Math C067 - Practice Test
 Open Book, Open Notes, Open Teacher

Richard Beigel

April 17, 2006

1. A coworker has designed a study with sample size 100 . His margin of error is 5%. Which of the following sample sizes would give him a margin of error of roughly 1% ?
(a) 20
(b) 50
(c) 500
(d) 1000
(e) 2500
(f) 5000

Solution:

- Margin of error is roughly proportional to $\frac{1}{\sqrt{n}}$ where n is the sample size.
- It is desired to multiply the margin of error by $\frac{1}{5}$,
- so we need to multiply \sqrt{n} by roughly a factor of 5 ,
- which means multiplying n by roughly a factor of $5^{2}=25$,
- so we need a sample of size roughly $25 \cdot 100=2500$.

Note: Because the numbers in row ∞ of Table A-2 are slightly smaller than in row 99, a sample size of 2500 will result in a margin of error slightly less than 1%.
2. The College Board has designed a new test. Six randomly chosen subjects obtained scores of $7,9,10,10,11,13$.
(a) Find a 99% confidence interval for the mean test score in the entire population of test takers.
(b) For a margin of error of 0.4 what would be your confidence level?
(c) The College Board sampled 10,000 subjects. Assuming they got the same mean and standard deviation as in the 6-person sample, give a 99% confidence interval for the mean test score in the entire population.
(d) How large a sample would you need in order to get a margin of error of 0.03 with 99% confidence?

Solution:

- The sample size $n=6$.
- Let \bar{X} be a random variable denoting the average of 6 samples.
- The sample mean $\bar{x}=(7+9+10+10+11+13) / 6=10$
- The sample variance $s^{2}=\left(3^{2}+1^{2}+0^{2}+0^{2}+1^{2}+3^{2}\right) / 5=20 / 5=4$.
- The sample standard deviation $s=\sqrt{4}=2$.
- Therefore we estimate the population mean μ as 6 and σ as 2 .
- Thefore we estimate $\sigma_{\bar{X}}=2 / \sqrt{6} \approx 0.8165$
(a) - In Table A-2 we look in row $6-1=5$ and column $0.99 / 2=0.495$ to find that the margin of error is 4.03 standard deviations.
- The margin of error $E=4.03 \sigma_{\bar{X}} \approx 4.03 \cdot 0.8165 \approx 3.29$.
- Thus $[10-3.29,10+3.29]=[6.71,13.29]$ is a 99% confidence interval for the population mean μ.
(b) - We estimate that 0.4 consists of approximately $0.4 / 0.8165 \approx 0.49$ standard deviations.
- In Table A-1 we look in row 0.4 and column 9 to find that the probability of being within 0.49 standard deviations to the right of the mean is approximately 0.1879
- Therefore the probability of being with 0.49 standard deviation to the right or left of the mean is approximately $0.1879+0.1879=0.3758$
- Therefore our confidence level is approximately 37.58%.
(c) - The sample size is now 10000 , so we estimate $\sigma_{\bar{X}}=\sigma / \sqrt{n} \approx 2 / \sqrt{10000}=$ $2 / 100=0.02$
- In Table A-2 we look in row ∞ and column $0.99 / 2=0.495$ to find that the margin of error is 2.58 standard deviations.
- The margin of error $E \approx 2.58 \sigma_{\bar{X}} \approx 2.58 \cdot 0.02 \approx 0.0516$.
- Thus $[10-0.0516,10+0.0516]=[9.9484,10.0516]$ is a 99% confidence interval for the population mean μ.
(d) - $\sigma_{\bar{X}}=\sigma / \sqrt{n}$ so we estimate that $\sigma_{\bar{X}} \approx 2 / \sqrt{n}$
- Looking in row ∞ column 0.495 of Table A-2, we find that the margin of error is approximately 2.58 standard deviations,
- so $E \approx 2.58 \cdot 2 / \sqrt{n}=5.16 / \sqrt{n}$.
- We need $E=0.03$ so

$$
\begin{aligned}
0.03 & \approx 5.16 / \sqrt{n} \\
\sqrt{n} & \approx 5.16 / 0.03 \\
\sqrt{n} & \approx 172 \\
n & \approx 172^{2} \\
n & \approx 29584
\end{aligned}
$$

3. You have been assigned to predict the results of a 2-candidate election. What sample size would you need in order to ensure a 4% margin of error with 95% confidence?

Solution:

- Let \hat{P} denote the sampling proportion for n samples, where each sample has unknown success probability p.
- The standard deviation of \hat{P} is $\sigma_{\hat{P}}=\sqrt{\frac{p(1-p)}{n}}$.
- We don't have any estimate for p. To be conservative, we plug in $\frac{1}{2}$, which gives the largest possible value for $p(1-p)$, i.e.,
- $\sigma_{\hat{P}} \leq \sqrt{\frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{n}}=\frac{1}{2} \frac{1}{\sqrt{n}}$.
- Looking in row ∞, column $0.95 / 2=0.475$ of Table A-1 we find that the margin of error consists of approximately 1.96 standard deviations, i.e.,
- $E \approx 1.96 \frac{1}{2} \frac{1}{\sqrt{n}}=\frac{0.98}{\sqrt{n}}$
- We need $E=0.04$ so

$$
\begin{aligned}
0.04 & \approx \frac{0.98}{\sqrt{n}} \\
\sqrt{n} & \approx \frac{0.98}{0.04} \\
\sqrt{n} & \approx 24.5 \\
n & \approx 600.25
\end{aligned}
$$

Rounding up, we get $n=601$.

