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “Opennf: Enabling innovation
in network function control,” in SIGCOMM 2014.

[4] J. Sherry, S. Ratnasamy, and J. S. At, “A survey of enterprise
middlebox deployments,” in Semantic Scholar, 2012.

[5] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic
middlebox actions using flowtags,” in NSDI 2014.

[6] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling
network function parallelism in nfv,” in SIGCOMM 2017.

[7] S. Seyyedi and B. Akbari, “Hybrid cdn-p2p architectures for
live video streaming: Comparative study of connected and
unconnected meshes,” in CNDS 2011.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-
modity data center network architecture,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 63–74, 2008.

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, “Bcube: A high performance, server-
centric network architecture for modular data centers,” in SIG-
COMM 2009.

[10] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably
efficient algorithms for joint placement and allocation of virtual
network functions,” in INFOCOM 2017.

[11] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in ICCCN 2015.

[12] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker,
“Virtualizing the network forwarding plane,” in PRESTO 2010.

[13] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou,
“Traffic aware placement of interdependent nfv middleboxes,”
in INFOCOM 2017.

[14] M. Rost and S. Schmid, “Np-completeness and inapproximabil-
ity of the virtual network embedding problem and its variants,”
Technical Report, Tech. Rep.

[15] ——, “Virtual network embedding approximations: Leveraging
randomized rounding,” arXiv preprint arXiv:1803.03622, 2018.

[16] S. Martello, “Knapsack problems: algorithms and computer
implementations,” Wiley-Interscience series in discrete mathe-
matics and optimization, 1990.

[17] G. B. Mathews, “On the partition of numbers,” Proceedings of
the London Mathematical Society, vol. s1-28, no. 1, pp. 486–
490, 1896.

[18] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

[19] L. A. Wolsey, “An analysis of the greedy algorithm for the
submodular set covering problem,” Combinatorica, vol. 2, no. 4,
pp. 385–393, Dec 1982.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-
deployed software defined wan,” in SIGCOMM 2013.

[21] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in SIGCOMM 2015.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990.


