Math C067 - Why Statistics?

Richard Beigel

Last revision: August 30, 2006

1. Stock Picking

Statistics can help you decide which stock is better.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

Year	2001	2002	2003
Return on Stock X	3	7	5
Return on Stock Y	-3	8	10

- Which Stock do you like better? Why?

2. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

Year	2001	2002	2003
Return on Stock X	3	7	5
Return on Stock Y	-3	8	10

- Let's start by giving names to the data.
- Call the returns on stock X in each year x_{1}, x_{2}, x_{3}.
- x_{i} is the return on stock X in year $2000+i$
- $x_{1}=3, x_{2}=7, x_{3}=5$

3. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

Year	2001	2002	2003
Return on Stock X	3	7	5
Return on Stock Y	-3	8	10

- Let's start by giving names to the data.
- Call the returns on stock X in each year x_{1}, x_{2}, x_{3}.
- x_{i} is the return on stock X in year $2000+i$
- $x_{1}=3, x_{2}=7, x_{3}=5$
- Call the returns on stock Y in each year y_{1}, y_{2}, y_{3}.
- y_{i} is the return on stock Y in year $2000+i$
- $y_{1}=-3, y_{2}=8, y_{3}=10$

4. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

Year	2001	2002	2003
Return on Stock X	3	7	5
Return on Stock Y	-3	8	10

- Let's start by giving names to the data.
- The mean return on stock X is given by the formula

$$
\bar{x}=\left(x_{1}+x_{2}+x_{3}\right) / 3
$$

The parentheses matter!

- so $\bar{x}=(3+7+5) / 3=15 / 3=5$
- This formula can also be written

$$
\bar{x}=\frac{1}{3} \sum_{i=1}^{3} x_{i}
$$

It's another way of writing the same thing, but you will need to get used to it.

- How do we calculate the mean return on stock Y ?
- What if we were looking at more than 3 years worth of data? If there are n data items,

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\left(x_{1}+\cdots+x_{n}\right) / n
$$

5. Variance and Standard Deviation

Variance and Standard Deviation measure the amount of dispersion in data, i.e., how far away the data are from their mean on average.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

Year	2001	2002	2003
Return on Stock X	3	7	5
Return on Stock Y	-3	8	10

- The variance of the returns on stock X is given by the formula

$$
\operatorname{Var}(x)=\left(\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}\right) / 2
$$

- The parentheses matter!
- Why didn't we divide by 3 ?
- This formula can also be written

$$
\operatorname{Var}(x)=\frac{1}{2} \sum_{i=1}^{3}\left(x_{i}-\bar{x}\right)^{2}
$$

It's another way of writing the same thing, but you will need to get used to it.

- $\operatorname{Var}(x)$ is also called s_{x}^{2} or simply s^{2} when there is only one data set.

6. Variance and Standard Deviation

Let's look only at stock X so we can understand the formula for variance better.

- Consider Hypothetical returns on $\$ 100$ invested in Stock A and Stock B.

i	1	2	3
x_{i}	3	7	5
$x_{i}-\bar{x}$	-2	2	0
$\left(x_{i}-\bar{x}\right)^{2}$	4	4	0

- Remember that $\bar{x}=5$, so $x_{1}-\bar{x}=3-5=-2$. What is $x_{2}-\bar{x}$? What is $x_{3}-\bar{x}$?

$$
\begin{aligned}
\operatorname{Var}(x) & =\left(\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}\right) / 2 \\
& =(4+4+0) / 2 \\
& =4
\end{aligned}
$$

- What if we had more data instead of just 3 items?
- What if we were looking at more than 3 years worth of data? If there are n data items,

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\left(\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right) /(n-1)
\end{aligned}
$$

- Standard deviation is the square root of variance:

$$
s=\sqrt{s^{2}}
$$

- $s_{x}=\sqrt{\operatorname{Var}(x)}=\sqrt{4}=2$

7. Correlation

- Loosely speaking, two stocks are correlated if they move the same way every day (both go up or both go down)
- Loosely speaking, two stocks are anti-correlated if they move the opposite way
- The correlation coefficient (r) measures how correlated two data sequences are.
- If $r=1$ they are perfectly correlated
- If $r=-1$ they are perfectly anti-correlated
- If $r=0$ they are uncorrelated
- Fractional values indicate partial correlation (or partial anti-correlation)
- Application [Harry Markowitz]: A diverse portfolio of anti-correlated or uncorrelated stocks reduces risk.

8. Covariance

- Covariance of X and Y :

$$
\begin{aligned}
s_{x y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\left(\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)+\cdots+\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)\right) /(n-1)
\end{aligned}
$$

- Note: Covariance of X and X :

$$
\begin{aligned}
s_{x x} & =\left(\left(x_{1}-\bar{x}\right)\left(x_{1}-\bar{x}\right)+\cdots+\left(x_{n}-\bar{x}\right)\left(x_{n}-\bar{x}\right)\right) /(n-1) \\
& =\left(\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right) /(n-1) \\
& =s_{x}^{2}
\end{aligned}
$$

9. Covariance and Correlation

- Covariance of X and Y :

$$
\begin{aligned}
s_{x y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\left(\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)+\cdots+\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)\right) /(n-1)
\end{aligned}
$$

- Correlation (coefficient) of X and Y :

$$
r=\frac{s_{x y}}{s_{x} s_{y}}
$$

10. Linear Regression (Least Squares Best-Fit Line)

- Two data sequences can be plotted as ordered pairs (x,y). The best-fit line comes as close as possible (in a sense) to the points in the plot.
- Equation for the best-fit line: $y=a+b x$ where
- $b=r s_{y} / s_{x}$ and
- $a=\bar{y}-b \bar{x}$

