1. **Stock Picking**

Statistics can help you decide which stock is better.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return on Stock X</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Return on Stock Y</td>
<td>-3</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- Which Stock do you like better? Why?
2. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return on Stock X</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Return on Stock Y</td>
<td>-3</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- Let’s start by giving names to the data.

- Call the returns on stock X in each year x_1, x_2, x_3.

- x_i is the return on stock X in year $2000 + i$

- $x_1 = 3, x_2 = 7, x_3 = 5$
3. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th>Year</th>
<th>Return on Stock X</th>
<th>Return on Stock Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3</td>
<td>−3</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2003</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

- Let’s start by giving names to the data.
- Call the returns on stock X in each year x_1, x_2, x_3.
- x_i is the return on stock X in year $2000 + i$
 - $x_1 = 3, x_2 = 7, x_3 = 5$
- Call the returns on stock Y in each year y_1, y_2, y_3.
- y_i is the return on stock Y in year $2000 + i$
 - $y_1 = −3, y_2 = 8, y_3 = 10$
4. The Mean

The mean of a list of numbers is just their arithmetic average.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return on Stock X</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Return on Stock Y</td>
<td>-3</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- Let’s start by giving names to the data.
- The mean return on stock X is given by the formula

\[\bar{x} = \frac{x_1 + x_2 + x_3}{3} \]

The parentheses matter!
- So \(\bar{x} = (3 + 7 + 5)/3 = 15/3 = 5 \)
- This formula can also be written

\[\bar{x} = \frac{1}{3} \sum_{i=1}^{3} x_i \]

It’s another way of writing the same thing, but you will need to get used to it.

- How do we calculate the mean return on stock Y?

- What if we were looking at more than 3 years worth of data? If there are \(n \) data items,

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = (x_1 + \cdots + x_n)/n \]
5. **Variance and Standard Deviation**

Variance and Standard Deviation measure the amount of dispersion in data, i.e., how far away the data are from their mean on average.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return on Stock X</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Return on Stock Y</td>
<td>-3</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

- The variance of the returns on stock X is given by the formula

\[
\text{Var}(x) = \frac{1}{2} \left((x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 \right)
\]

- The parentheses matter!
- Why didn’t we divide by 3?
- This formula can also be written

\[
\text{Var}(x) = \frac{1}{2} \sum_{i=1}^{3} (x_i - \bar{x})^2
\]

It’s another way of writing the same thing, but you will need to get used to it.
- \(\text{Var}(x)\) is also called \(s_x^2\) or simply \(s^2\) when there is only one data set.
6. Variance and Standard Deviation

Let’s look only at stock X so we can understand the formula for variance better.

- Consider Hypothetical returns on $100 invested in Stock A and Stock B.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>$x_i - \bar{x}$</td>
<td>-2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$(x_i - \bar{x})^2$</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

- Remember that $\bar{x} = 5$, so $x_1 - \bar{x} = 3 - 5 = -2$. What is $x_2 - \bar{x}$? What is $x_3 - \bar{x}$?

\[
\text{Var}(x) = \frac{((x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2)}{2}
\]
\[
= \frac{4 + 4 + 0}{2}
\]
\[
= 4
\]

- What if we had more data instead of just 3 items?

- What if we were looking at more than 3 years worth of data? If there are n data items,

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
\[
= \frac{((x_1 - \bar{x})^2 + \cdots + (x_n - \bar{x})^2)}{(n-1)}
\]

- Standard deviation is the square root of variance:

\[
s = \sqrt{s^2}
\]

- $s_x = \sqrt{\text{Var}(x)} = \sqrt{4} = 2$
7. Correlation

- Loosely speaking, two stocks are correlated if they move the same way every day (both go up or both go down)
- Loosely speaking, two stocks are anti-correlated if they move the opposite way
- The correlation coefficient \(r \) measures how correlated two data sequences are.
- If \(r = 1 \) they are perfectly correlated
- If \(r = -1 \) they are perfectly anti-correlated
- If \(r = 0 \) they are uncorrelated
- Fractional values indicate partial correlation (or partial anti-correlation)
- Application [Harry Markowitz]: A diverse portfolio of anti-correlated or uncorrelated stocks reduces risk.
8. Covariance

- Covariance of X and Y:

\[s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]
\[= \frac{((x_1 - \bar{x})(y_1 - \bar{y}) + \cdots + (x_n - \bar{x})(y_n - \bar{y}))}{(n-1)} \]

- Note: Covariance of X and X:

\[s_{xx} = \frac{((x_1 - \bar{x})(x_1 - \bar{x}) + \cdots + (x_n - \bar{x})(x_n - \bar{x}))}{(n-1)} \]
\[= \frac{((x_1 - \bar{x})^2 + \cdots + (x_n - \bar{x})^2)}{(n-1)} \]
\[= s_x^2 \]
9. Covariance and Correlation

- Covariance of X and Y:

\[
s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]

\[
= \frac{((x_1 - \bar{x})(y_1 - \bar{y}) + \cdots + (x_n - \bar{x})(y_n - \bar{y}))}{(n - 1)}
\]

- Correlation (coefficient) of X and Y:

\[
r = \frac{s_{xy}}{s_x s_y}
\]
10. Linear Regression (Least Squares Best-Fit Line)

- Two data sequences can be plotted as ordered pairs (x,y). The best-fit line comes as close as possible (in a sense) to the points in the plot.

- Equation for the best-fit line: \(y = a + bx \) where

- \(b = r s_y / s_x \) and

- \(a = \bar{y} - b\bar{x} \)