Math C067 Binomial and Normal Distributions

Richard Beigel

March 17, 2006

1. Bernoulli Trials Consider an experiment with two possible outcomes, called success and failure. Each outcome has a specified probability: p for success and q for failure (so that $p+q=1$).

- $P($ success $)=p$
- $P($ failure $)=q=1-p$

If such an experiment is repeated several times independently, the experiments are called Bernoulli trials.
2. Binomial Distribution Let X denote the number of successes when we perform n Bernouilli trials.

The distribution of X is called a Binomial distribution and is denoted $\boldsymbol{B}(\boldsymbol{n}, \boldsymbol{p})$.

- $P(X=k)=\binom{n}{k} p^{k} q^{n-k}$

Note: k is the number of successes and $n-k$ is the number of failures

- Special case: $P(X=0)=q^{n}$
- Special case: $P(X=n)=p^{n}$
- $P(X \geq k)=P(X=k)+P(X=k+1)+\cdots+P(X=n)$
- Special case: $P(X \geq 1)=1-P(X=0)=1-q^{n}$

How do we calculate $\binom{n}{k}$?

Method 1: Use the formulas in Chapter 2. Useful special cases:

- $\binom{n}{0}=\binom{n}{n}=1$
- $\binom{n}{1}=\binom{n}{n-1}=n$

Method 2: Points in the sample space are n-tuples of successes and failures, which can be represented as sequences of n S's and F's. Make a list of all the points in the sample space. The number of points with exactly k S's (and $n-k$ F's) is $\binom{n}{k}$.

Method 3: Make a list of all sequences consisting of exactly k S's and $n-k$ F's. The number of such sequences is $\binom{n}{k}$.

Example: Betting on heads. Say we toss a coin 3 times and bet on heads each time. Let X denote the number of times that we win.

- $p=P($ success $)=\frac{1}{2}$
- $q=1-p=\frac{1}{2}$
- X is binomially distributed with distribution $B\left(3, \frac{1}{2}\right)$.
- Sample space $=\{$ HHH,HHT,HTH,HTT,THH,THT,TTH,TTT $\}$.
- There is one point with 0 heads, so $\binom{3}{0}=1$
- There are 3 points with 1 heads, so $\binom{3}{1}=3$
- There are 3 points with 2 heads, so $\binom{3}{2}=3$
- There is one point with 3 heads, so $\binom{3}{3}=1$
- $P(X=0)=\binom{3}{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{3}=1 \cdot 1 \cdot \frac{1}{8}=\frac{1}{8}$
- $P(X=1)=\binom{3}{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{2}=3 \cdot \frac{1}{2} \cdot \frac{1}{4}=\frac{3}{8}$
- $P(X=2)=\binom{3}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1}=3 \cdot \frac{1}{4} \cdot \frac{1}{2}=\frac{3}{8}$
- $P(X=3)=\binom{3}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0}=1 \cdot \frac{1}{8} \cdot 1=\frac{1}{8}$
- $P(X \geq 0)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1$
- $P(X \geq 1)=\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{7}{8}$
- $P(X \geq 2)=\frac{3}{8}+\frac{1}{8}=\frac{4}{8}=\frac{1}{2}$
- $P(X \geq 3)=\frac{1}{8}$

k	0	1	2	3
$P(X=k)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$
$P(X \geq k)$	1	$\frac{7}{8}$	$\frac{1}{2}$	$\frac{1}{8}$

Example: Spinning a Biased Coin. Same experiment, but the coin is biased so that it comes up heads $\frac{2}{3}$ of the time. Let X denote the number of times that we win.

- $p=P($ success $)=\frac{2}{3}$
- $q=1-p=\frac{1}{3}$
- X is binomially distributed with distribution $B\left(3, \frac{2}{3}\right)$.
- Sample space $=\{$ HHH,HHT,HTH,HTT,THH,THT,TTH,TTT $\}$ (not equiprobable).
- There is one point with 0 heads, so $\binom{3}{0}=1$
- There are 3 points with 1 heads, so $\binom{3}{1}=3$
- There are 3 points with 2 heads, so $\binom{3}{2}=3$
- There is one point with 3 heads, so $\binom{3}{3}=1$
- $P(X=0)=\binom{3}{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{3}=1 \cdot 1 \cdot \frac{1}{27}=\frac{1}{27}$
- $P(X=1)=\binom{3}{1}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{2}=3 \cdot \frac{2}{3} \cdot \frac{1}{9}=\frac{2}{9}$
- $P(X=2)=\binom{3}{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{1}=3 \cdot \frac{4}{9} \cdot \frac{1}{3}=\frac{4}{9}$
- $P(X=3)=\binom{3}{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{0}=1 \cdot \frac{8}{27} \cdot 1=\frac{8}{27}$
- $P(X \geq 0)=\frac{1}{27}+\frac{2}{9}+\frac{4}{9}+\frac{8}{27}=1$
- $P(X \geq 1)=\frac{2}{9}+\frac{4}{9}+\frac{8}{27}=\frac{26}{27}$
- $P(X \geq 2)=\frac{4}{9}+\frac{8}{27}=\frac{20}{27}$
- $P(X \geq 3)=\frac{8}{27}$

k	0	1	2	3
$P(X=k)$	$\frac{1}{27}$	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{8}{27}$
$P(X \geq k)$	1	$\frac{26}{27}$	$\frac{20}{27}$	$\frac{8}{27}$

Example: Rolling a die Say we roll a 6 -sided die 3 times. Each time, we bet that the die will come up $1,2,3$, or 4 . Let X denote the number of times that we win.

What's our sample space?

Example: Rolling a die Say we roll a 6 -sided die 3 times. Each time, we bet that the die will come up $1,2,3$, or 4 . Let X denote the number of times that we win.

What's our sample space?
The equiprobable sample space, consisting of all 3 -tuples of numbers between 1 and 6 , is big. It has $6^{3}=216$ points.

It would be nice to work with a smaller sample space.

Example: It's not how you play the game; It's whether you win or lose Say we roll a 6 -sided die 3 times. Each time, we bet that the die will come up 1, 2, 3, or 4 . Let X denote the number of times that we win.

What's our sample space?
The equiprobable sample space, consisting of all 3 -tuples of numbers between 1 and 6 , is big. It has $6^{3}=216$ points.

It would be nice to work with a smaller sample space.
Idea: the actual number on the die isn't very important. What matters is whether the trial is a success or a failure.

Example: Rolling a die Say we roll a 6 -sided die 3 times. Each time, we bet that the die will come up $1,2,3$, or 4 . Let X denote the number of times that we win.

- $p=P($ success $)=\frac{4}{6}=\frac{2}{3}$
- $q=1-p=\frac{1}{3}$
- X is binomially distributed with distribution $B\left(3, \frac{2}{3}\right)$.
- Sample space $=\{$ SSS,SSF,SFS,SFF,FSS,FSF,FFS,FFF $\}$ (not equiprobable).
- There is one point with 0 successes, so $\binom{3}{0}=1$
- There are 3 points with 1 successes, so $\binom{3}{1}=3$
- There are 3 points with 2 successes, so $\binom{3}{2}=3$
- There is one point with 3 successes, so $\binom{3}{3}=1$
- $P(X=0)=\binom{3}{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{3}=1 \cdot 1 \cdot \frac{1}{27}=\frac{1}{27}$
- $P(X=1)=\binom{3}{1}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{2}=3 \cdot \frac{2}{3} \cdot \frac{1}{9}=\frac{2}{9}$
- $P(X=2)=\binom{3}{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{1}=3 \cdot \frac{4}{9} \cdot \frac{1}{3}=\frac{4}{9}$
- $P(X=3)=\binom{3}{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{0}=1 \cdot \frac{8}{27} \cdot 1=\frac{8}{27}$
- $P(X \geq 0)=\frac{1}{27}+\frac{2}{9}+\frac{4}{9}+\frac{8}{27}=1$
- $P(X \geq 1)=\frac{2}{9}+\frac{4}{9}+\frac{8}{27}=\frac{26}{27}$
- $P(X \geq 2)=\frac{4}{9}+\frac{8}{27}=\frac{20}{27}$
- $P(X \geq 3)=\frac{8}{27}$

k	0	1	2	3
$P(X=k)$	$\frac{1}{27}$	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{8}{27}$
$P(X \geq k)$	1	$\frac{26}{27}$	$\frac{20}{27}$	$\frac{8}{27}$

Example: A single "Bernoulli" trial. Let X be the number of successes when we perform a single "Bernoulli" trial. The mean and variance of a random variable X with distribution $B(1, p)$ are calculated below: We have

- $P(X=1)=p$ (one success)
- $P(X=0)=q=1-p$ (zero successes \equiv one failure)
- $E(X)=0 \cdot P(X=0)+1 \cdot P(X=1)=P(X=1)=p$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2} \\
& =E\left(X^{2}\right)-p^{2} \quad \text { Why? Because } E(X)=p \\
& =E(X)-p^{2} \quad \text { Why? } X^{2}=X \text { because } R_{X}=\{0,1\} \\
& =p-p^{2} \\
& =p(1-p) \\
& =p q
\end{aligned}
$$

Mean, Variance, and Standard Deviation for $\boldsymbol{B}(\boldsymbol{n}, \boldsymbol{p})$ The mean, variance, and standard deviation of a random variable X with distribution $B(n, p)$ are given by the following formulas:

Expected value $\mu=n \cdot p$ (even if the trials weren't independent)
Variance $\sigma^{2}=n \cdot p q$ (because the trials are independent)
Standard Deviation $\sigma=\sqrt{n p q}$

Example: Flipping a Fair Coin Say we flip a fair coin 100 times. Let X denote the number of heads that we get. Then X has distribution $B\left(100, \frac{1}{2}\right)$.

- $E[X]=100 \cdot \frac{1}{2}=50$
- $\operatorname{Var}[X]=100 \cdot \frac{1}{2} \cdot \frac{1}{2}=25$
- $\sigma_{X}=\sqrt{\operatorname{Var}[x]}=\sqrt{25}=5$.

Example: Spinning a Biased Coin Say we flip a biased coin 100 times. Assume that the coin has probability $\frac{2}{3}$ of coming up heads. Let X denote the number of heads that we get. Then X has distribution $B\left(100, \frac{2}{3}\right)$.

- $E[X]=100 \cdot \frac{2}{3}=\frac{200}{3} \approx 67$
- $\operatorname{Var}[X]=100 \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{200}{9} \approx 22.2$
- $\sigma_{X}=\sqrt{\operatorname{Var}[x]}=\sqrt{\frac{200}{9}} \approx 4.71$

Example: Rolling a Die Say we roll a die 100 times. Each time we bet that the die will come up $1,2,3$, or 4 . Let X denote the number of times we win our bet. Then X has distribution $B\left(100, \frac{2}{3}\right)$.

- $E[X]=100 \cdot \frac{2}{3}=\frac{200}{3} \approx 167$
- $\operatorname{Var}[X]=100 \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{200}{9} \approx 22.2$
- $\sigma_{X}=\sqrt{\operatorname{Var}[x]}=\sqrt{\frac{200}{9}} \approx 4.71$

Using Table A-1 on page 359

Example: Flipping a Fair Coin Say we flip a fair coin 100 times.

1. What is the (approximate) probability that we get at least 45 heads but at most 60 heads?

Solution: Let X denote the number of heads that we get. Then X has distribution $B\left(100, \frac{1}{2}\right)$.

1. Make sure $n p \geq 5$ and $n q \geq 5$.
2. Calculate mean: $\mu=100 \cdot \frac{1}{2}=50$
3. Calculate variance: $\sigma^{2}=100 \cdot \frac{1}{2} \cdot \frac{1}{2}=25$
4. Calculate standard deviation: $\sigma=\sqrt{\operatorname{Var}[x]}=\sqrt{25}=5$.
5. What do we want to estimate? $P(45 \leq X<60)$.
6. Split the intervals between possible values: $P(45 \leq X<60)=P(44.5 \leq X \leq 59.5)$
7. Split into left of mean and right of mean:

$$
P(44.5 \leq X \leq 59.5)=P(44.5 \leq X \leq 50)+P(50<X \leq 59.5)
$$

8. How many standard deviations on each side of the mean?
(a) $(50-44.5) / 5=1.1$ on the left, so $P(44.5 \leq X \leq 50) \approx 0.3643$ (from Table A-1)
(b) $(59.5-50) / 5=1.9$ on the right, so $P(50<X \leq 59.5) \approx 0.4713$ (from Table A-1)
9. Add:
$P(44.5 \leq X \leq 59.5)=P(44.5 \leq X \leq 50)+P(50<X \leq 59.5) \approx 0.3643+0.4713=0.8356$

What is the (approximate) probability that we get exactly 50 heads?

Solution:

1. Make sure $n p \geq 5$ and $n q \geq 5$.
2. What do we want to estimate? $P(50 \leq X \leq 50)$.
3. Split the intervals between possible values: $P(50 \leq X \leq 50)=P(49.5 \leq X \leq 50.5)$
4. Split into left of mean and right of mean:

$$
P(49.5 \leq X \leq 50.5)=P(49.5 \leq X \leq 50)+P(50<X \leq 50.5)
$$

5. How many standard deviations on each side of the mean?
(a) $(50-49.5) / 5=0.1$ on the left, so $P(49.5 \leq X \leq 50) \approx 0.0398$ (from Table A-1)
(b) $(50.5-50) / 5=0.1$ on the right, so $P(50<X \leq 50.5) \approx 0.0398$ (from Table A-1)
6. Add:
$P(49.5 \leq X \leq 50.5)=P(50 \leq X \leq 50.5)+P(50<X \leq 50.5) \approx 0.0398+0.0398=0.0796$
What is the (approximate) probability that we get at least 65 heads?

Solution:

1. Make sure $n p \geq 5$ and $n q \geq 5$.
2. What do we want to estimate? $P(65 \leq X)$.
3. Split the intervals between possible values: $P(65 \leq X)=P(64.5 \leq X)$
4. Write as a complement:

$$
P(64.5 \leq X)=P(50 \leq X)-P(50 \leq X<64.5)
$$

5. How many standard deviations?
(a) $(64.5-50) / 5=2.9$
6. Subtract:

$$
P(64.5 \leq X)=P(50 \leq X)-P(50 \leq X<64.5) \approx 0.5-0.4981=0.0019
$$

Why do we subtract? Because we are really calculating $P(64.5 \leq X \leq 100)$, and the numbers 64.5 and 100 are both on the same side of the mean.

- We add when the endpoints are on opposite sides of the mean.
- We subtract when both endpoints are on the same side of the mean.

See the third picture in Fig. 6-4 on page 185. See also Example 6.25(b) on pp. 199-200. The general idea is explained in Section 6.4. I highly recommend that you read Sections 6.1-6.5.

Exercises:

1. A biased coin is spun 3 times. The probability that it comes up heads is $\frac{1}{5}$. What is the probability that we get
(a) exactly one heads?
(b) at least one heads?
(c) three heads?
2. A biased coin is spun 100 times. The probability that it comes up heads is $\frac{4}{5}$. Let X denote the number of times the coin comes up heads. Let Y denote the number of times the coin comes up tails. What is
(a) the expected value of X ?
(b) the variance of X ?
(c) the standard deviation of X ?
(d) the expected value of Y ?
(e) the variance of Y ?
(f) the standard deviation of Y ?
3. A biased coin is spun 100 times. The probability that it comes up heads is $\frac{4}{5}$. Let X denote the number of times the coin comes up heads. Estimate:
(a) $P(X=80)$
(b) $P(65 \leq X \leq 75)$
(c) $P(70 \leq X \leq 80)$
(d) $P(75 \leq X \leq 85)$
(e) $P(80 \leq X \leq 90)$
(f) $P(85 \leq X \leq 95)$
(g) $P(X \geq 75)$
(h) $P(X \geq 80)$
(i) $P(X \geq 85)$
(j) $P(X \leq 75)$
(k) $P(X \leq 80)$
(l) $P(X \leq 85)$
4. A die is rolled 45 times. Let X denote the number of times that it comes up 6 . What is
(a) the expected value of X ?
(b) the variance of X ?
(c) the standard deviation of X ?
5. A die is rolled 45 times. Let X denote the number of times that it comes up 6. Estimate
(a) $P(X=7.5)$
(b) $P(5 \leq X \leq 10)$
(c) $P(10 \leq X \leq 20)$
(d) $P(X \leq 5)$
(e) $P(X \leq 8)$
(f) $P(X \leq 15)$
(g) $P(X \geq 5)$
(h) $P(X \geq 8)$
(i) $P(X \geq 15)$
