Math C067 Chapter 5-7 Review: Formulas and Methods print and bring to final exam

Richard Beigel

Some time between April 16, 2007 and April 17, 2007

1. Descriptive Statistics for a Single Trial X

Expected Value / Mean (μ)

$$
E[X]=x_{1} \cdot p_{1}+\cdots x_{k} \cdot p_{k}
$$

Where x_{1}, \ldots, x_{k} are all possible values for X and $p_{i}=\operatorname{Pr}\left[X=x_{i}\right]$.
Special case (Bernoulli trial): $E[X]=p$.
Variance (σ^{2})

$$
\operatorname{Var}[X]=\left(x_{1}-\mu\right)^{2} \cdot p_{1}+\cdots\left(x_{k}-\mu\right)^{2} \cdot p_{k}
$$

Where x_{1}, \ldots, x_{k} are all possible values for $X, \mu=E[X]$, and $p_{i}=\operatorname{Pr}\left[X=x_{i}\right]$.
Special case (Bernoulli trial): Var $[X]=p q$.

Standard Deviation (σ)

$$
\sigma=\sqrt{\operatorname{Var}[X]}
$$

Special case (Bernoulli trial): $\sigma_{X}=\sqrt{p q}$.

2. Descriptive Statistics for Repeated Trials

Expected Value / Mean (μ)

- If X is the sum of n samples from a distribution X_{1}, then $E[X]=n \cdot E\left[X_{1}\right]$. The formula for $E\left[X_{1}\right]$ is given in the previous section.
- Special case (binomial distribution): If X is the sum of n Bernoulli trials, where each Bernoulli trial has success probability p, then $E[X]=n \cdot p$.
- Sample Mean \bar{X} : If X is the average of n samples from a distribution X_{1}, then $E[X]=E\left[X_{1}\right]$. The formula for $E\left[X_{1}\right]$ is given in the previous section.
- Special case (Sample Proportion \hat{P}): If X is the average of n Bernoulli trials, where each Bernoulli trial has success probability p, then $E[X]=p$

Variance (σ^{2})

- If X is the sum of n independent samples from a distribution X_{1}, then $\operatorname{Var}[X]=n \cdot \operatorname{Var}\left[X_{1}\right]$. The formula for $\operatorname{Var}\left[X_{1}\right]$ is given in the previous section.
- Special case (binomial distribution): If X is the sum of n Bernoulli trials, where each Bernoulli trial has success probability p, then $\operatorname{Var}[X]=n \cdot p q$
- Sample Mean \bar{X} : If X is the average of n independent samples from a distribution X_{1}, then $\operatorname{Var}[X]=$ $\operatorname{Var}\left[X_{1}\right] / n$. The formula for $\operatorname{Var}\left[X_{1}\right]$ is given in the previous section.
- Special case (Sample Proportion \hat{P}): If X is the average of n Bernoulli trials, where each Bernoulli trial has success probability p, then $\operatorname{Var}[X]=p q / n$

Standard Deviation (σ)

- If X is the sum of n independent samples from a distribution X_{1}, then sigma $_{X}=\sqrt{n} \cdot \sigma_{X_{1}}$
- Special case (binomial distribution): If X is the sum of n Bernoulli trials, where each Bernoulli trial has success probability p, then $\sigma_{X}=\sqrt{n} \cdot \sqrt{p q}=\sqrt{n \cdot p q}$
- Sample Mean \bar{X} : If X is the average of n independent samples from a distribution X_{1}, then $\sigma_{X}=\sigma_{X_{1}} / \sqrt{n}$
- Special case (Sample Proportion \hat{P}): If X is the average of n Bernoulli trials, where each Bernoulli trial has success probability p, then $\sigma_{X}=\sqrt{p q} / \sqrt{n}=\sqrt{p q / n}$

3. How to Estimate a Probability using the Standard Normal Distribution Table (A-1)

1. Make sure that the sample size n is large enough. With Binomial Distributions and Sample Proportions you need $n p \geq 5$ and $n q \geq 5$. With other distributions you need $n \geq 30$.
2. Calculate μ and σ using one of the formulas in the previous section. Be sure to use the right formula.
3. Find the endpoints of your interval

- If your distribution is a sum of trials (or, in particular, a Binomial Distribution) then each endpoint will need to have 0.5 added to it or subtracted from it. If you don't know which, draw a picture.
- If your interval has only one endpoint then the other endpoint is ∞ or $-\infty$.

4. For each endpoint x, calculate the number of standard deviations between x and the mean, i.e., $(x-\mu) / \sigma$. (Make sure you subtract before you divide.)
5. Look up each of those two numbers in Table A-1 (ignore the sign when looking up). When looking up a number greater than 4 (or, in particular, ∞), you always get the value 0.5 .
6. If μ is inside the interval then add the two numbers you got from Table A-1. If μ is outside the interval then subtract instead.
