
EFFECT: Energy-efficient Fog Computing Framework for
Real-time Video Processing
Xiaojie Zhang, Amitangshu Pal, Saptarshi Debroy
City University of New York, Temple University

Email: xzhang6@gradcenter.cuny.edu, amitangshu.pal@temple.edu, saptarshi.debroy@hunter.cuny.edu

Abstract—Energy efficient task offloading within a fog com-
puting environment comprising of end-devices and edge servers
remains a challenging problem to solve, especially for real-time
video processing applications due to such tasks’ strict latency
deadline demands. In this paper we propose an Energy-efficient
Fog Computing framework (EFFECT) for real-time applications
within mission-critical use cases. The proposed framework runs
a Unified Resource Broker (URB) that implements: a) central-
ized sub-channel and transmission power allocation as well as
end-device/edge server computation speed allocation algorithms,
along with b) distributed multi-device, multi-server task offload-
ing game based Directed Acyclic Graph (DAG) partition and
edge server selection algorithms. The framework is designed,
developed, implemented, and evaluated on an Amazon EC2
virtual testbed built using Apache Storm, which is a distributed
computing platform. The results from the testbed experiments
along with realistic simulations validate the utility of EFFECT
task offloading strategy in minimizing energy consumption yet
satisfying latency deadlines.

I. INTRODUCTION

In order to provide rapid situational-awareness to mission-
critical use cases (e.g., emergency response and tactical
situations), reconnaissance missions employ fog computing
environments. Such fog environments host real-time video
applications where: i) raw video data with complex and real-
time processing needs are captured by speciality end-devices
(e.g., drones, robots); ii) speciality on-premise (e.g., hosted on
vehicles) edge nodes/units equipped with wireless base sta-
tions/access points (AP) and computation servers (CPU/GPU)
that are deployed to process the raw video data on-demand, iii)
ground consumers of the data (e.g., tactical or first responder
units) visualize the processed video on their hand-held devices
as shown in Fig. 1. Thus in recent times, the adoption of
such siloed and independent fog environment based real-time
video processing applications for reconnaissance missions over
traditional cloud-based solutions is motivated by: a) often
unreliable network connectivity between the mission site and
cloud data center during emergency situations and b) potential
long end-to-end delays in enterprise network when supporting
data-intensive video processing application workflows.

Challenges of video processing at fog: However, re-
source management in such fog environments in terms of
network, compute, and energy resource allocation for real-
time video applications is non-trivial and offers the following
unique challenges. Firstly, traditional fog/edge computing
resource allocation techniques [1], [2] recommend offloading
all compute-intensive tasks to edge servers for end-devices’
energy preservation. However, inherent fluctuations in wireless
channel quality caused by phenomena such as, multi-path
propagation, shadowing, and fading result in varying end-to-
end latency. This in turn adds to the transmission cost of

Fig. 1: An exemplary fog computing based real-time video processing
application

task offloading as well as end-devices’ energy expenditure -
thus outweighing offloading energy preservation benefits. Sec-
ondly reconnaissance missions often involve multiple agen-
cies/stakeholders (different tactical units or first resoponder
agencies) demanding resources from the common resource
pool with little to no cooperation among them. This results in
video applications selfishly trying to preserve latency deadline
and involved devices seeking to minimize their own energy
consumption. This in turn results in limited fog resources
(unlike unlimited cloud resources) to be used inefficiently.
Finally, most complex video applications require multi-stage
computation where joint optimization of energy-efficiency and
deadline satisfaction is non-trivial especially for multi-resource
environments due to their diverging nature. Although there are
significant strides made in energy-efficiency within fog/edge
environments, few efforts have addressed the joint optimizing.

Related work: Video analytics is one of the emerging
use cases for deploying and utilizing fog/edge resources. In
VideoStrom [3] and VideoEdge [4], the trade-off between
query accuracy and resource demand is extensively studied.
The authors in [5] consider bandwidth-efficiency in real-time
drone video analysis. In [6], the authors propose a visual fog-
cloud computing architecture for 3D visualization for inci-
dence support. Works, such as [7], [8] propose learning based
framework for video processing at the network edge, while [9]
develops an online algorithm for joint configuration adaptation
and bandwidth allocation. However, the above works use
pre-configured resource requirement as a problem evaluation
metric which does not always capture the heterogeneous geo-
distributed network resources.

Based on task offloading model in fog/edge systems, most
of the related literature can be grouped into following three
categories. First, works [1], [2] that consider task offloading

as a deterministic problem, i.e., offload or do not offload.
Reference [10] proposes a framework that determines whether
to execute the task on the edge device or in the cloud.
Second group of papers [11]–[14] formulates their problems
in “computing while transmitting” paradigm by enabling local
computation on devices. In addition to the above, the third
group of works [15]–[17] expresses the tasks as Directed
Acyclic Graphs (DAG) consisting of multiple computation
components where unlike previous models, task components
are placed across the edge servers. However, such works do
not aim at solving resource allocation problems for multi-stage
computations in multi-server environments which is precisely
our problem environment.

Game theory as a powerful tool for distributed resource
allocation has been adopted in recent times in works, such
as [18]–[22]. Authors in [18], [19] propose decentralized
computation offloading games based on network resource
sharing. Others, such as [20]–[22] consider both CPU and net-
work resource limitations within edge environments for their
problem formulation. However, to the best of our knowledge,
none of the aforementioned works address both the multi-
resource (e.g., sub-channel, CPU frequency and transmission
power) allocation problem and multi-component task place-
ment problem across multiple servers at the same time.

Our contribution: In this paper, we propose EFFECT, an
Energy-efficient Fog Computing framework to support real-
time video processing applications. The proposed EFFECT
framework runs a centralized Unified Resource Broker (URB)
within the fog environment. This URB solves the aforemen-
tioned challenges by decoupling the energy-efficiency prob-
lem into two interconnected sub-problems. For the first sub-
problem, EFFECT employs a centralized resource provision-
ing algorithm to optimize: i) sub-channel and transmission
power allocation at the end-devices and ii) CPU speed alloca-
tion at both end-device (local) and servers (remote) hosted
at the edge nodes/units. The algorithm runs on individual
edge servers using ‘Helper’ modules and the optimized re-
sults are passed to the second sub-problem. Here, EFFECT
implements a distributed multi-device and multi-server task
offloading game aimed at tackling multi-stage computation
partition and server selection problems. For this, end-devices
running competing video applications obtain their favorite
task offloading strategy from the first sub-problem and then
propose a strategy update request to the URB. In EFFECT
framework, an energy-efficiency based priority mechanism is
adopted to select and accept the proposed update requests. The
framework only accepts the request with highest priority and
modifies the global strategy profile upon that request. Finally,
the URB broadcasts the updated global strategy profile to
edge servers when the EFFECT framework runs the first sub-
problem algorithm again. This inter-exchange terminates when
the system reaches a Nash Equilibrium (NE) - thus achieving
optimal energy-efficiency.

We design, develop, implement, and evaluate the EFFECT
framework virtual testbed on Amazon EC2 using Apache
Storm [23] distributed computing platform. We run competing
video processing applications on the testbed in order to eval-
uate the performance of EFFECT framework’s resource allo-
cation. The results show the EFFECT framework’s success in

Fig. 2: An exemplar linear topology for face recognition used in this work

terms of optimal task offloading decision-making. Compared
to fair allocation, the EFFECT algorithm achieves considerable
energy consumption by jointly considering the natures of
applications and their real-time requirements. We also perform
extensive simulations in order to verify the schedulability, the
benefits of partial task offloading, and system convergence
under a large number of applications and varying edge re-
sources. These results demonstrate the high energy efficiency
of the EFFECT framework in handling unpredictable system
environment.

Paper organization: The rest of the paper is organized as
follows. Section II proposes the system model and problem
formulation. Section III presents the centralized resource al-
location algorithm. Section IV discusses the distributed task
offloading game. Section V discusses EFFECT evaluation.
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

EFFECT is a fog computing framework which consists of a
centralized URB, a set of N devices N = {1, 2, ..., N}, and a
set of K edge nodes/units K = {1, 2, ...,K}. We assume that
each edge node contains 1 computing server and 1 AP that
connects to end-devices via wireless and has fibre connectivity
with other APs in other edge nodes. In this paper, we describe
the offloading decision (edge node, i.e., server selection) by
end-device as an ∈ A

∆
= {0, 1, ...,K} with the following

definition

an =

{
0 if device n executes task locally
k if device n executes task on edge server k

In order to simplify the expression, we define symbol
I{an=x} ∈ {0, 1} as the event indicator ∀x ∈ A. I{an=x} = 1
signifies decision an = x; otherwise I{an=x} = 0.

A. Task Partition

In this paper, we only consider recurring tasks with linear
topology as any concurrent or parallel task can be serialized
by works such as [16]. The task topology is described by a
DAG Gn. We assume that task execution constraint Dn (in
seconds) and task period (recurring nature) are the same. We
denote Mn as the number of jobs (vertices) in task Gn. One
such exemplar linear topology is shown in Fig. 2 where the
DAG of a face recognition [24] application workflow contains
three jobs (Mn = 3) which are executed sequentially, viz., 1)
face detection, 2) feature encoding, and 3) face matching.

Fig. 3: An example of task partition. The first three jobs are executed locally
and the remaining jobs (from job 4 to job M) are processed at the edge server

The task DAG can be partitioned into local-processing jobs
and remote-processing jobs to achieve specific cost minimiza-
tion. An example of task partition is shown in Fig. 3. Here,
the device runs the first three jobs and sends the intermediate
data (e.g., face encoding list from Fig. 2) to the edge server.
After receiving the intermediate data, the edge server executes
the rest of jobs. Obviously, a task with multiple jobs can be
partitioned at different locations/points. A partition with m as
the chosen partition location signifies that only the last m jobs
are executed on the edge server with m = Mn indicating full
task offloading and m = 0 indicating local-only computation.

In this paper, we only focus on partition locations that
can significantly reduce the energy spent on data transmission
while the energy consumption of local computation is small.
For example, in face recognition application from Fig. 2, we
should let the device run the face detection job and the edge
server should execute feature encoding and face matching after
receiving the facial images sent by the device. Since the device
only needs to transmit the detected facial images, this method
greatly reduces the transmission cost. In terms of saving time
and energy, the other option (i.e., running face detection and
feature encoding on the device) can be considered useless.

B. Execution Profiles

In this work, we assume that the end-devices have perfect
knowledge of their tasks and available partitions. With a
given partition location m, we denote Xn,m and Yn,m as the
computation complexity of processing the remote and local
jobs, which are measured by the number of CPU cycles. We
also define Zn,m as the size of data for transmission (in bits).
The devices store such information in a set called execution
profiles which is defined as follows:

Jn = { (Xn,m, Yn,m, Zn,m) | m ∈ [0,Mn], Zn,m ≤ Zn,0}

where the constraint Zn,m ≤ Zn,0 is used to filter useless
partition locations as we discussed before. In EFFECT frame-
work, end-devices are first randomly connected to a nearby
AP which is used upload their execution profiles along with
the execution constraint. From this point the AP forwards the
execution profiles to the URB. Once the URB receives all the
profiles, it performs resource allocation to minimize the system
energy consumption while satisfying the execution constraints.

C. Communication Model

Implemented within a stand-alone fog environment, EF-
FECT enforces Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) communication system where the APs have
certain amount of sub-channels to be used for application data
transmission. Once a device decides to offload its task to an

edge server (i.e. I{an=k} = 1), the URB assigns several sub-
channels through the AP for data transmission between the
device and the AP. We denote Ck as the number of available
sub-channels at AP k. We assume that the AP has perfect
knowledge of sub-channel gain hn,k. Therefore, the aggregated
data rate for data transmission from device to AP is modeled
as:

rn,k = bn,kB0 log2

(
1 + pn,kh

2
n,k/N0

)
(1)

where B0 denotes the sub-channel bandwidth, bn,k is the
number of sub-channels assigned to device n by AP k, pn,k
is the transmission power used on a single sub-channel (i.e.
the total transmission power is bn,kpn,k), and N0 is the white
noise power spectral density. Since one sub-channel can only

be used by one device at any time instance,
N∑
n=1

bn,k ≤ Ck

holds for all APs with the fog environment. The energy spent
on transmitting data from device to AP under given execution
profile Jn,m and sub-channel allocation bn,k is expressed as:

EDn,k (Jn,m) = bn,kpn,kZn,m/rn,k (2)

D. Computation and Energy Model

Remark 1: With EFFECT, when a device decides to exe-
cute a task locally (i.e., I{an=0} = 1 and m = 0), the minimal
energy consumption w.r.t. the task latency constraint can be
computed by ELn = κ (Yn,0) [Yn,0/Dn]

2 where κ = 10−28

J/cycle is a constant related to the chip architecture [11], [25].
In EFFECT, a task can be executed locally if and only if the
maximum CPU speed of device satisfies Yn,0 ≤ fmax

n Dn.

In EFFECT, the computation follows the model described
in [25] that allows end-devices to adjust their CPU speed
for energy saving based on Dynamic Voltage Scaling (DVS)
technique. When a device select task offloading I{an=k} = 1
to server k and set fNn,k as the device CPU speed, the
energy consumption for local computation is ECn,k(Jn,m) =

κYn,m[fNn,k]2. The total energy consumption is the sum of
transmission cost and computation cost, which can be ex-
pressed as:

En,k(Jn,m) = EDn,k(Jn,m) + ECn,k(Jn,m) (3)

E. Problem Formulation

The objective of EFFECT framework is to find the best
execution profile and the optimal offloading decision. We also
seek the optimal resource allocation strategy for devices and
edge servers. Therefore, EFFECT’s energy-aware multi-device
and multi-server task offloading optimization problem can be
represented as:

min
Rn,an,
Jn,m

N∑
n=1

K∑
k=1

En,k(Jn,m)I{an=k}

s.t. C1:
N∑
n=1

bn,kI{an=k} ≤ Ck, ∀k ∈ K

C2:
N∑
n=1

fKn,kI{an=k} ≤ Fk, ∀k ∈ K

C3:
K∑
k=1

(
Yn,m
fNn,k

+
Xn,m

fKn,k
+
Zn,m
rn,k

)
I{an=k} ≤ Dn,∀n ∈ N

C4:
K∑
k=1

En,k(Jn,m)I{an=k} ≤ ELn , ∀n ∈ N

C5:
Yn,0
Dn

I{an=0} ≤ fmax
n , ∀n ∈ N

C6:an ∈ {0, 1, 2, ...,K}, Jn,m ∈ Jn (P1)

where Rn = {fNn,k, pn,k, fKn,k, bn,k} denotes the resource
allocation profile and fKn,k is the CPU speed allocated to device
n from server k. In (P1), constraints C1 and C2 limit the
number of sub-channels and the CPU capacity used by the
edge servers, constraints C3 and C4 specify the execution
deadline and the energy saving constraints for an offloading
decision and the constraint C5 represents Remark 1.
F. Problem Decoupling: CRA and DSM

Fig. 4: Interrelationship between CRA and DSM in EFFECT

EFFECT’s multi-device and multi-server task offloading
optimization problem (P1) is non-trivial to solve because of its
Mixed-Integer Nonlinear Programming (MINLP) nature - the
number of sub-channels, the execution profile selection, and
the task offloading decision making are all discrete integers. It
is well known that solving such NP hard problems with closed-
form expressions is very challenging. Thus, in EFFECT, we
divide the optimization problem into two sub-problems:

DSM:Distributed︷ ︸︸ ︷
argmin
an,Jn,m

{
argmin
Rn

N∑
n=1

En,k(Jn,m)I{an=k}, ∀k ∈ K︸ ︷︷ ︸
CRA:Centralized

}
(4)

The outer sub-problem of Distributed Strategy Making (DSM)
is a distributed game where devices are modeled as selfish
in nature and always tending to select the best offloading
strategy to minimize their energy consumption. Whereas the
inner sub-problem of Centralized Resource Allocation (CRA)
consists of K independent but identical sub-sub-problems that
are centralized (at each edge node) to minimize the overall
energy consumption of offloaded tasks. The interrelationship
between DSM and CRA is shown in Fig. 4. The solution to
P1 is obtained by alternatively performing DSM and CRA
until convergence. Next, we discuss sub-problems CRA and
DSM individually.

III. CRA: CENTRALIZED RESOURCE ALLOCATION WITH
FIXED OFFLOADING STRATEGY

The sub-problem CRA represents a group of offloaded
tasks denoted by Nk = {n | I{an=k} = 1, n ∈ N} - the
objective being the minimization of total energy consumption
by devices in Nk. In this section, we will first remove the
integer constraints C1 and C6 from (P1) in order to convert
sub-problem CRA into a convex optimization problem. To this
end, EFFECT first pre-allocates several sub-channels to each
offloaded task and generates an initial resource allocation pro-
file R0

n. After that, EFFECT performs a heuristic sub-channel
allocation that dynamically assigns sub-channels to the most
desirable devices and continuously updates R0

n → Rtn until
convergence.
A. Problem Transformation: CRA

We denote auxiliary variables τDn,k and τCn,k as the data
transmission and edge computation times and define function
g(r) = N0

(
2rn,k/bn,kB0 − 1

)
that is a monotonically decreas-

ing function in terms of achievable data rate rn,k. Based on
Eq. (1), the transmission power can be expressed as:

pn,k = min

{
g(Zn,m/τ

D
n,k)/h2

n,k, p
max
n /bn,k

}
(5)

where the maximum transmission power for each device is
pmax
n . Now the sub-problem CRA transforms to:

min
Rn

∑
n∈Nk

(
κYn,m

[
fNn,k

]2
+
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

)

s.t. C1:
bn,k
h2
n,k

g
(
Zn,m/τ

D
n,k

)
≤ pmax

n , ∀n ∈ Nk

C2:
∑
n∈Nk

Xn,m/τ
C
n,k ≤ Fk

C3: τDn,k + τCn,k + Yn,m/f
N
n,k ≤ Dn, ∀n ∈ Nk

(P2)
The Hessian matrix of (P2) being positive semi-definite makes
it a convex problem w.r.t. resource allocation profile Rn.
Therefore, applying Karush-Kuhn-Tucker (KKT) conditions
yields the optimal resource allocation profile R∗n. Introducing
Lagrangian multipliers λ, ν and µ, the Lagrange function of
problem CRA can be expressed as:

L(Nk) =
∑
n∈Nk

(
κYn,m[fNn,k]2 +

bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

)

+λn,k

(
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
− pmaxn

)
+ νk

(∑
n∈Nk

Xn,m

τCn,k
− Fk

)

+µn,k

(
τDn,k + τCn,k +

Yn,m
fNn,k

−Dn

)
(6)

B. Transmission Time and Transmission Power
For transmission time and power optimization, we first

define f(x) = g(x) − xg′(x). Now, if τDn,k
(∗) denotes the

optimal data transmission time, then:

f
(
Zn,m/τ

D
n,k

(∗))
= −µn,kh2

n,k/ (1 + λn,k) bn,k

Based on the Lambert function W0 and similar solutions
proposed in works, such as [11], [26], the relationship between
data rate and transmission time can be stated as:

f−1(y)
∆
= Zn,m/τ

D
n,k

(∗)
= B [W0 (y +N0/−N0e) + 1] / ln(2)

Since a device has to transmit at least Zn,m bits of data
during τDn,k

(∗), it provides the lower bound of τDn,k
(∗) when the

device uses its maximum transmission power pmaxn resulting
in maximum data rate rmaxn,k . Thus, the optimal transmission
time can be stated as:

τDn,k
(∗)

= max

{
Zn,m × ln(2)

B
[
W0

(
µn,kh2

n,k

(1+λn,k)bn,kN0e
− 1

e

)
+ 1
] , Zn,m
rmaxn,k

}
(7)

Upon obtaining this optimal transmission time, the transmis-
sion power can be computed from Eq. (5).

C. CPU Speed Allocation

Similar to the analysis in III-B, the optimal CPU speed at
an end-device can be expressed as:

fNn,k
(∗)

= min

{[
µn,k/2κ

] 1
3

, fmax
n

}
(8)

Whereas, the optimal CPU time at an edge server is:

τCn,k
(∗)

= [νkXn,m/µn,k]
1
2 = Xn,m/f

K
n,k

(∗)
(9)

It is evident that the edge server should allocate all its CPU to
the offloaded tasks resulting in tasks having higher computa-
tion requirement Xn,m getting more resources. Therefore, in
Eq. (9), we can substitute multiplier νk with

∑
n∈Nk

fKn,k
(∗)

=

Fk. Thus, the optimal CPU speed allocated to each offloaded
task in an edge server can be calculated as fKn,k

(∗)
=√

Xn,mµn,k∑
n∈Nk

√
Xn,mµn,k

× Fk.

D. Heuristic Sub-channel Allocation

The EFFECT framework provides a low complexity sub-
channel allocation by periodically running a heuristic with an
interval of Tch. To do that each device n calculates the gain
function for getting the next sub-channel from AP k, which is
defined as:

Gn,k = P (bn,k)− P (bn,k + 1) (10)

where

P (bn,k) =
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
τDn,k

The algorithm runs through all the sub-channel and the device
which has the highest Gn,k, ends up receiving a sub-channel.
The sub-channel allocation strategy can thus be stated as:

b
(∗)
n,k =

b
(∗)
n,k + 1 if n = argmax

n
(Gn,k)

b
(∗)
n,k otherwise

(11)

E. Joint Resource Energy Efficient Allocation
Once Rn is obtained, we can use a sub-gradient method to

update λ and µ. The update rules are:
1) For λn,k, when bn,kpn,k 6= pmaxn , we set λn,k = 0;

otherwise

λt+1
n,k =

[
λtn,k + ∆λ(t)

(
bn,k
h2
n,k

g

(
Zn,m
τDn,k

)
− pmaxn

)]+

(12)
2) For µn,k, it follows

µt+1
n,k =

[
µtn,k+∆µ(t)

(
τDn,k + τCn,k +

Yn,m
fNn,k

−Dn

)]+

(13)
As shown in Eq. (12) and (13) ∆(t) is the diminishing step
size. The joint resource and energy allocation algorithm is
described in Algo. 1 and has a complexity of O(1/ε2).

Algorithm 1: Joint Resource and Energy Allocation
1 Given a list of offloaded tasks Nk, stop point ε, step control

t = 0
2 Initialize multipliers {λn|∀n ∈ Nk} and {µn|∀n ∈ Nk}
3 Initialize resource allocation profiles {Rn | ∀n ∈ Nk}
4 while True do
5 stop = True
6 for each task n ∈ Nk do
7 Update λt

n,k and µt
n,k based on (12) and (13)

8 Update Rt
n

9 if |completion time of task n−Dn| > ε then
10 stop = False

11 if stop then
12 break
13 if t % Tch == 0 then
14 Run Heuristic Sub-channel Allocation from (11)
15 t = t+ 1

16 return {Rt
n | ∀n ∈ Nk}

IV. DSM: MULTI-DEVICE AND MULTI-SERVER
DISTRIBUTED TASK OFFLOADING GAME

The EFFECT framework solves the sub-problem DSM by
performing a multi-device and multi-server task offloading
game. It considers the following characteristics of the task
offloading game: 1) The edge servers’ objective is to reduce
the overall system energy consumption i.e., with sub-problem
CRA, EFFECT minimizes the energy consumption of all
end-devices in a centralized manner and 2) The devices are
inherently selfish; thus they are only concerned about reducing
their own energy consumption i.e., with sub-problem DSM,
EFFECT minimizes the energy consumption of all devices in
a distributed manner.

The proposed task offloading game is a two-sided matching
game where devices always offload their tasks to the edge
servers based on their current preferences. Thus, any unilateral
strategy update may affect the preferences of all devices and
may lead to continuous updating of personal strategies. In
EFFECT, we aim to find a Nash equilibrium (NE) for the
proposed matching game and analyze the convergence of such
strategy update process.

A. Game Formulation
In order to formulate a game for task offloading sub-

problem DSM, we use a 3-dimensional strategy space which
is defined as S ∆

= [A,J ,R]. The strategy at update iteration t
by device n is denoted by sn(t) = [an(t), Jn,m(t),Rn(t)]. It
indicates the offloading decision an(t), the execution profile
Jn,m(t), and the resource allocation profile Rn(t) that are
made by device n. In EFFECT, a global strategy profile is
generated and maintained by the framework URB, which is
defined as S(t) = {s0(t), s1(t), .., sN (t)}. We define s−n(t)
as the set of offloading strategies made by all other devices
except for device n. Thus, the energy consumption function
for device n can be formulated as:

ηn(sn(t), s−n(t)) =

{
ELn if I{an(t)=0} = 1

En,k(Jn,m(t)) if I{an(t)=k} = 1
(14)

The multi-device and multi-server task offloading problem is
formulated as a strategic game with individual utilities calcu-
lated by Eq (14). Given s−n(t), each device chooses a suitable
strategy sn(t) to minimize its own energy consumption (in a
selfish manner) where ∀n ∈ N ,

sn(t) = argmin
sn(t)∈S

ηn(sn(t), s−n(t)) (P3)

It is to be noted that (P3) can be treated as N parallelized sub-
sub-problems sharing the same global strategy profile S(t),
thereby significantly reducing the computation overhead.

Remark 2: In any energy-aware framework, having devices
run optimization algorithms can be counterproductive. Thus
EFFECT employs Helper processes that can concurrently
make task offloading decisions for all devices. Helpers (as
shown in Fig. 5) reside within edge nodes and provide energy
optimization service for a set of devices. To avoid redundant
computation during game iteration, a central database is used
for caching historical optimization outcomes (from Algo. 1)
and is shared among all the Helpers.

In accordance to Remark 2, EFFECT framework URB
assigns a Helper process to each end-device (randomly or from
the nearest edge node) and applies the Best Response Strategy
algorithm (in response to s−n(t)) on Helpers in order to find
the best strategy sn(t) for individual devices. At the same
time, the URB broadcasts the current global strategy profile
S(t) to all the Helpers. The Best Response Strategy algorithm
running on Helpers is described in Algo. 2.

Algorithm 2: Best Response Strategy For Device n
1 Receive strategies made by other devices s−n(t) from URB;

Initialize minimal energy consumption E∗ = ELn
2 for each edge server k ∈ K do
3 Get the list of offloaded tasks on server k: Nk

4 for each Jn,m ∈ Jn do
5 Run Algo. 1 to find the best Rn, then calculate En,k

6 if E∗ > En,k then
7 E∗ = En,k, sn(t) = [k, Jn,m,Rn]

8 return sn(t)

Fig. 5: The logical diagram of proposed distributed multi-device and multi-
server task offloading game components within the EFFECT framework

B. Nash Equilibrium and Convergence
Here we explore the Nash Equilibrium (NE) characteristics

for EFFECT’s proposed multi-device and multi-server task
offloading game. As mentioned earlier, EFFECT assumes that
the end-devices belonging to individual teams/agencies are
selfish in nature and are only concerned about their own energy
consumption.

Theorem 1: The multi-device and multi-server task offload-
ing game with a global cost function φ(S) defined in Eq. (15)
is a potential game which always has a NE.

φ(S) =

N∑
n=1

(
κYn,m[fNn,k]2 + pn,k

Zn,m

B0 log2

(
1 +

pn,kh2
n,k

N0

))
(15)

Proof: The details of the proof is trivial and so is skipped
for the sake of brevity. For now, we will assume that the game
will always have a NE S∗ and the finite improvement property
(FIP) [18], [19].

C. Priority Based Request Update Policy
Algo. 3 describes the proposed multi-device and multi-

server offloading strategy that the EFFECT framework applies
to find the improvement path that leads to the NE (based on
FIP) built upon Algo. 2. In Algo. 3, steps 6-9 are distributed
on individual Helpers (i.e., DSM) that send update requests
sn(t) to the URB. However, only one request is accepted by
the URB at each iteration among all end-devices’ requests that
want to change their offloading decisions (sn(t− 1) 6= sn(t)).
Compared to the random request selection policy used in [18],
[19], EFFECT rather adopts an energy-efficiency priority
based request update policy. In order to satisfy the objective
of CRA, the priority is maintained according to:

ρn(t) = ELn − ηn(sn(t), s−n(t))

It indicates the energy saving obtained from task offloading
against local-only computation (i.e., an(t) = 0). In EFFECT,
the request with highest ρn(t) is accepted. The algorithm
terminates when there are no more update requests or the
algorithm has reached the maximum number of iterations
tmax, whichever comes first.

Algorithm 3: Game-based Task Offloading Algorithm
1 Collect execution profiles from APs as described in section

II-B.
2 Initialize a global strategy S∗ with all devices selecting the

local-only model.
3 Assign Helper process to each task.
4 while t < tmax or not all tasks are completed by the

deadline do
5 request = ∅
6 for each device n ∈ N do
7 Send s−n(t− 1) to Helper(Algo. 2) of device n and

get sn(t)
8 if sn(t− 1) 6= sn(t) then
9 request.add(sn(t))

10 if request 6= ∅ then
11 Accept request: s∗n ← sn(t), where

n = argmax
n∈N

ρn(t)

12 else
13 break
14 t← t+ 1

15 return S∗

V. PERFORMANCE EVALUATION

In this section, we present EFFECT framework prototype
and experimental results; followed by simulation results.

A. Testbed Design, Implementation, and Experiment Results
In order to evaluate the performance of the EFFECT

resource management on ‘near real-world’ edge computing
platform, we design a small virtual testbed using Amazon
EC2 service with 6 device instances (@2.3 GHz 1 vCPU),
2 edge server instances (the performance has been adjusted to
@2.3 GHz 8 vCPUs and @2.3 GHz 6 vCPUs), and 1 URB
instance (@2.3 GHz 1 vCPU) as shown in Fig 6. We use
TCP/IP socket programming to simulate the message passing
on the control channels for EFFECT framework described in
Fig. 5 (sub-channel bandwidth is simulated as 125 KHz and
the maximum transmission power is assumed to be 1 watt).

Fig. 6: EFFECT framework prototype implementation and testbed design

1) Testbed design and implementation: In order to im-
plement a multi-device, multi-server task offloading game
on a practical development platform, we choose Apache
Storm [23], [27] as the distributed stream processing compu-
tation platform for the testbed design. In Apache Storm, the
communication between jobs are described as data streams.
Jobs can either be spouts, i.e., a source of streams or bolts,
i.e., consume and process input streams with the major roles

being Nimbus, Zookeeper, and Supervisor. The role-matching
(shown in Fig. 6) between Apache Storm and EFFECT are
described as follows:

1. The edge servers within the edge units and end-devices
are registered as Supervisor nodes. However the end-device
Supervisors only provide service to their own local-processing
jobs. These nodes contain a list of “worker” processes,
whereas each worker process executes a subset of task jobs.

2. The URB works as the Nimbus as well as the Zookeeper
that distributes the tasks and coordinates the communication
between the nodes. The end-devices submit their task topology
source files alone with the estimated execution profile list
(from subsection V-A1) to the Nimbus.

3. A custom scheduler that runs the EFFECT algorithms is
deployed to perform server selection and job assignment. CPU
allocation is performed using cpulimit [28] tool.

Fig. 7: Applications with different image quality and frame resolutions used
for the testbed

In order to mimic computation-intensive and real-time video
processing tasks, we implement 6 applications with 2 jobs, as
shown in Fig 7. The first job of each application (except APP6)
is a lossy PNG compression (often the first stage of video
processing) with different image quality options in pngquant
algorithm [29]. The second job is objection detection through
YOLOv3 algorithms [30] using different frame resolutions.

Fig. 8: Computation resource requirement estimation for different applications

For the experiments, we first have to generate the numeric
values for execution profiles Jn. Thus, we run pngquant

Fig. 9: Computation and network resource allocation for different applications; Case 1: (a), (e); Case 2: (b), (f), Case 3: (c), (g), Case 4: (d), (h))

and YOLOv3 with different configurations on server1 inde-
pendently without running the background processes. With
the help of cpulimit tool, we monitor the execution latency
under different CPU utilization and estimate the computation
complexity of each stage by taking the product of delay and
the CPU usage. The computation needs of both jobs and data
sizes for each application are given in Fig. 8. In Fig. 8 (a)
we see that YOLOv3 consumes much more CPU resources
than pngquant and the CPU demands of YOLOv3 alter greatly
when the input frame uses different resolutions. Among all the
applications, the APP3 has the heaviest computation tasks with
intensive YOLOv3. On the other hand, in Fig. 8 (b) we see
that if devices choose to conduct partial task offloading by
running pngquant locally, the data-transmit requirement can
be significantly reduced (70%− 80%).

2) Experiment results: We study 4 cases where the avail-
ability of network resources is at different levels while main-
taining the same amount of computation resources (CPU
cycles). Case 1 and Case 2 use EFFECT for CPU and sub-
channel allocation, while in Case 3 and Case 4, we perform a
competing fair CPU allocation, where the CPU resources are
evenly allocated to the offloaded task without considering the
task deadline.
Case 1: In this case (as shown in Fig. 9 (a) and (e)) we
see the application task behavior with EFFECT when network
resource availability is sufficient, e.g., 48 sub-channels. From
Fig. 9 (a) we see that with EFFECT each tasks are allocated
enough sub-channels (i.e., 15+). Thus they are more likely to
select full task offloading (i.e., no local computation as shown
in Fig. 9 (e)) as energy consumed by data transmission only
accounts for a small part of the total energy consumption.
Case 2: As shown in Fig. 9 (b) and (f), in this case we
instrument fewer sub-channels for data transmission (only 15
sub-channels in comparison to Case 1). Therefore in Fig. 9 (b)
and (f), all applications barring APP6 (which only has one job)
perform partial task offloading (i.e., some local computation)
to reduce the data transmission requirements causing fewer
sub-channel allocation.
Case 3: In order to make this case of fair allocation (as
shown in Fig. 9 (c) and (g)) comparable to Case 1, we
ensure sufficient network resources by keeping number of

sub-channels to 48 with the sub-channel allocation process
still following (11). We see that with fixed CPU allocation,
APP1 and APP3 exhibit significant domination in terms of
sub-channel occupancy as such applications must use more
sub-channels to make up for the lack of computing resources.
This in turn has a negative effect on channel efficiency.
Case 4: In this fair allocation scenario with 15 sub-channels
(as shown in Fig. 9 (d) - (h)) comparable to Case 2, we see
that APP1, APP2, and APP4 conduct partial task offloading by
running pngquant locally, while APP3 and APP6 offload all
computations to the edge servers resulting APP5 processing
all the jobs locally. This signifies the inefficiency of fair CPU
allocation caused by not considering the nature of applications.

The comparison of energy consumption between the four
cases are shown in Fig. 10. As excepted, the availability
of edge resources (specifically sub-channels in these cases)
plays a significant role in task offloading. Between Case 1
and Case 2, the energy consumption can be largely reduced
when there are more sub-channels in the system. This is
especially true for APP6 which is unable to reduce its data
transmission requirement by task partition (from Fig. 10 (a)).
In comparison, all applications need to spend more total energy
and on data transmission under fair CPU allocation (Case 1
vs. Case 3 and Case 2 vs. Case 4) as shown in Fig. 10 (b).
Overall, compared to fair CPU allocation, EFFECT saves 40%
(in sufficient network resource scenarios) to 60% (in limited
network resource scenarios) on the total energy consumption.

B. Simulation Results
We also evaluate EFFECT performance against a larger

set of applications and edge servers via simulation. In the
simulation, the bandwidth of each sub-channel is set to 2
MHz. The channel gains are modeled by independent Rayleigh
fading with average power loss set to 10−3 and the white
Gaussian noise N0 is configured at 10−9 W [26]. The compu-
tation capacity of devices are set between 1.75 GHz and 2.5
GHz that match with general processing speeds of commodity
smartphones. The frame sizes and the deadlines are set to 500
- 1000 KB and 0.5 - 1 seconds respectively. Here, we measure
the computation capacity of the edge server by counting the
number of computational units (e.g., vCPUs). It is assumed

Fig. 10: a) Energy consumption on data transmission for individual applica-
tions. b) Energy consumption of all applications combined for different cases.

that the computation speed of each vCPU is tuned at 1.5
GHz. The accuracy value ε from Algo. 1 is set to 1ms which
signifies that all tasks should be finished within 1ms before
their corresponding deadlines in order to ensure energy saving.

1) Evaluation of sub-problem CRA: The evaluation uses
10 device tasks with given execution profiles Jn,m (pre-
confirmed). The summation of computation complexity of
processing the remote and local jobs are uniformly distributed
between 0.2 × 109 cycles and 0.75 × 109 cycles (for Xn,m

and Yn,m). We compare EFFECT to the following strategies:
1) Local: All tasks are executed on-device, the computation

speeds are configured according to Remark 1.
2) Joint Resource with Fair Sub-channel Allocation

(JR/FS): The resource allocation profile Rn is obtained
by Algo. 1, however the sub-channels are evenly as-
signed to each offloaded task.

3) Joint Resource with Proportional Computation Alloca-
tion (JR/PC): The resource allocation profile Rn is
obtained by Algo. 1, however the sub-channels are
evenly assigned to each offloaded task and the amount of
computation resources obtained by each task is directly
proportional to their computation demands.

Fig. 11: The energy saving evaluation of CRA. a) The computation capacity
is selected as 8 vCPUs. b) The number of sub-channels is fixed at 40.

Local vs. Edge: We first compare the energy consumption
under different number of sub-channels and vCPUs. Fig. 11
(a) shows the impact of data transmission. With fewer sub-
channels in the system, the energy spent on data transmission
outweighs the energy preservation benefits of remote compu-
tation. To save energy compared to local computing, JR/PC

requires at least 34 sub-channels, while JR/FS and EFFECT
need 29 and 26 sub-channels, respectively. On the other hand,
Fig. 11 (b) shows that the computation capacity of edge servers
plays a great role in energy saving. In order to save energy,
it shows that JR/FS and EFFECT require at least 5 vCPUs,
while JR/PC needs at least 7 vCPUs. In all cases, EFFECT
consistently outperforms the other two strategies.

Fig. 12: The schedulability evaluation of sub-problem CRA. a) Results with
5 vCPUs and 40 sub-channels. b) Results with 8 vCPUs and 20 sub-channels.

Schedulability: The schedulability of execution profiles in
terms of deadline satisfaction against different resource al-
location strategies are shown in Fig. 12. The JR/PC strategy
suffers from poor schedulability as it ignores the heterogeneity
of execution profiles. Whereas, EFFECT jointly optimizes the
sub-channel and transmission power allocation as well as the
device and edge server computation speed allocation, thus
guaranteeing very high schedulability. While JR/FS strategy
performs a similar high schedulability, it consumes more
energy cost compared to EFFECT as shown in Fig. 11.

Fig. 13: The energy consumption comparisons between full and partial
offloading with amount of saved energy.

Full vs. partial offloading: As it is non-trivial to measure
and compare full and partial task offloading when execution
profiles have arbitrary computation demands and data sizes, we
define a tuple metric (rD, rC) to indicate the partial offloading
features in order to perform meaningful evaluation. Here, rD
denotes the ratio of intermediate data size to raw data size
with rC implying the ratio of local-processing computation to
total computation. We then compare the energy consumption
between the two offloading strategies under different number
of sub-channels as well as different (rD, rC) combinations.
For this simulation, the edge server computation is fixed at 5
vCPUs. Fig. 13 (a) shows that in cases with execution profiles
(rD = 75%, rC = 30%) and with more than 25 sub-channels,
full offloading provides a better energy saving solution. While

in Fig. 13 (b), partial offloading can save more energy (denoted
by colored areas) with (rD = 60%, rC = 20%) . Evidently, the
lower the ratio of (rD, rC), the higher the priority of adopting
the partial task offload strategy.

2) Nash equilibrium of sub-problem DSM: Here, we eval-
uate the performance of EFFECT Algo. 3 for sub-problem
DSM by showing the system convergence. In this simulation,
each edge server has 10 to 20 sub-channels and 3 to 5 vCPUs.
The task execution profiles are generated by DAGs with 2 to
4 jobs and the job complexity varies between 0.2×109 cycles
and 0.75× 109 cycles.

Fig. 14: Task offloading game convergence for 15 devices and 3 edge servers.
a) Total energy consumption. b) Individual devices energy consumption.

System convergence: The objective of this evaluation is to
show that the task offloading game algorithm terminates after
few iterations and no device can further reduce its energy
consumption by unilaterally changing its strategy, i.e., all
devices reach NE. Fig. 14 (a) shows that all devices select local
computation model (i.e., an(0) = 0) at the very beginning of
the game. Based on FIP (in Section III), the improvement path
shown in the figure demonstrates the strategy update sequence
carried out by the best response strategy that eventually leads
to a NE after 40 iterations. Fig. 14 (b) depicts the energy
consumption of individual devices which represents how task
offloading preferences are changed during the game. Upon
further investigation, we observe that the number of iterations
is almost linearly correlated to the number of tasks, e.g., a
game with N devices requires at most αN iterations to reach
NE where α relies on the heterogeneity of resources.

VI. CONCLUSIONS

In this paper, we explored how energy consumption can be
reduced within fog computing environments without violating
service latency constraints by intelligently performing partial
task offloading. The theoretical methods and models are de-
signed around proposed EFFECT framework and implemented
as algorithms into a virtual testbed. Our testbed and simulation
results showed that the EFFECT framework can: i) signifi-
cantly reduce application task energy consumption, ii) satisfy
the execution deadline without violating the selfish nature of
individuals, and iii) be computationally lightweight. By jointly
optimizing the multi-resource allocation across a multi-sever
fog computing environment, the EFFECT framework creates
a highly adaptive and intelligent resource provisioning and
orchestration environment. The ideas, methods, models, and
results presented in this paper can be critical towards a broader

paradigm shift that dictates how fog/edge resources could be
managed in various transient environments.

REFERENCES

[1] M. Chen et al., “Task offloading for mobile edge computing in soft-
ware defined ultra-dense network,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 587–597, 2018.

[2] K. Zhang et al., “Energy-efficient offloading for mobile edge computing
in 5g heterogeneous networks,” IEEE Access, vol. 4, pp. 5896–5907,
2016.

[3] H. Zhang et al., “Live video analytics at scale with approximation and
delay-tolerance,” in USENIX NSDI, 2017, pp. 377—-392.

[4] C. Hung et al., “Videoedge: Processing camera streams using hierarchi-
cal clusters,” in IEEE/ACM SEC, 2018, pp. 115–131.

[5] J. Wang et al., “Bandwidth-efficient live video analytics for drones via
edge computing,” in IEEE/ACM SEC, 2018, pp. 159–173.

[6] R. Gargees et al., “Incident-supporting visual cloud computing utiliz-
ing software-defined networking,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 1, pp. 182–197, 2016.

[7] X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in IEEE INFOCOM, 2018, pp. 1421–1429.

[8] S. Wang et al., “Surveiledge: Real-time video query based on collabora-
tive cloud-edge deep learning,” arXiv preprint arXiv:2001.01043, 2020.

[9] C. Wang et al., “Joint configuration adaptation and bandwidth allocation
for edge-based real-time video analytics,” in IEEE INFOCOM, 2020, pp.
1–10.

[10] A. Das et al., “Performance optimization for edge-cloud serverless
platforms via dynamic task placement,” in IEEE/ACM CCGRID, 2020,
pp. 41–50.

[11] F. Wang et al., “Joint offloading and computing optimization in wire-
less powered mobile-edge computing systems,” IEEE Transactions on
Wireless Communications, vol. 17, no. 3, pp. 1784–1797, 2017.

[12] Y. Mao et al., “Stochastic joint radio and computational resource
management for multi-user mobile-edge computing systems,” IEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 5994–
6009, 2017.

[13] J. Ren et al., “Latency optimization for resource allocation in mobile-
edge computation offloading,” IEEE Transactions on Wireless Commu-
nications, vol. 17, no. 8, pp. 5506–5519, 2018.

[14] X. Zhang et al., “Migration-driven resilient disaster response edge-cloud
deployments,” in IEEE NCA, 2019, pp. 1–8.

[15] T. Bahreini et al., “Efficient placement of multi-component applications
in edge computing systems,” in ACM/IEEE SEC, 2017, pp. 1–11.

[16] S. Khare et al., “Linearize, predict and place: minimizing the makespan
for edge-based stream processing of directed acyclic graphs,” in
ACM/IEEE SEC, 2019, pp. 1–14.

[17] S. Yi et al., “Lavea: Latency-aware video analytics on edge computing
platform,” in IEEE ICDCS, 2017, pp. 2573–2574.

[18] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[19] X. Chen et al., “Efficient multi-user computation offloading for mobile-
edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, 2016.

[20] H. Shah-Mansouri et al., “Hierarchical fog-cloud computing for iot
systems: A computation offloading game,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 3246–3257, 2018.

[21] J. Zhang et al., “Joint computation offloading and resource allocation
optimization in heterogeneous networks with mobile edge computing,”
IEEE Access, vol. 6, pp. 19 324–19 337, 2018.

[22] X. Zhang et al., “Energy efficient task offloading for compute-intensive
mobile edge applications,” in IEEE ICC, 2020.

[23] M. Senn, Apache Storm - https://storm.apache.org/.
[24] Face recognition - https://github.com/ageitgey/face recognition.
[25] W. Zhang et al., “Energy-optimal mobile cloud computing under

stochastic wireless channel,” IEEE Transactions on Wireless Commu-
nications, vol. 12, no. 9, pp. 4569–4581, 2013.

[26] C. You et al., “Energy-efficient resource allocation for mobile-edge com-
putation offloading,” IEEE Transactions on Wireless Communications,
vol. 16, no. 3, pp. 1397–1411, 2017.

[27] W. Zhang et al., “Hetero-edge: Orchestration of real-time vision appli-
cations on heterogeneous edge clouds,” in IEEE INFOCOM, 2019, pp.
1270–1278.

[28] cpulimit - https://github.com/opsengine/cpulimit.
[29] pngquant - https://pngquant.org/.
[30] J. Redmon et al., “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

