
1

Efficient Big-Data Access: Taxonomy and a

Comprehensive Survey
Anis Alazzawe, Amitangshu Pal, Krishna Kant

Computer and Information Sciences, Temple University, Philadelphia, PA 19122

[aalazzawe, amitangshu.pal, kkant]@temple.edu

Abstract—The emerging systems are not only generating huge
amounts of data but also expect this data to be analyzed
expeditiously to drive online decision-making and control. Thus,
identifying the most relevant data and making it available close
to the computation becomes a central challenge in driving
the big data revolution. Storage systems play a crucial role
in enabling efficient access to the stored data and intelligent
storage management techniques are thus central to addressing the
problem. Generally, as the data volume increases, the marginal
utility of an “average” data item tends to decline, which requires
greater effort in identifying the most valuable data items and
making them available with minimal overhead and latency. Data
driven mechanisms have a big role to play in solving this needle-
in-the-haystack problem. In this paper we propose a taxonomy
to provide a structure for understanding the common issues
surrounding these techniques. We discuss these techniques and
articulate many research challenges and opportunities.

Index Terms—Locality Exploitation, Proximity Optimization,
Data Reduction, Redundancy Removal, Data Filtering

I. INTRODUCTION

The world is awash in data, the rate at which data is gener-

ated in the future will increase as the information technologies

permeate deeper into every aspect of society including energy,

transportation, logistics, medical care, etc. Furthermore, there

is an increasing need to analyze the data in an online or real-

time manner to drive intelligent decision making for society’s

interactions with the cyber and cyber-physical systems. This

brings in the key challenge of proactively determining the data

needs of an application and providing it most efficiently and in

a form that is most useful to the application. With the overall

data volume growing much faster than the useful or required

data, the problem is becoming increasingly more urgent.

Big data analysis and mining thus have drawn a significant

amount of attention recently, and a large volume of studies

and surveys exist in this area. Tsai et al. [1] looked at scaling

data analytics in terms of the platform and data analytics

algorithms. Ghani et al. [2] surveyed big data issues in

the context of social media. In [3], experimental study of

big data analytics deployment practices is performed. In [4]

highlights research and challenges in big data in the context

of deep learning. Different big data methodologies and storage

technologies have also been surveyed in [5]–[7]. Surveys on

different application areas of big data analysis including Inter-

net of things (IoT), mobile applications, traffic management,

healthcare, big data in urban environments and smart cities,

and application to utilities etc. are also studied in [8]–[17]. In

contrast to these surveys on big data analysis and technologies,

in this paper we provide a survey of the techniques used for

learning about and predicting data needs and the corresponding

methods to access the required data efficiently. We propose a

taxonomy to provide a context for understanding the issues

involved in achieving efficient data access and discuss the

opportunities and open problems. The fundamental difficulty

in doing this is that there are multiple views of data, and the

connection between them can be rather weak. In particular,

the traditional block storage system, which is quite prevalent,

provides the following 3 views of data:

(a) Application’s view that concerns data “items” that an

application works with (e.g., files, database records, etc.).

These items reside in a “storage volume” presented to the

application by the host system, which knows how to access it

but may not know about its structure or even the location. The

host views the logical volume as simply a sequence of logical

block addresses (LBAs), starting at 0.1

(b) Storage system’s view, that concerns the mapping of the

logical volume on to the storage system. The logical volume

may consist of multiple segments, possibly mapped to different

devices as determined by the logical volume manager (LVM)

running on the storage server. The LVM or an associated

module translates the LBA number into the device ID and

offset. Since a device can also be seen as a sequence of

(device-level) LBAs, the offset is in terms of LBA as well.

(c) Physical device’s view, that concerns the precise map-

ping of device-level LBAs into device specific structure such

as cylinder, platter and sector for hard disk drives (HDDs), or

package, die, plane, block and page number in a solid-state

drive (SSD).

The more powerful “Object Storage” model, discussed in

section II-C, can also be thought in terms of the above 3 views:

host’s, storage system’s and device’s. Each of these views

has important implications for efficient data access, and the

corresponding mechanisms must be well coordinated to ensure

the desired behavior. Unfortunately, there are no standard

ways of conveying the application/host level information to the

storage system thereby making the connection between (a) and

(b) difficult. Furthermore, the storage system typically serves

a large number of hosts and applications, and so the traffic

seen by the storage system becomes difficult to identify with

individual applications. Although object storage systems (see

Section II-C) provide a better connection between host and

storage systems, many storage system specific functions such

as virtualization, deduplication, low level device management,

etc. still make the connection quite difficult. These aspects

1Typical LBA size is 4KB but could be configured differently as well.

TABLE I: Common Abbreviations
SNIA Storage Networking Industry Association

HDD/SSD Hard Disk/Solid State Drive

FTL Flash Translation Layer

SLC/MLC Single/Multi (two) Level Cell Flash technology

TLC/QLC Triple/Quad Level Cell Flash technology

CSG Cloud Storage Gateway

RAID Redundant Array of Inexpensive Disks

HDFS Hadoop Distributed File System

LBA Logical Block Address

LRU/LFU Least Recently/Frequently Used

(S)ARC (Sequential) Adaptive Replacement Cache

NVMe Nonvolatile Memory Express Interface

NVMeoF NVMe over Fabric Interface

NVRAM Nonvolatile Random Access Memory

OSD Object Storage Device (for object storage)

MDS Metadata Server (for object storage)

QoS Quality of Service

CAP Consistency, Availability and Partition tolerance

further obscure the connection between (b) and (c).

In view of the above, a certain access pattern from applica-

tion’s perspective (e.g., access to a sequential range of database

records) has nothing to do where the data is actually located

or accessed from the device(s). Thus much of the challenge

and complexity in dealing with access to big data lies in

integrating the management across different layers based on

specified or learned behaviors and connections. Data driven

analytics techniques can be very useful in this learning as we

shall point out later in the paper.

The outline of the paper is as follows: We start with a short

review of some relevant concepts of modern storage systems

in section II. Section III then discusses the fundamental drivers

for efficient big-data access. Section IV introduces a taxonomy

of data driven access methods and details behavior and seman-

tics driven methods. Subsequent sections elaborate on the key

taxonomic elements, namely, data access locality (Section V),

data-computation proximity (Section VI), and data reduction

(Section VII). Then in section VIII, we discuss the tradeoff

between performance and other aspects. Finally, Section IX

concludes the paper. Table I includes the key abbreviations

used in this paper. We have also included supplementary

material on the details of storage technologies and systems

that the reader may wish to consult. However, we believe that

the overview of basic concepts in section II should suffice to

read this article.

II. OVERVIEW OF MODERN STORAGE SYSTEMS

A. Basic Storage System Concepts

Storage technologies continue to make rapid strides in

many dimensions, and it is important to understand their key

characteristics relative to data access performance. Solid State

Drives (SSDs) are becoming ubiquitous because of their far

lower access latency, higher IO bandwidth, smaller physical

size and lower energy consumption as compared to the Hard

Disk Drives (HDDs). SSDs are based on the underlying NAND

“Flash” technology that represents different logic levels by

the number of trapped electrons in each “cell” (or transis-

tor) [18]. The technology started with only two levels (1

bit/cell), popularly known as SLC (single level cell), and has

progressed to 2 bits/cell (mischaracterized as MLC or multi-

level cell), 3 bits/cell (TLC), and 4 bits/cell (QLC). The flash

technology allows the writing (or programming) of trapped

electrons only once, after which the cell needs to be erased

before rewriting. The technology also has strict limits on the

number of program-erase (PE) cycles that it can take, known

as endurance. It also has retention issues since the cells that

are not read for a long time tend to leak out some trapped

electrons. Both endurance and retention tend to deteriorate

rapidly with more bits/cell. For example, a cheap QLC SSD

may only allow a few hundred PE cycles before it wears out.

In addition to flash, there are many other upcoming tech-

nologies that are even faster than flash, allow overwrites, and

have much better endurance/retention characteristics [19]. One

specific technology that is already commercially available and

that we will mention later is the Intel Optane technology [20].

It is available in both persistent memory and storage form,

the key difference being that the CPU waits for an in-line

response from a memory interface, but storage interfaces

typically provide later asynchronous completions.

The lack of in-place writing and endurance issues in SSDs

cause a lot of management complexity and require a sophis-

ticated software layer called Flash Translation Layer (FTL)

that hides all of the underlying operations such as keeping

track of blocks/pages for out-of-place updates, allocating and

consolidating blocks to control ”write amplification” (i.e.,

number of internal writes done for a single user issued write),

garbage collection, wear leveling (ensuring that the writes are

spread evenly throughout all the blocks), special handling of

blocks with high read/write errors, etc. Further complexities

arise because the SSD has a complicated internal structure

consisting of multiple of packages, chips per package, dies per

chip, planes per die, blocks per plane, and pages per block.

The relevance of these aspects on data access are discussed

later in the article.

Fig. 1: Typical storage
hierarchy

Beyond the storage technologies,

there are continuing improvements in

storage interfaces; for example, the so

called NVMe interface is becoming

universal for high speed technologies

and can provide protocol latencies as

low as 10µs or less [21]. Also, much

of the storage is accessed over the

network regardless of whether it is concentrated in a few

storage servers or hosted by the compute servers themselves.

Thus, with rapidly decreasing latency of storage devices and

interfaces, the latency of the network is becoming more

important. Similarly, with rapidly increasing bandwidth of

storage devices, the network bandwidth can already become a

bottleneck. For example, a few inexpensive SSDs can easily

saturate a 100 Gb/sec Ethernet link [22].

Modern storage systems provide a tremendous amount of

flexibility in terms of how “storage volumes” are defined,

allocated, and dynamically resized. All of these features are

supported by “storage virtualization”, which separates the

logical address of the data (e.g., LBA number from a logical

storage volume) from the physical device address. The require

mapping can be quite complex and can add to the storage

access latency in a large system.

Given storage technologies with a wide range of latency,

bandwidth, and size characteristics, it is natural to organize

them into a hierarchy as shown in Fig. 1. The “hottest” (or

2

most active) data would go to the fastest devices which are

limited in size due to high cost. The appropriate technologies

here could include SLC/MLC SSDs or other higher speed

technologies. The middle tier may consist of slower TLC/QLC

SSDs, and the cold tier may consist of HDDs. A good

management of storage hierarchy using intelligent “tiering”, or

dynamic movement of each data item to the most appropriate

place in the hierarchy, is crucial to achieve high performance

at a relatively moderate cost.

B. MetaData Issues in Storage Systems

The properties of the data such as location, size, time of

last update, etc. are described by “metadata”, often stored

separately from the data. Metadata is crucial not only to access

the relevant data items but also to determine which data items,

if any, are relevant. The implication of the latter is that the

metadata is accessed far more frequently than the data. Thus

high performance access to metadata is even more crucial than

the data itself. Since the size of the metadata is generally much

smaller than data, it is easily cached in the highest storage

tier, and may even largely reside in the memory. However,

metadata may be updated even if the data is not (e.g., updating

time of last read), and persisting the metadata may result in

the problem of “small writes” to storage devices, which is

both inefficient and may wear out the SSDs quickly. Yet, the

metadata must be persisted (logged) properly to avoid data

corruption in case of power failure.

Distributing the metadata can alleviate performance bottle-

necks but at the cost of further complexity in grouping related

metadata together, avoiding load-imbalance as the workload

changes, and yet ensuring consistency. Singh and Bawa [23]

provide a survey of such techniques. Xu et al. [24] present

a dynamic ring-based metadata management mechanism that

attempts to preserve locality using locality-preserving hashing

while also maintaining consistency and load balance.

At a minimum, the metadata includes enough information

to use the data (e.g., structure, representation, and location of

the data), but in general what is considered as metadata can

be essentially open-ended. For example, the metadata could

include:

1) Provenance of data, i.e., lineage of data including its

origination and update history (e.g., who, when, what

regarding the creation/update, access information, etc.)

2) Context, i.e., relationships across data items such as

dependencies, relative popularities, purpose and usage of

data, etc.

3) Hints on how data might be accessed (e.g., largely

sequentially, random, certain patterns, etc.).

The key issue in maintaining extended metadata is its accuracy

and overhead/scalability both in human and computing terms

vis a vis usefulness. For example, keeping track of all accesses

to “hot” data could easily make the metadata size much bigger

than the data itself. Liu, et al. [25] address the problem

of keeping the metadata indexing scalable by exploiting the

provenance information.

Fig. 2: Object Storage Infrastructure [26]

C. Raising the Storage Abstraction Level

With the traditional block storage discussed above, provides

a very simple storage interface, but suffers from many disad-

vantages including poor performance, lack of security, and lack

of connection between application’s view of data and storage

systems’. In fact, most storage systems still operate this way,

with much of the intelligent data management handled above

the storage layer. Such a view of storage is inherent in the

“block storage”, where the storage system merely deals with

a sequence of “blocks”, each identified by the logical block

address (LBA), typically of 4KB size. The file system, built

on top of block storage, does have some useful metadata such

as the type of file, and could easily collect information about

how the file is used, but none of this information is propagated

to the block layer and beyond. With the simplistic situation

of a local storage device managed by the host that runs the

file system, the connection between the file access and block

access is easy to make since the mapping of the file to the

blocks is known. However, this is not true with most real

systems where the devices may be managed by a separate

storage server, and the communication between the host and

the storage server is in terms of LBA numbers. Furthermore,

many hosts and applications will typically share the storage

server. Thus, the storage system only sees block level accesses

and cannot relate them to the files, applications, or users.

This state of affairs precludes any meaningful storage QoS

provision since we do not know whether some blocks are more

important than others.

The “object storage” model helps make storage more in-

telligent by raising the level of abstraction in client-storage

interaction from blocks to objects. An object could be a file,

file-segment, one or more database records, etc. but generally

expected to be much larger than a block (e.g., 4MB) to make

it efficient. The metadata associated with the object is stored

separately in a metadata server (MDS) which has a few other

functions as shown in Fig. 2. The MDS can authenticate the

users/applications to prevent access by unauthorized parties. It

also provides finer-grain access control to individual objects

(e.g., read, update, append, etc.) by handing out a “capability”

to the requester, which must be presented for data access. The

MDS also does management of Object namespace. The data

is stored separately on storage servers, each hosting one or

more object storage devices (OSDs). The storage servers are

usually distributed throughout the network. Multiple clients

could be interacting with multiple storage servers (and OSDs)

in parallel for the IO provided they have obtained the required

capabilities to present to OSDs.

3

Each OSD does its own allocation of storage space to the

objects and provides support for carrying out the metadata

operations and providing any metadata updates to the MDS.

The separate MDS makes it easier to maintain more varied

metadata, which can include hints for OSDs regarding how

data should be accessed. Migration of objects from one OSD to

another becomes easier and transparent, since the Object IDs

remain unchanged. The object storage model was proposed

in early 2000’s and because of its many advantages, it has

become quite popular in large cloud and HPC data centers

since it naturally supports distributed storage. Many distributed

storage systems are currently in existence and widely used,

including Lustre [27], Ceph [28], Gluster [29], HDFS [30].

D. Storage vs. Databases

Traditionally, storage and file systems formed the basis

on which database management systems (DBMS) were built.

For many decades relational database management systems

(RDBMS) reigned over the database market and supported fea-

tures such as well defined schemas, normalization to remove

redundancies, complex SQL queries, and often ACID (Atomic-

ity, (strict) Consistency, Isolation, and Durability) properties.

This sophistication is out of step with the current trend of

collecting all relevant data continuously and transforming it

into value online or even in real-time. This means that the

data is increasingly unstructured or semi-structured where a

relational model is not appropriate. Also, the ACID properties

are often unnecessary for such data, and too expensive to

ensure due to huge size. Similarly, complex manipulations

such as joins are both unnecessary and expensive. This has

led to alternative database models, popularly known as NoSQL

databases.

In contrast to RDBMS, NoSQL databases tended towards

what became known as BASE (Basic availability, Soft state,

Eventual Consistency) properties. These databases encompass

a variety of data models such as the document, key-value,

column and even graph models. NoSQL databases that use

the document model don’t require a fixed schema and allow

the attributes in data records to change according to an appli-

cation’s need. The records can be hierarchical and may have

a varying number of attributes. Well known databases with

document models include CouchDB [31] and MongoDB [32].

Key-value stores, where a key (which can internally have a

complex structure), keeps track of a blob of data, with a

possible internal structure, but not necessarily a fixed schema.

Key-Value systems are becoming very popular, with sig-

nificant examples being Google’s LevelDB [33], Facebook’s

RocksDB [34], and our recent proposal called FlashKey [35].

On a high level, the column model gives the database flexibil-

ity in how records are defined and stored. The data records

do not have a fixed number of columns, and in column-

based database systems, each column can belong to a column

family. This allows the database to store these elements

together, with the expectation that they will be used together.

Popular example include Cassandra [36] and HBase [37],

[38]. Graph-oriented databases are usually included under

the NoSQL umbrella, though some the driver behind their

usage and innovation differs from other NoSQL approaches.

They are useful for data that have relationships among its

objects. This allows applications to traverses through these

objects more naturally than what could accomplished with

a relational model. Interestingly, some graph databases use

other NoSQL databases as backends and some may include

properties found in RDBMS such as ACID properties. Popular

examples include Neo4j [39] and JanusGraph [40].

III. KEY ISSUES IN EFFICIENT BIG-DATA ACCESS

A. Role of Big Data

In the past, data rich computing was largely limited to

scientific computing and deriving offline business intelligence.

While the data requirements of these applications continue to

increase, many other applications have emerged within the

last decade. A prominent use case is the specialization of

e-commerce to the needs of individual users using both the

directly captured behavioral characteristics of the users and

whenever possible, using their social network profiles and

activities. Such data is being used for sentiment analysis,

purchasing behavior, electronic media consumption behav-

ior, search intent determination, etc. These, in turn, drive

context specific advertising and bidding for that advertising,

purchase recommendation systems, search result presentation,

self-adaptive systems, etc., which need to work in an online

manner with imperceptible additional delays. For example, to

successfully enable context-specific advertising in e-commerce

browsing, the system needs to determine the context of the

user query, allow advertisers to bid, select the winning bids,

retrieve and display the corresponding advertisements – all in

the same amount of time as it takes to process the main query.

As the physical systems ranging from building to entire

cities are infused with intelligence, they not only generate huge

amounts of data, but also require that the data be analyzed

online or even in real-time. For example, anomalies in power

flows or traffic flows can be used to predict an impending

problem and take corrective action. The emerging concept

of edge and fog computing will involve continuous video

monitoring and thus streaming data from large number of

cameras that must be analyzed in real time at the edge nodes

for anomalies/events and archived in the cloud for deeper

offline analysis. Edge devices within a region may collaborate

for situational understanding and the system would require

effective means of dealing with the large amounts of data in

real-time.

In most of these situations, the computation can be accel-

erated by using more computing power (e.g., fast multicore

CPUs), although energy and space considerations may hamper

that in some scenarios, particularly in the IoT environment.

However, with significant amount of data needed for process-

ing, the key difficulty is in proactively identifying the data

required for processing and fetching it from storage devices

into the memory so as to minimize stalls to the computation.

Thus, data access latencies often dominate the performance.

It is also important to note that it is no longer adequate to

consider only the average latency of data access; increasingly,

the focus is on tail latency, for example, the latency bounds

4

for 90%, 99% and 99.9% of the cases. Effective control over

tail latencies is much more difficult than targeting the average

latency, but is increasingly being demanded by the industry.

Since accessibility of low-cost cloud computing eliminates

the high initial investment in storage infrastructure and main-

tenance costs to ensure uptime, not all data may be stored on-

premise. Cloud storage gateways (CSGs) allow the transparent

access to cloud data as if it was in local storage. Similar

mechanisms apply to managing data across different storage

infrastructures such as decentralized storage towers in a data

center, local storage on the server, storage on edge or micro

data centers, etc. However, efficient methods to manage and

deliver data with specified QoS (average and tail latency,

throughput) and without errors or timeouts is essential to take

advantage of the remote storage.

This has led to many innovations. To deal with large

amounts of data, it is necessary to employ “scale-out” (i.e.,

storing data on multiple nodes), since the “scale-up” model

(i.e., a bigger node) becomes quite expensive. Scaling out

a system necessitates that the path data takes through the

system becomes more complex. However, data partitioning

must deal with the CAP theorem [41] in that a choice must

be made between ensuring consistency of the data and its

availability. Many features in consumer facing applications

are able to get by with only approximate values in the data

they present. For example, an application can display an

approximate number of views for some multimedia artifact.

This has led many NoSQL databases to prefer availability and

eventual consistency over strict consistency in their design,

while others, such as Cassandra is tuneable to be either more

consistent or available depending on the usage scenario.

B. Role of Data Analytics

The volume of stored data continues to go up exponentially;

however, the amount of data relevant for the computations at

hand is often small and varies with time. This makes the identi-

fication of the currently relevant data increasingly challenging.

At the same time, the advances in the technology have made

computation increasingly efficient, to the extent that “feeding-

the-monster” is becoming the central issue. In particular, the

speed and energy consumption of data movement is becoming

a limiting factor at all levels from on-chip caches all the

ways to the lowest level in the storage hierarchy. Given this

state of affairs, spending extra computing power to identify

the most relevant data and thereby reducing the overall data

move volume and latency may be a winning strategy. This

is particularly true for the following three scenarios: (a) a

slow device (e.g., a HDD), (b) high latency/low throughput

path to the storage (e.g., access to remote cloud storage), and

(c) large data transfers (and hence high latencies). However,

with very fast emerging devices such as Intel Optane [20], the

computational overhead could still be substantial and simpler

schemes are better as shown in [42].

Data access in modern computing infrastructures goes

through extremely tortuous path. For example, a user file

is often chopped into chunks, with chunk size chosen as

a compromise between the ills of small chunk size (high

overhead of tracking the chunks) and that of large chunks

(wasted space for small files and/or false sharing among files).

Typical chunk size may range from 64KB to 4MB, but with

multi-terabyte disks, large sizes become more attractive. The

chunks are virtualized (so the chunks can be stored anywhere

freely), and may be deduplicated to save storage, striped over

multiple devices for parallel access, and eventually mapped

to the devices, possibly using erasure coding for protection.

The resulting 3 views of data, discussed above, become very

difficult to connect together.

It is tempting to consider efficient data access techniques

purely in logical terms, that is in terms of access to “data

items” that an application uses, without regard to how and

where those “items” are stored. For example, the application

independently decides how it should request or prefetch data

items that it needs. We note, that such an approach has multiple

downsides:

1) It puts substantial additional burden on the application

programmer in managing its IO, even if this tracking is done

by making calls to some middleware routines.

2) Typically, the application interacts with the OS for its

IO, and the latter often manages the IO autonomously. For

example, unless unbuffered IO is requested specifically, the OS

will use the buffer cache to prefetch data from the device, read

data at different granularity than requested by the application,

batch writebacks, etc. Thus a careful IO management by

the application may not have the desired effect unless there

is a robust mechanism for the application to indicate its

preferences to the OS. Usually such mechanisms do not exist.

3) Since the application’s actions are purely local, they

have little influence on how the rest of the IO system operates.

For example, the requests from different applications will be

mixed up even at the file system level. Generally, there is

no comprehensive mechanism to inform the OS about the

application or application class so it can do appropriate QoS

scheduling.

4) Generally, these front end actions, even by the file

system, may not have much bearing on the storage system per

se. Typically, the IO requests from applications running on a

large number of servers will be interleaved and served by the

storage system according to its polices. Thus, for example, a

carefully timed prefetch request by the application, or even

the local file system, may not be scheduled on the backend

storage server as expected.

The most direct way to influence the storage system is to

track the IO directly on the storage system side. In the tradi-

tional block storage, one could only analyze block accesses as

a whole, and accordingly decide such things as migration of

blocks across the storage hierarchy, prefetching of blocks in

higher storage tier, optimal batching of writebacks of modified

data, etc. Note that the overall traffic seen by the block storage

devices may be generated by hundreds of applications, and

the applications usually come and go. Thus, while intelligent

management of blocks can be done easily, it is generally not

possible to take application specific actions.

Given these challenges, the ability to discern useful char-

acteristics using suitable analytics techniques becomes im-

portant. The success of such learning necessarily depends

5

on the ability to observe the behavior over a sufficiently

long period, patterns in the behavior that can be learnt, and

relative stability of the behavior. This may not be true in some

environments, and sophisticated analytics may not be useful

or desirable. Thus, the key question in the data driven access

is to understand the points where data analytics can be done,

and what it would reveal.

Although the analytics can be used in many ways; some

prominent ones are as follows: (a) Determine when certain

types of applications or workloads may have started or ended,

(b) predict accesses to each region of LBA space over the

next (or next few) time slots, (c) correlate front-end (e.g.,

file system) actions with back-end (i.e., storage system), (d)

discern and predict how the blocks (or chunks) move across

devices, etc. Note that all of these tasks are made much harder

by deduplication and virtualization.

C. Role of Optimal Configuration

Nearly every entity in a cyber or cyber-physical system

has some set of “configuration parameters” that determine

its behavior and performance. Not surprisingly, enabling high

performance data access is crucially dependent on setting the

relevant parameters correctly and optimally. Unfortunately,

configuration management is one of the most difficult prob-

lems to tackle in real systems because of (a) very complex

and poorly understood impact of configuration parameters

on the performance and other characteristics of the system,

(b) unknown or poorly understood dependencies between

parameters, and (c) a constantly evolving environment where

a “correct” configuration is both difficult to characterize and

changing [43].

There are two key problems of interest relative to config-

uration parameters of a system: the forward problem (i.e.,

predict performance for a given configuration) or the backward

problem (i.e., predict some configuration parameter(s) for a

given performance target). An accurate analytic or simulation

model for either of them would need to represent the interde-

pendencies, which is difficult since the relationship is poorly

understood and sometimes not even known. Nevertheless, such

models can be very useful in evaluating influence of the most

dominant parameters provided that we can adequately capture

important interdependencies. For example, dependencies that

are merely a result of queuing or resource contention can often

be captured by standard queuing theoretic models [44].

Fig. 3: Cloud Storage Gateway Architecture

Data driven techniques can be useful for capturing the

dependencies indirectly and thereby yielding a better char-

acterization. Of course, the downside is the need for large

amounts of data and lack of insight into the results or the

dependencies. So long as the workload shows substantial

changes only occasionally, it is possible to train and retrain the

model in the background without any impact on the system.

Data access

1. Semantics driven (IV-A)

2. Behavior driven (IV-B)

Locality exploitation

Caching based (V-A)

1. Fast Devices (V-A2)

2. Remote Storage (V-A3)

3. Distributed (V-A4)

Tiering (V-B)

Grouping and

Correlation (V-C)

Proximity optimization

Data near

computation (VI-A)

Computation

near data (VI-B)

Data reduction

Unsequenced

data (VII-A)

1. Compression

2. Deduplication

Sequenced

data (VII-B)

1. Compression

2. Deduplication

3. Filtering and

Approximation

Fig. 4: Proposed Data Access Taxonomy

Note that identifying optimal configuration parameters for a

given performance target requires multi-label classification,

which is generally harder and more error prone than single

label classification (e.g., determining performance for a given

configuration). Furthermore, since many configurations could

potentially yield the same or similar performance but only

a few of these may be desirable when seen from a domain

knowledge perspective.

We illustrate this using the example of Cloud Storage

Gateways (CSG) illustrated in Fig. 3. CSGs are increasingly

popular since they create the impression of huge amounts of

fast, local storage by providing an intelligent portal to the

cloud storage. Typically, each client is allocated some amount

of local storage space for data, metadata, and logging, and

accesses like an ordinary “block” storage device, whereas the

backend accesses the cloud object storage. Many configuration

parameters relating to the amount of local storage space,

local CPU resources, backend network characteristics, cache

management policies, etc. are involved in meeting the client

service level agreement. We have examined data driven charac-

terization of CSG configuration using deep learning techniques

in [45]. For configuration, we attempt to predict three labels,

namely, data-cache size, meta-data cache size, and log size.

It was found that the Extra Tree classifier was well-suited for

multi label classification [46]–[48].

IV. A TAXONOMY FOR EFFICIENT DATA ACCESS

TECHNIQUES

Fig. 4 shows our proposed taxonomy based on our view of

many techniques that have be studied over the years for data

access. For easy reference, it also shows the section numbers

where they are discussed. First, there are 3 generic ways of

making access more efficient:

1) Locality Exploitation, which decides what data to store in

which part of the storage hierarchy based on the spatial

and temporal locality of data accesses. This manifests into

3 types of techniques that we show at the next level in the

tree, namely, caching, tiering, and grouping/correlation of

data.

2) Proximity Optimization, where the goal is to bring the

data and the computation using it closer together via

6

intelligent movement of data close to CPU or filtering

out unnecessary data in/near the storage system itself.2

3) Data Reduction, or lossy/lossless compression, which

brings in a trade-off between data size, access efficiency,

and possibly the loss of information. The numerous

techniques for doing so can viewed as belonging to two

different classes: sequences, where the ordering of data

items is important to retain (e.g., a time series) and where

it is not (e.g., a complex 3-D object).

All of these techniques require exploring certain attributes of

the data access and may have certain settable parameters that

influence the behavior. For example, efficient caching requires

discerning which data blocks will be needed soon, and which

of them will be accessed close together in time. At the same

time, there may be some parameters limiting how many blocks

can be moved at a time. Similarly, data reduction needs to

decide which part or aspect of the data is most important and

thus must be preserved and this may be controlled by how

much representational error is tolerable.

The key question then is to determine these attributes and

the influence of input parameters. This can be done in two

broad ways: (a) Behavioral, that depends on the observed

behavior of the accesses on the same or similar systems, and

(b) Semantic, which takes advantage of the deeper knowledge

of the semantics and/or the context of the operations. We list

both of these at the root of the tree in Fig. 4 since they apply

to almost any technique. Semantic knowledge, when available,

can invariably do a better job than simply observing behavior,

but may not be known/observable, too expensive to discern,

or will make the mechanism too inflexible or ad hoc. Thus a

practical solution often is one based on behavioral observation,

aided by some semantics related “hints” conveyed through

various layers of abstraction.

In the following we describe the details of various mech-

anisms under the taxonomy and also point out the research

challenges in each area. It is important to note that real systems

may use combination of techniques that fall under different

branches of our taxonomy tree, and may take advantage of

semantic aspects to varying degrees. This combination itself

may bring in new challenges, but our focus will be on

individual techniques. As an example, if the storage system

filters the data which is then cached close to the host, there

are optimization issues if the filtering leaves out some data

which must be later accessed by directly going to the storage.

A. Semantics Driven Optimizations

The general ways of exploiting the semantics include the

following types of knowledge: (a) knowing how the data will

be accessed (e.g., order of item access and size of access),

(b) knowing about data “life-time” (i.e., for how long or how

many times the data read before being updated), (c) knowing

about different representations of the data that may be present

in the system (e.g., original, curated, compressed, aggregated,

filtered, etc.), (d) knowing about the data granularity or preci-

sion (i.e., to what extent data can undergo a lossy compression

or reduction in resolution and still be useful), and (e) knowing

2Although the filtering reduces the data size, it is still different from the
“data reduction” aspect in that it does not alter the original data.

the “value” of data, i.e., could the loss/corruption of a few data

items in a large dataset make the entire dataset questionable

or unusable?

Many of these semantic attributes are obviously known to

the application designer, but there is no mechanism to convey

this information to the OS or middleware. To be useful, the in-

formation needs to be conveyed using a standardized language,

possibly through a configuration file. In the absence of such a

mechanism, such attributes must be learned by observing the

application behavior on the host side. However, in view of the

semantic gap, the value of learning the application behavior

is dubious unless we can also learn how the application will

affect the traffic on the storage side. The analytics could be

useful for learning the impact on long-lived applications with

a core set of behaviors. In such a case, long term observation

coupled with analytics techniques (e.g., a semi-supervised

classification) could do a good enough job to be useful for

grouping of data on the storage device or providing suitable

QoS for storage accesses. A more direct approach can be

taken, by providing direct hinting of the application class to

the storage system.

Semantics driven optimizations have been explored in the

literature for specific applications, but have not been dealt

with in a more general context. Braun [49] proposes a se-

mantics driven optimistic data replication to manage concur-

rency control overhead. Jauhar [50] offers an overview of

a relation-centric view of semantic representation learning,

while Noy [51] presents a survey of semantic integration. In

the database context, semantics driven optimizations are used

more extensively. More generally, a flexible and standard way

of hinting about the contents, structure, and normal usage

mode can go a long way in making data accesses efficient.

However, this needs to be done in a way that is efficient

to interpret and does not take up too much space. With

object storage such information can be easily provided as

metadata of the object and a few extra bytes to do it are

perfectly acceptable. However, with block storage, there is

no such provision. The block storage system such as disk

array only has the intelligence to manage storage volumes

and blocks within a volume (including space management,

RAID operation, authentication, recovery, etc.). Generally,

each major application will create and use one or more

volumes exclusively, which itself may be virtualized.

The structure of the data often itself provides some infor-

mation about how the data may be accessed. For example,

access to a database will follow the key-based ordering of

records. More generally, ontologies may be used to describe

the structure, relationships among entities, and their seman-

tics. Ideally, such description is provided by the application

designer, but it may be possible to group applications based on

their access characteristics and thus specify the structure and

relationships more generically. These could then be translated

into specific mechanisms for intelligent placement and access.

Because of the difficulty of passing relevant information from

host to the storage, this is very difficult to do in block storage;

however, object storage can support such features. The key

storage systems issue is then to encode metadata in MDS

that would direct suitable storage allocation/placement to serve

7

access requests efficiently. The efficient access could involve

tuning the data fetch size from storage upon a user request

(usually larger than the requested data amount) and prefetching

of data that is likely to be accessed next.
B. Behavior Driven Optimizations

Behavior driven optimization relies on information that is

inferred from behavior of data, e.g. read from access history.

This can be obtained by observing data accesses, recording

traces of workloads (so as to understand pattern i.e. behavior

exhibited by the data) and by learning these patterns so as to

make inferences about the data. Given the number of layers

of abstraction and mapping from user’s view to device’s view,

optimization of any given layer based purely on its observed

behavior is an attractive approach, even if it is rather limited

in its capabilities.

One way to exploit this behavior is to find repeating

or regular patterns in the spatio-temporal characteristics of

storage accesses. For example, consider the following (offset,

size) sequence: (0, 200), (250, 400), (700, 300), (1100, 400).

Here the offset depicts the starting byte offset from which the

process is reading the file while the size denotes the length read

from that offset. It is evident that in spite of slight irregularity

in the starting address and access size, the file is essentially

being read sequentially with few hundred bytes accessed at a

time. This is a valuable information to learn as it can be used

to prefetch the desired data. More complex patterns may also

be observed – for example, there may be many such pseudo-

sequential patterns in different offset ranges that repeat with

perhaps random jumps between them. Such patterns can be

exploited in three ways: (a) identification of pseudo-sequential

streams when they occur the first time, (b) early recognition

of streams when they repeat either exactly or approximately,

and (c) prediction of which stream is likely to be encountered

next based on relationships between them.

Such behavioral information can be useful both on the

host side (e.g., to cache data in Operating System’s buffer

cache), and on the storage system side. In the latter case, the

request stream is a mixture of requests coming from multiple

applications and hosts and the requests are likely for LBA

or chunks, rather than bytes from files. The storage system

can exploit the patterns for various purposes including (1)

simple prefetching mechanism in device’s cache, (2) more

sophisticated fetch/prefetch of LBAs in the storage system

cache, (3) moving of data across tiers in the storage system, (4)

proactive deduplication and staging of data, and (5) proactive

transfer of data across the network closer to the host.

The patterns can also exploit temporal correlations unlike

the locality aspect discussed previously. He et al. [52] talk

about these patterns and distinguish between local and global

patterns in different workloads. Global patterns are a mixture

of the mentioned local patterns. Tran and Reed [53] elucidate

more on the temporal correlations between accesses by dis-

cussing about bursty I/O traffic. These bursty patterns, which

may occur due to nested loops, can cause buffer overflow

and other network issues. Prefetching carried out on the basis

of this behavior can actually reduce I/O stalls. They use

standard time series analysis model to make calculations and

predictions about the interarrival time of subsequent requests.

V. LOCALITY EXPLOITATION TECHNIQUES

Locality of access is key to efficient access to stored data at

any level from CPU caches to the storage. In storage, locality

drives not only caching but also placement of data both across

storage tiers and inside a tier (i.e. where is the data located

relative to other data). In the following we discuss these.

A. Caching Based Locality Exploitation

Caching is a vast topic and we do not intend to survey

caching techniques in general but only discuss some specific

ways in which caching exploits locality. A very recent survey

of caching techniques may be found in [54].

1) Traditional Caching Mechanisms: Simple forms of lo-

cality such as frequent access to the same data or access to

sequentially adjacent data are well known and exploited exten-

sively at all levels. For example, LRU caching policy exploits

recency of access whereas LFU caching policy exploits the

frequency. Combinations of the two are exploited by the well

known ARC (adaptive replacement caching) algorithm [55].

Similarly, identification of “streams” or strided access pattern

is routine even in CPU caches and combined with ARC

caching in the another well known SARC (Sequential ARC)

algorithm [56]. SARC dynamically partitions the cache space

in between sequential and random streams; the prefetching is

performed only for accesses in the sequential streams to reduce

the cache-miss rate.

More complex forms of locality identification concern re-

lationships across different accesses or access patterns. For

example, the well known AMP (adaptive multistream prefetch-

ing) algorithm [57] tracks the precedence relationships be-

tween accesses to drive prefetching. Dai et. al. [58] focused on

locality properties of sequential blocks as they are more likely

to be accessed together. He et. al. [52] go even further and

claim that there are exploitable global and local patterns across

storage data chunks in the wide variety of workloads they

have explored. Patterson et al [59] and Kaplan [60] developed

integrated policies for caching and prefetching.

Tombolo [61] discusses a way to adapt to different work-

loads by combining SARC and AMP [57] with a graph based

algorithm called GRAPH. Tombolo uses AMP to prefetch for

sequential access streams and GRAPH for random ones. The

latter keeps track of what block ranges are likely to follow a

given block range.

2) Caching From Fast Storage Devices: Traditional caching

mechanisms for storage devices are characterized by a large

difference in average request latency between the storage

device (a HDD or SSD) and DRAM memory. Emerging

nonvolatile memory technologies offer latencies that are much

lower, but common caching algorithms do not take advantage

of this aspect. We have addressed this by introducing “Fussy-

Cache” (FC) [42] that does not blindly cache everything that’s

accessed, but instead caches only the popular items, while

others are accessed directly from the device. FC also tries to

keep things as simple as possible, since complex manipulations

hurt the overall access latency when the devices are fast.

In addition to the regular data cache (DC), the key element

in FC is a Dynamic Metadata Cache (DMC), that has two

8

functions. First, it tracks the popularity of the requested items

and thus determines which items should live in DC (rather than

being accessed from the device directly). Second, it tracks if

the mechanism is not doing well or not, and accordingly de-

cides to use it or switch over to the normal (cache-everything)

approach. The separation of cache into DC and DMC allows

the two components to be executed by different threads thereby

further reducing the latency.

Fig. 5: Average latency with 2.5% Cache Size

For evaluating

FC, we use Intel

Optane as the

storage device

and 3 different

traffic sources

with very different

characteristics,

namely, Systor ’17

traces [62], FIU Web Research trace [63], and the SPECSFS

2014 benchmark suite [64]. We consider the traffic from 2

different logical unit numbers (LUN0 and LUN1) for Systor

trace. We also consider two important SPECSFS workload

components, namely, database workload (DBTABLE) and

SWBUILD (software build).

We compare FussyCache against 3 highly popular caching

algorithms, namely, LRU, ARC [55], and SARC [56].

Fig. 6: Average latency with 10% Cache Size

Figs 5 and 6 show

the comparison

of average read

latency for both

Intel Optane with

2.5% and 10%

cache size. It is seen

that in both cases

FussyCache does

better than other algorithms.

3) Caching of Remote Storage: When the storage device is

located remotely with a high access latency, it may be useful

to achieve better hit rates at the cost of considerable computa-

tional overhead. A prominent example of this situation arises

in the cloud storage gateway discussed in section III-C where

the access latency is largely governed by the propagation delay

(due to long physical distance to the cloud) and rather low

WAN bandwidth to access the cloud. This is the motivation for

our work on “BeliefCache” [65], [66] that exploits the notion

of “belief” in determining what to cache or evict. Consider

two entities X and Y and a time window W . Then the belief

of X regarding Y relative to window W , denoted BW (X,Y),
can be defined as a conditional probability. BW (X,Y) is the

probability that a request to Y will occur within the time

window W given that X was requested. BeliefCache computes

these probabilities and based on those continuously decides

which items should be prefetched into the cache and which

cached items should be evicted.

Estimating such a belief would require maintaining and

constantly updating the number of times in window W , an

access to X was followed by access to Y . Note that for

Y = X , such a count provides the access frequency of the

entity X . Although in theory this means maintaining an N×N

matrix of counts for N entities, this is extremely unlikely

in real workloads [67]. In practice, many optimizations are

possible to significantly reduce the space/time overhead and

obviate explicit probability calculation in many cases, as

discussed in [65], [66]. Such an approach is expected to be

well suited for workloads that exhibit complex access patterns

and long-term correlations.

BeliefCache’s prefetching approach is similar to several

methods [68], [69] that use a weighted graph to keep track

of successor load requests. This also allows these methods

to predict several requests using the weighted edges as a

predictor of which objects will be requested next. A possible

disadvantage is that rare requests may not be a good enough

indicator of what follows next. In BeliefCache this issue is

solved by using a window size to allow several requests to

vote on what is a likely successor. That way even if the

current request is rare, the previous requests can be used

to vote for prefetching candidates. Moreover, these methods

use a fixed prefetching degree. BeliefCache does not use a

fixed prefetching degree and therefore it adapts better to the

workload changes that other comparable algorithms.

If the workload changes substantially, BeliefCache will need

to reset its hyperparameters, which are originally learnt in the

training phase. This is accomplished by using the concept

of virtual cache. A virtual cache is one that observers all

accesses, determines the prefetch and eviction candidates, and

gives them to the real cache as an “advice”. The real cache

deals with the actual job of prefetching/eviction and could

decide to ignore the advice if desirable (e.g., eviction of pinned

items). BeliefCache actually uses two virtual caches, one that

continues to train the background and the other that currently

provides the advice. These can be switched if a phase change

is detected.

4) Distributed caching: Traditional caching mechanisms

cannot support the needs of the largest systems in production.

The issue is that the cost of resources such as memory

and storage space does not increase linearly with capacity.

Furthermore, a single cache would be a bottleneck as the

number of requests increases. One way to deal with this is to

provide caches on or near the application servers. This has the

added benefit of reducing the network latency of any request.

As user load is distributed among different application servers,

the working set that would ideally be stored in cache, may be

located on a different application service. A solution is to use a

global service dedicated to caching, which adds some network

latency but allows caching service to be scaled independently

of the other components of the system. This is a common

problem and there are many popular solutions developed such

as memcached [70], [71] which gives distributed in-memory

cache and more recently redis [72] provided many additional

features such as the ability to persist the cache to handle

failures.

One technique to allow the capacity of distributed caching to

grow online by adding extra nodes without much disruption is

to shard the data based on consistent hashing [73]. This tech-

nique, which is not restricted to caching, allows the addition

and removal of nodes as needed with minimal disruption to the

cache data store on other servers. Since some of the popular

9

data may be used frequently from multiple places, replicated

caching can be beneficial if the workload is read-dominated,

but otherwise keeping the caches consistent can be make it

very expensive.

Fig. 7: Latency Reduction with Adaptive Copy and Migration

In [22], we have studied a mechanism to handle increase

in demand by activating additional copies of data chunks

that are pre-distributed and synchronized in the background.

Fig. 7 shows how the overall IO latency varies with read/write

ratio under various situations. Initially we place the chunks at

different storage nodes by considering the IO demand on the

node and proximity of the chunks to the applications using

them. We then study how the latency is affected by the increase

in overall demand. The case “without adaptation” does not take

any dynamic action. The “replication” case creates additional

copies of the heavily demanded chunks at nodes in the vicinity

that have a relatively low load, and then splits new traffic

between all the copies by modifying the virtualization map.

The “migration” case still makes a copy of the busy chunk

at a relatively quiet node, directs all new traffic to it, and

eventually deactivates the old copy when all ongoing requests

to it complete. When the traffic subsides, the original situation

is reverted so as to avoid scattering copies throughout the

network.

As expected, the replication works well for low write ratio,

but provides poor latency for write dominated traffic due to

synchronization traffic and delays. In contrast, migration works

well with high write ratio but is poor for read dominated traffic.

Fig. 7 also shows the adaptive policy that dynamically decides

whether to use the replication or migration policy (based on

current read/write activity). It is thus able to exploit the best

behavior regardless of the read/write ratio.

B. Locality Exploitation for Tiering

Conceptually, the locality considerations for tiering are the

same as for caching, the significant difference being that

the tiering concerns coarser time granularity (or longer term

decisions). For example, it would not be prudent to move

a data item to a higher tier (and delete it from the lower

tier) on the first reference, since the cost of a wrong decision

can be rather high (i.e., need to re-allocate and writeback the

data to the lower tier and in the process hurt the endurance

of the device). Thus, the locality most relevant for tiering

is not the recency but frequency and relationships across

items in terms of frequency. Traditionally, cross-tier migration

of data is triggered very infrequently (e.g., once a day or

opportunistically during low traffic hours), but with very fast

devices and virtualized storage, a much more agile tiering

(e.g., one operating at the granularity of minutes or tens of

minutes) may be appropriate.

A popular concept in tiering is “heat”, which is another way

to describe the popularity (or frequency of access) of the data

chunks over a specified time granularity. Since the popularity

can vary over time, the challenge is to predict the “heat” both

in spatial and temporal terms. The more contextual information

provided to a heat prediction mechanism, the more tractable

heat prediction becomes. At the highest level, it is possible

to develop standard mechanisms by which the applications

can specify what parts of their accessed data are likely to

be popular or unpopular. Such a mechanism is workable as

a static information but much harder to convey dynamically.

There is also the problem of burdening the application in

identifying the “hot” data, which may require some “profiling”

runs. An additional problem is that the concept of heat is most

relevant for the storage system which may be serving many

applications, each with different notion of what is hot.

The file system can take up the burden from the application

and do profiling automatically to build relationships between

the objects [74], [75] that can be used to predict future

accesses. The key problem is that this requires the file system

to know the detailed mapping of files to physical chunks and

their detailed statistics. While each file-system can do this for

its “virtual volume” that hosts that file system, a unified storage

device level view will be missing. An example of this approach

is Online OS-level Data Tiering [76] which sorts data chunks

for each tier based on their degree of randomness, read ratio,

and request type using a weighted priority function.

In view of these issues, it is useful to run heat prediction

directly on the storage side based on the observed behavior.

This would correctly provide the “heat” of all the chunks on

a tier; however, it will be unable to distinguish between the

applications corresponding to the chunks; therefore, no appli-

cation based QoS is possible without passing some explicit end

to end hints (the issue of hints is discussed in section VIII-D).

Also, the mixture of chunks from numerous applications, many

of which may come and go over the period of minutes or

longer could make the heat prediction quite challenging.

In [77], we have attempted to do heat prediction based on

machine learning. For scalability, we examined the popularity

of rather large size chunks (8MB) for the entire storage

system over time windows of size 2.5 minutes. We then

group these windows into a small number of groups based on

some “signals” that indicate similar behavior. These include

read/write ratio, read intensity, and dispersion (or range of

chunks accessed). The grouping is necessary both to obtain

enough data for subsequent machine learning model and

to reduce the overall complexity. Subsequently, we build a

Random Forest (RF) prediction model for each group to make

predictions. The results show that:

1) The low end of activity of chunks can be predicted

highly accurately. This is useful in tiering since such chunks

can stay in the lower tier.

2) On the high end of the activity, the prediction is feasible

but the accuracy drops to 60-80%.

3) The prediction includes the range of the expected num-

ber of requests which could allow the prioritization of actions.

10

The heat prediction could be exploited for tiering, where the

goal is to dynamically direct each entity to its most appropriate

or “optimal” tier subject to the following constraints:

(a) Constraint on the fraction of IO capacity of each device

used for tiering.

(b) Constraints on IO latency and/or IO throughput require-

ments specified at a suitable level (overall or types of

entities, whenever possible.)

(c) Endurance and write amplification related constraints for

SSDs or other NVRAM technologies.

Much of the work on tiering in the literature is based on

static on semi-static profiling. For example, Cloud Analytics

Storage Tiering [78] uses offline workload profiling for each

tenant in the cloud to build a data placement and storage

provisioning plan. An example of a dynamic mechanism is

AutoTiering [79], which dynamically migrates virtual disk

files (VMDK) across tiers based on the sampling of the IO

rates. It tests the latency sensitivity of a VMDK by injecting

latency and examining its effect on IOPS. This allows the

more sensitive VMDKs to be migrated to higher tiers and less

sensitive to lower tiers.

C. Grouping and Correlations

Locality can also be used for grouping items together

whether physically (i.e., contiguous or nearby placement on

a disk or a node) or logically (i.e., identified for prefetching

together). Grouping could be used as a way to address scala-

bility of caching algorithms since groups can be thought of as

pseudo-applications, so that we only need to apply resource

intensive learning techniques within these pseudo-applications.

Grouping could be structural (e.g. Block, Object/File, Groups

of files, etc.), or based on detailed entity access history [80]

Applications may introduce temporal correlations among

blocks that are not physically close to each other. For example,

the B-tree or B*-tree data structures in database systems will

introduce continuous accesses between blocks that store parent

nodes and child nodes. The Ext3 or Ext4 Linux file systems

also introduce temporal correlations between blocks where

the file data is stored and the blocks corresponding to inode

is stored. Multiple applications that interact with each other

also introduce block correlations. Such applications commonly

exist in the form of workflow in scientific computing. Wildani

and Miler [80] explored a wide variety of workloads and

identified consistency of groupings in the data despite the

sparsity of the traces. Kroeger and Long [81] provide strong

evidence that some workloads have consistent and exploitable

relationships between file accesses.

The notion of provenance is useful as another aspect of

context in data driven mechanisms for grouping. Provenance

is the metadata that represents the history or lineage of a data

entity, its use, derivation and updates. This provides important

semantic information about the data [25], [82]. Provenance

information can improve belief calculation, potentially reduces

the analytics overhead and improve decision making; however,

collecting, maintaining, and using the provenance information

itself involves substantial overhead. Thus a difficult and open

problem is to characterize what provenance information should

Fig. 8: A scatter plot of LBA chunks getting accessed over a five minute
period extracted from the hardware monitoring workload. The red diamonds
represent read requests and the blue xs represent write request.

be collected and maintained so that it can lead to overall

benefit in analytics.

Additional aspects of context that could be used for group-

ing and caching come from what can be called an IO slice,

i.e., an executable subset of the entire program that does only

those IOs that are needed to decide all other IOs and only that

part of program logic that is relevant for IOs. The IO slice

can be run in parallel with the main program and because it

is potentially much smaller, it can thus aid IO prediction. IO

slice is useful if it does much less IOs as compared to the

actual program. The challenge is in analyzing, learning and

deciding which parts of program logic are relevant for IOs.

Techniques [83], [84] use IO slicing in parallel applications

and show promising results in reducing IO access latency.

In Fig. 8 we see both read and write requests from a

public trace [85] over a five minute period. It shows the LBA

chunk in which the requests happens but does not capture the

number requests made to that chunk. One of the challenges of

predicting heat on the block level is the size of the prediction

space. The combination of chunks that may be requested is

extremely large and processing previous requests must be fast

for the prediction to be useful. One approach to dealing with

the large space is to focus prediction on some regions while

ignoring others. A possible way to do this would be to focus

prediction efforts on regions of high level of read and write

requests. Another path that might be taken is to focus the

prediction on regions that are reliable to predict and avoid

those that have more random access patterns. For example

regions with steady accesses may be more reliably predicted

than regions that usually see little activity and sudden large

and irregular bursts of read/write requests.

A well-performing heat prediction mechanism could be used

for guiding caching decisions, grouping of the entities and as

a part of data movement control mechanisms.

D. Open Issues in Locality Exploitation

Locality exploitation typically relates to discovering data

access relationships over short periods of time; however, many

workloads exhibit behavioral patterns over multiple, longer

time frames, often reflecting the schedules (e.g., incremental

backup) or workflow characteristics. Yet, capturing such long

term relationships is challenging because of the overhead

11

of storing and analyzing such data in an online manner. In

particular, the combinations that can be considered a ”pattern”

increases very rapidly with the time horizon. Furthermore, the

pattern is often perturbed by ”noise”. Also, the process that

controls data requests is likely a non-stationary phenomena,

thus decreasing or removing any predictive power that a

captured pattern may give.

While exploiting locality is important, it may need to be

balanced with other considerations as well. For example, with

TLC/QLC SSDs, the endurance considerations may require

foregoing movement of certain data even if it is desirable

from the perspective of exploiting locality. Also since much of

the storage access is remote, network traffic, and increasingly

the network latency, becomes an important consideration in

data movement directed by locality of access considerations.

For example, even if we know that next 100 LBAs will be

needed soon, it may not be desirable to prefetch them all in a

single IO because of its impact on overall network traffic or the

latency experienced by other traffic, particularly if the other

traffic demands a better QoS. Accounting for such conflicting

aspects becomes quite challenging, particularly in a dynamic

environment with changing traffic types.

VI. PROXIMITY OPTIMIZATION TECHNIQUES

Over the last two decades, the speed and energy efficiency

of computing has progressed more than that of data storage,

which increasingly makes the data movement the primary

concern in terms of both performance and energy consump-

tion. Thus, proximity optimization could help in placing the

required data close to computation (by proactively putting it

in the upper levels of the memory and storage hierarchy)

and even bringing computation close to data (by embedding

processing in the storage and memory devices).

Fig. 9: Energy cost of data
movement

Although computing technol-

ogy has achieved tremendous gain

in speed over the last few decades,

the enhancements have been un-

even in that computation speed

has increased much more than the

memory or communications ca-

pacity. Fig. 9 shows the increasing

energy cost of data movement at

all levels. This along with con-

sistently growing data volume im-

plies that minimizing data move-

ment is key to high performance

and energy efficiency in data intensive applications. This goal

can be achieved by employing proximity optimization in two

ways: (a) fetching the most needed data closest to CPU (or the

highest level of the storage hierarchy) just in time for its use,

and (b) embedding intelligence into the storage infrastructure

itself to minimize fetching of unnecessary data.

A lot of work in storage systems relating to data caching,

tiering, and placement is geared towards (a) and direct or

indirect attempts to segregate data items by their popularity.

Given the large amounts of data required by data intensive

applications, it is usually not possible to move the data around

significantly in its lowest tier after the initial placement.

Therefore, initial placement of data in the lowest tier is crucial.

Tiering will generally move a small subset of this data to

higher tiers. We discuss initial placement and tiering in the

next two subsections. The idea of intelligent storage, though

very old, is less developed but is lately getting much attention,

and is discussed subsequently.

A. Data Near Computation

Large scale storage systems may use multiple levels in the

storage hierarchy, but the lowest layer in the primary storage is

likely to consist either HDDs or, going forward, perhaps QLC

SSDs). A new data set, especially a large one, will almost

inevitably be created on this layer initially. Furthermore, the

physical location of the data (i.e., the drives or storage servers

hosting it) is likely to be handled transparently by the storage

system with little regard to where or how the data will be

processed. Moving an entire data set subsequently closer to

computation is not only impractical but also disruptive (i.e.,

may take too long or require eviction of other data). Automated

tiering is obviously one way to deal with this as discussed

above – the data that is proven to be active (or is predicted to

have “high heat”) is brought into the higher tiers dynamically.

An alternate method is to take advantage of data/application

semantics so that the most essential part of the data can be

identified in advance of running the application and brought

into the higher tier. This requires the knowledge of the

structure of the application and data. A partial automation

is possible here by using a machine readable description of

the program and data structure, along with indication of what

portions of data are needed when. The last part could be

specified or learned from prior runs, but the latter works only

for environments where the data usage pattern remains similar

across runs (e.g., HPC applications).

A special case of the above arises when even the data

has two or more representations with adequate semantic in-

formation to decide which data is requested and used. For

example, it may be useful to create both native (or high)

resolution and low resolution versions of image data. Similarly,

for database records, it may be useful to have native version

and a leaner version where the rarely needed records and/or

rarely needed fields of records are removed. This filtering can

be described easily for relational databases, e.g., maintaining

one or more alternate materialized views based on specific

selection, projection and even join properties. Graph databases

can also be similarly thinned out and so can more general ones

so long a clear structure and semantics information exists. In

all of these cases, a knowledge of the representations used by

different applications could allow for their intelligent schedul-

ing coupled with prefetching of the correct data versions.

With computation becoming rather inexpensive and data

volumes growing, a proper consideration of computation-

storage trade-off can be very useful. In particular, some of

the intermediate results need not be stored at all, and instead

recreated if needed. Woodman et al. [86] explore this possi-

bility and present an approach which is able, via a collection

of past performance and provenance data, to make decisions

based on the underlying storage and computation costs as to

12

which intermediate data to retain and which to regenerate on

demand.

B. Computation Near Data

Traditionally, storage devices have been considered passive

elements that simply store/retrieve the requested data. How-

ever, today storage devices are much more complex and have

computational power and intelligence in managing IO on the

device [87]. For example, SSDs need a fairly capable processor

to run FTL functions. Since nearly all of the emerging storage

technologies are “solid state”, it is easy to integrate computing

with storage. In fact the 3D architectures have been proposed

that integrate computing, memory and flash in different layers.

Even without such chip-level integration, processing embed-

ded in the device electronics can allow for a whole range

of selective data retrieval, filtering, and even data reduction

options.

Li [88] provides an overview of the next generation storage

systems that will do processing in storage. While the notion of

intelligent disk is somewhat old [89], a considerable amount

of research exists on the subject under “active-storage” [90].

More recent works have shown how “computational storage”

can be exploited in the context of distributed processing [91]

and big-data analytics [92].

Embedding intelligence in the storage necessarily requires

richer metadata that can be used to decide how to process

the data. In this context, the object storage model lends

itself well to embedding of intelligence. In particular, a rich

object metadata can be used to encode the semantics of the

objects and hence their efficient access. Two recent examples

of embedding processing in object storage are the Oasis

system at UC/Santa-Cruz [90] and at U/Conn [93]. Similarly,

the kinetic drives introduced by Seagate [94] can do some

key related processing. Reddy [95] presents another form of

intelligent storage that presents different “views” much like

a database does. Such an approach can be used to reduce

the data according to the application’s needs on the fly. For

example, the stored structured data may have many fields,

many of which are unnecessary for the running application.

Thus instead of creating another version of the data with

the unneeded fields removed, the intelligent storage device

or server can do the filtering on the fly. Similarly, data

records with certain attributes may be unnecessary and can be

discarded by the storage device/system rather than bringing

them into memory and then not using them.

When the amount of data is extremely large and distributed

on multiple nodes, specific frameworks are required to process

the data largely in-place. The Hadoop framework [96] is an

ecosystem that relies on distributed file-system (HDFS) [97],

[98] to ensure that data is durable. It is designed for large

scale batch processing without moving the data around. This

is done by performing the computation where the data is

and only moving reduced form of the data to consolidate

towards a result. The development of Hadoop programs is done

within the map-reduce programming paradigm [99] where

computation is done on data that is local to CPU.

C. Open Issues in Proximity Optimization

Traditionally, active storage techniques have been proposed

to move computation tasks to storage nodes in order to

exploit data locality. However, this introduces the side effect

that the computing can only scale out with the number of

storage nodes. Also, sharing the compute power of the storage

device/server can produce interference in the storage system.

An alternate technique offered in [100] is to allow users to

create small, stateless functions that intercept and operate on

data flows. This disaggregated processing is similar to the

network function virtualization (NFV) [101], and can be useful

when the functions are placed on the path of natural data

movement, or when the amount of data involved is small so

that the data can be specifically sent through the function. In

general, however, this alters the original vision of the storage

system doing the processing.

There are several other challenges as well. Foremost among

these are interlinked issues of flexibility and security. Allowing

arbitrary code to be loaded into storage devices brings in many

security vulnerabilities and makes it difficult to manage the

functionality. A device that can do arbitrary computation on

the data before returning or storing it no longer has the simple

read/write interface and complicates consistency, recovery,

space management, metadata management, etc. In contrast,

well-defined and possibly standardized set of data operations

implemented inside the storage system are easier to verify, se-

cure and manage, but limit flexibility in processing potentially

resulting in additional overhead in matching programmer’s

intent with storage provided functions. An even more difficult

issue concerns what can be termed as “completeness”; if

certain functionality is not available inside the storage system

and must be implemented by bringing large portions of the

stored data to the compute server, performing other functions

inside the storage system may only serve to increase the

overall energy budget. In other words, finding a suitable set of

abstractions that are broadly useful, efficiently implementable,

and complete is a grand challenge for intelligent storage

systems.

VII. DATA REDUCTION TECHNIQUES

An important attribute for data reduction in storage sys-

tems is the mode of data access. Unsequenced data can be

accessed in any order (e.g., files and database records), and

(b) Sequenced data where the access is inherently sequential

(e.g., a time-ordered access trace from the storage system).

These two require very different techniques as discussed in

the following.

A. Redundancy Removal in Unsequenced Data

We start with data compression, which can be either lossless

and lossy. Lossless compression has wide applicability and

is commonly used since it does not lose any aspect of the

data. A recent survey of various computation techniques, both

lossy and lossless, can be found in [102]. The key benefit

of compression in the storage context is the reduced data

movement which can reduce the storage related IO, access

latency, and the network traffic. Compression at the level of

chunks of suitable size provides much greater flexibility than

13

Chunking &

fingerprinting

a7 5d a7

9c 2e 9c

2e 9c 5d

Indexing

& sorting

a7 5d

9c 2e

Files

Data chunks

Containers:

Unique chunks

File A:

File B:

Metadata

 .…

 .…

Fig. 10: Illustration of the deduplication process [104]

file compression since only the required chunks need to be

decompressed. Note that while smaller chunks provide more

flexibility, the corresponding lower compressibility and higher

management overhead may not provide adequate reduction in

access latency. Also, if the compression is done internally by

the storage system or the device, it does not reduce the network

traffic, though it may still reduce the access latency. It is worth

noting that the compression with the granularity of blocks or

very small chunks is usually not desirable for two reasons:

(a) low compressibility and (b) data transfer time being only

a small fraction of the overall access latency. In any case,

compression does save storage space, which is important at

higher levels of storage due to the cost issues.

The key problem with compression is the unpredictability of

compression ratio which complicates the storage management.

Since the compression ratio highly depends on the contents, it

is quite possible that 4 LBAs worth of data initially compresses

to one LBA, but a slight update to the data makes the

compression much poorer. This would make the contiguous

allocation of compressed LBAs very difficult, particularly

for technologies that allow overwrite of data which includes

HDDs and most emerging technologies. However, for SSDs,

this is less of a problem since any updates would have to

be placed elsewhere. Compression is actually used internally

by the SSD firmware and the strategy is to accumulate

compressed LBAs in a NVRAM buffer before writing to the

SSD.

Lossy compression is routinely used for audio, video, and

image data where the small degradation in the quality does

not materially affect the usefulness of the data or the results

obtained from using such data. For example, the jpg image

format allows for various levels of compression depending on

the size of the resulting image. Image compression methods

are surveyed in [103] and more general discussion of lossy

compression is contained in [102]. Depending on the type of

data and its usage, several forms of lossy compressions can

be used. For example, with data organized as a set of records,

lossy compression may amount to either thinning the data

out based on a sampling technique or removing records that

are rarely requested. Both techniques carry risks not only in

terms of removing important data but also in terms of potential

misbehavior of the programs that consume them.

Data deduplication finds duplicates in the data and stores

only one copy. It can be applied at the file-level [105] or the

chunk level [106] where the “chunk” size is usually bigger than

the LBA size. While simple, file level deduplication is not very

effective since it requires completely identical files, and thus

chunk level deduplication is normally used. For efficiency, the

chunks are not compared directly to find duplicates, instead,

the comparison is based on the “fingerprint” of the chunk.

The fingerprint is computed using a hash scheme such as

SHA1 or SHA256 which has an extremely low probability

of collision. Fig. 10 illustrates the fixed chunk sized based

deduplication where a file or object is divided into chunks

of a fixed size. Only unique chunks are stored; duplicate

chunks simply point to the stored chunks. A problem with

fixed size chunking of files/objects is that small inserts at the

beginning of the file/object would change all of the chunks.

Variable size chunking, where the chunks are identified by

Rabin fingerprinting over the contents. Variable size chunking

is much more expensive and also complicates storage manage-

ment because of variable size of chunks produced. Variable

sized chunking is largely used for backup storage where the

stored data is never modified. Kaur et al. [107] provide a

systematic review of data deduplication techniques for efficient

cloud storage management.

Given the proliferation of multiple versions of the same

file, deduplication is usually quite effective and can reduce

the storage requirements by 60-80%. The main problem with

deduplication is that it tends to scatter the chunks of a file since

a chunk N of file X could match the stored chunk M of some

arbitrary file Y and thus requires accessing this chunk. While

the resulting randomization is a huge issue with HDDs due

to their poor random access performance, it is not much of a

problem with SSDs. Comprehensive studies of deduplication

techniques are conducted in [104], [107]–[111].

Current approaches do not take into account semantic

deduplication, such as avoiding different representations of

the same object. For example an object and a losslessly com-

pressed version of that object represent the same underlying

entity and both need not be stored. However, determining

such relationships can only be done by the file system, not

by the storage system. As discussed in section VI-A, it may

be desirable to create smaller versions of a dataset (e.g., by

reducing resolution or eliminating some information). If these

relationships are available to the system it is possible to exploit

them not only for tiering but also for reducing redundancy

when necessary.

B. Redundancy Removal in Sequenced Data

In many situations, the stored data consists of a sequence

of data accesses (with or without explicit time of access).

Some examples of such data include the data generated by

IoT devices that monitor a cyber-physical system, incoming

user queries and responses generated by a computer system,

social media logs, outputs from scientific experiments, etc. In

fact, so much of the stored data can be characterized as a

time series, that it is crucial to look for special techniques for

reducing such data. Although, one could treat such data in

the same way as data in general and apply deduplication and

lossless compression; the time series nature of the data can

be exploited to keep the behaviors or data access patterns that

are of interest.

Generalized filtering of time-series can substantially reduce

the data volume and yet retain the desired information to sat-

isfy the given data use objectives. Such objectives necessarily

relate to the data semantics and depend on the applications that

14

operate on the data. While it is possible to specify the needs

of an application and use them to create a data “view” for that

application, this only addresses the problem of efficient access

to data by that application, as mentioned in section VI-A.

This would still not allow deletion of the original data and

thus does not solve the storage problem. To solve the storage

problem, it is necessary to define all potential needs and yet

be able to produce a representation that satisfies these needs

and is still much smaller than the original data set to justify

transforming the data. This presents a huge challenge in both

affirming a usage model that can anticipate all reasonable

needs and making it work in terms of data reduction potential.

The specific issues to consider in data filtering are:

1) What are the primary use cases and what information

each use case needs to preserve?

2) What information is collectively sufficient to satisfy all

specified use cases in step 1?

3) What are the potential ways of compressing the data to

preserve the desired information in step 2?

4) How can we characterize the minimal representation of

the data to preserve the desired information in step 2?

These questions are rather open-ended and thus not possible

to tackle in general. For example, the primary use cases for

the data are obviously dependent on the data, the applications,

the context, and to an extent on the state of the technology.

Take for example the increasing amount of data generated by

Twitter. In recent years, Twitter data has received an intense

interest in understanding the topics being discussed by its

users. But the interest understanding also extends to sentiments

and mood analysis, understanding the ongoing situation or

event (e.g., disaster, accident, etc.), the relevance of the tweet

to the event, etc. Even if the use cases can be defined explicitly,

the question of minimal representation of data to preserve

the desired information is an exceedingly difficult problem.

Therefore, here we only discuss some techniques that can be

useful in data filtering.

To start with, let us consider a slight extension of generic

compression schemes. We would like to divide the time-

series into segments with the aim of identifying a suitable

(lossy) compression technique to use based on how much

compression we can tolerate. Such techniques are discussed

in the literature under the area of time series approxima-

tion and representation [115]. Several techniques like Fourier

transform [116], wavelet transform [117], piecewise polyno-

mials [118], singular value decomposition [119] fall in this

category. Fig. 11 illustrates an example of a piecewise linear

approximation of “koskiecg.dat” dataset [112]. The amount of

information needed to represent data is much smaller using

the approximation and it is able to faithfully reconstruct the

original data.

These techniques require a method for varying compression

over successive data segments. For example, each segment

may represent one year’s worth of data, and as we go into

the past, we use more compression. In such techniques,

the compression is not homogeneous, rather heterogeneous

across time. In [114], [120] the authors have modeled such

aspects as “amnesic” functions, that represent recent data with

better precision than the past. The key motivation of using

amnesic function is that the usefulness of data fades over

time. This is true for many real-life applications, including

finance, meteorology, network management etc [121]. Thus

given a limited memory budget a practical representation of

data storage is to approximate the recent data with higher

accuracy, whereas accuracy can be gracefully degraded over

time. Fig. 12 illustrates an example of such piecewise linear

online amnesic function, where the approximation of the recent

points are finer compared to the older ones.

In our recent work [122], we considered pattern mining

based compression of sequenced data, such as the data coming

out of IoT devices. The method preserves the information

about the sequence of events. We call this as Approximate

Vector Stream Compression (AVSC). AVSC starts with a

sequence compression method proposed in [123] called SQS

(Summarizing event seQuenceS). SQS efficiently discovers

high-quality patterns that summarize the data well and cor-

rectly identify key patterns. SQS is approximate in that it does

inexact matching, i.e. patterns are allowed to have gaps, but

the objective function heavily penalizes long gaps.

C. Open Issues in Data Reduction

A key challenge in data reduction is simultaneously satis-

fying the needs of multiple applications which may conflict.

Consider a data stream D, and the optimally reduced streams

Ri = fi(D), i = 1..K for the K applications of interest that

apply the reduction function fi for ith application. Ideally,

we seek a reduction function f such that the reduced stream

R = f(D) provides a significant compression over the original

stream D and yet it retains all the information necessary to

generate all Ri’s. This is quite difficult, in general, since

each fi’s may preserve different properties of the data stream,

and requiring them simultaneously may be feasible only by

keeping several (or even all) Ri’s, which may be no better

than keeping D itself.

In most activity monitoring situations involving both cyber-

systems (e.g., storage IO, network or processing activity in

data center) and cyber-physical systems (e.g., building surveil-

lance, road traffic monitoring, etc.), the collected data may be

of interest only when some abnormal or unexpected events

occur. For example, the cameras watching traffic at a road

intersection may need to send the video stream only when

there is congestion, accident or other problems. However,

determining if these conditions must be either done by the

processing associated with the cameras or the reduced data

must still allow for this determination. In the latter case, if the

criteria changes dynamically, it is necessary to automatically

adapt the data reduction technique for it, but this can be very

challenging.

With ever increasing rate of data generation, there is the

emerging serious problem of retaining the data over long

periods of time. Retaining data for long periods involves many

challenges [124]. First and foremost, it requires a mechanism

to increasingly reduce the data volume, possibly including

reduction in its metadata and provenance data, as it ages. This

requires a framework for expressing the use cases for the data

15

Fig. 11: Piecewise linear approximation of koskiecg.dat dataset [112]. The code obtained from this linear
approximation is obtained from [113].

Fig. 12: Illustration of an online amnesic
approximation [114].

and how those use cases change with data age. Unfortunately,

not all possible uses of the data may be known in advance,

and even with a few disjoint use cases put together, the total

volume of reduced data may be no smaller than the original

raw data. Other challenges include long-term tracking of data,

its representation, devices it is stored on, retaining software

(e.g., drivers) that will continue to work [125], and dealing

with technology specific “bit rot” problem. The last issue is

getting worse as the feature size continues to go down; for

example, current low end SSDs may start to have retention

problems beyond a year [126].

VIII. OTHER CONSIDERATIONS IN EFFICIENT DATA

ACCESS

Although the focus of this paper is on data access perfor-

mance, it is essential to balance it against other important

needs of the application domain. This section provides a

discussion of some of the relevant tradeoffs.

A. Performance vs. Data Consistency and Device Life

Most applications update the stored data dynamically –

whether the original dataset or the intermediate data created

during processing. Since the hottest data is often in the DRAM,

a machine crash or power failure would not only lose the

data in DRAM, but could also result in the stored data being

inconsistent since only parts of the update to the data and

corresponding metadata made it to the device.

The data loss itself can be minimized by immediately

persisting any updates in memory to nonvolatile storage.

However, this may result in a lot of random, small writes to

the storage, which are usually very inefficient. Furthermore,

if the media has limited endurance (e.g., QLC SSD), they

could wear out the media quickly. Both of these problems can

be addressed by introducing a fast, high-endurance NVRAM

cache in between the storage and DRAM. For example, we

have shown in [127] that by introducing a small amount of

high endurance technology buffer (e.g., Intel Optane) between

DRAM and QLC SSD, both the performance and the overall

endurance can be enhanced substantially [127]. However, there

is a limit to such a scheme. If the user issued IOs are very

small (e.g., few bytes written or updated at a time), persisting

each update/write into the NVRAM could be detrimental

to NVRAM’s lifetime. Thus, in reality, there is a always a

trade-off between risk of data loss and performance/endurance

aspects.

The inconsistency problem is more serious than small data

loss as it may make the results of further computations

incorrect. Inconsistency can arise at multiple levels; the lowest

one being due to lack of data and corresponding metadata

making it to the disk fully before a crash happens. The most

basic reason for this is that all data writes involve some form

of metadata update as well. This aspect is traditionally handled

through “journaling”, or essentially a write-ahead logging of

metadata [128]. It can have a substantial performance impact,

particularly, if it goes to great lengths to avoid mishaps

due to multiple points of buffering, batching, and reordering

that are common in modern storage systems. The problem

becomes more complex with distributed storage systems where

multiple clients may be simultaneously updating a shared

file or database. Some systems handle this by relaxing the

consistency constraints (e.g., the popular network file sys-

tem or NFS), while others prohibit local data caching (e.g.,

PVFS2/OrangeFS) or resolve it using complicated distributed

lock managers (e.g., Lustre) [129]. In particular, NFS provides

no guarantee of consistency except for a very weak open-to-

close consistent writeback of modified data by clients [130].

The key reason for inconsistency is lack of atomic updates.

Atomicity in the emerging persistent memory can be achieved

via “transactional memory”, i.e., ensuring an all or nothing

semantics for user level operations, which can be efficiently

implemented in hardware [131]. Apache Spark provides an-

other approach to atomicity via its resilient distributed dataset

data structure [132]. It divides data into partitions that are

distributed across nodes for parallelism, and a RDD can only

be transformed from one immutable version to the next via

computations that are remembered and repeated in case of

crashes.

B. Performance vs. Resilience

In addition to the volatility, data loss/corruption can occur

due to storage media issues such as device failures, uncor-

rectable IO errors, and a host of errors that limit durability of

data stored in flash and other emerging technologies [18]. Such

errors are expected to become more serious with increasing

storage density and media capacities. There are two generic

techniques for handling these: (a) erasure coding of data to

allow for complete loss (or “erasure”) of one or more data

items out of a “stripe” of N items, and (b) maintaining

multiple copies of data items and keeping them updated. Both

of these create potential for data inconsistency due to machine

crashes/power failures, that must be handled. Erasure coding

is popularly used in RAIDed disks, but can be used in a

distributed storage environment as well [133] by selecting a

“stripe” of n data items (e.g., blocks or chunks) over which

the parity items are constructed. For example, a RAID6-like

arrangement can tolerate two failures/corruptions by adding

two parity items to the stripe. The key challenge is in selecting

how to form the stripes [134] since any update to a stripe item

would require update to the parity items.

If a machine crash occurs during update of a erasure coded

stripe, the stripe may no longer be consistent. Similarly, in

case of multiple copies, a crash during update may leave some

16

copies un-updated and therefore inconsistent. Note that in case

of both erasure coding and multiple copies, journaling will

likely only ensure that that individual data chunks have a all or

nothing semantics, and thus additional mechanisms are needed

to achieve consistency at the higher level.

As storage costs decline, maintaining multiple copies is

becoming quite popular. The presence of multiple copies can

be exploited to enhance the read bandwidth and reduce the net-

work traffic. However, this requires that the copies are located

close to the points of greatest demand, else the movement

of copies will incur additional network traffic and latency.

Furthermore, if these copies are updated, the synchronization

overhead of maintaining strict consistency can negate any

advantages. If the read/write ratio changes dynamically, an

active adjustment of the number of copies may be needed as

discussed in section V-A.

Although a significant data loss or corruption is always

unacceptable, certain applications (e.g., those doing statistical

processing) may not be affected by the loss/corruption of a few

items. However, the corresponding metadata should still be

handled correctly since certain metadata problems (e.g., mis-

directed pointer) can lead to large scale data corruption. Thus,

an application specific use of fault-tolerance mechanisms can

be useful but can be quite difficult to implement unless

the different application classes are segregated on different

devices.

C. Performance vs. Energy Consumption

The actions taken to enhance performance invariably affect

energy consumption. For example, data filtering, compression,

deduplication all enhance performance and hence reduce per-

operation energy consumption. However, this is usually done

to squeeze in more operations, and thus the overall energy

consumption may not be lowered. The same applies to min-

imizing data movement through tiering, caching, and data

placement techniques. These techniques, can, however, be also

exploited to maintain a given energy budget without reducing

performance. Since more active copies means higher energy

consumption, it may be important to control the number of

copies based on the energy limitations. In [135] we describe

such a mechanism for the replicas of deduplicated storage.

This work concerns the deduplication and replication of virtual

machine (VM) images. The VM images are divided into an

optimal number of groups based on a variety of factors such as

deduplication potential of a group (i.e., overlaps in the chunks

used by the VMs), performance/resilience requirements for the

VMs, placement restrictions for VM images, etc. The number

of active copies (or replicas) of each group could then be

varied dynamically based on the limitations on how much total

power can be consumed (possibly limited by cooling/thermal

issues or power draw itself).

D. Differentiated Services in Data Access

In most situations, there is a trade-off lurking even within

the scope of efficient data access – this is the need to provide

better service (e.g., lower latency and/or higher throughput)

to some workloads at the expense of others. Another way to

state this requirement is the need to support quality of service

(QoS) features across different classes of applications. QoS

becomes relevant when the available resources are limited. In

the case of distributed storage, this involves the host side, the

network and the target side, and can be quite complex.

With object storage, providing simple QoS features is rather

straightforward. When a user or application makes a request

for the object to the MDS, it provides its credentials and

the operation. Based on this the MDS can assign the request

to a specific QoS class, which will be served accordingly

by the OSD. The simplicity comes from the fact that both

the application/host and the storage side speak the same

language, that is of objects, which have globally unique IDs.

Nevertheless, a complex mapping of objects can make the QoS

more challenging.

With block storage, the situation is far more complicated

and end-to-end QoS only has some proprietary implementa-

tions [136]. The main difficulty, as stated in section I, is the

semantic gap and lack of connection between application and

storage sides. In particular, the storage side does not know to

which application a specific block belongs to or what kind of

QoS should be provided to it. Recently, there have been some

efforts to convey some “hints” from the application and/or the

file-system to the storage system concerning the treatment of

IO using a small number of unused bits in the IO command

headers [137].

Because of the rather slow nature of storage systems in the

past, much of the focus, as in this paper, has been on simply

making the data access as fast as possible on the average.

However, with the emergence of very low latency storage

technologies, the goalpost has shifted further – we want quick

access not just on the average, but we want it with very high

probability! In particular, currently there is an ongoing effort

to define “deterministic period” features in NVMe standards

which allows an SSD to declare periods where its FTL will

not do background activities such as wear leveling, garbage

collection, etc. and thereby provide deterministic latency.

Achieving deterministic latency for all latency sensitive QoS

classes end-to-end is still a very challenging and open problem.

E. Performance vs. Security

There are a variety of issues that fall under this realm.

They include tradeoffs that are made to attain different levels

of data protection and privacy. The tradeoffs made when

attaining the desired level of protections must not be made

in isolation, rather the threat model [138], [139] must be

defined. This is because raising the protections has an impact

on complexity, cost, and performance and without foresight

may not achieve the desired objective. For example, great

effort may be made to protect data in motion or securing

the underlying infrastructure [140], but if insider threat is

a possible vector for having the data exposed and is not

addressed, putting all the investment in infrastructure may be a

poor choice. In addition to securing data in motion and at rest,

big data brings a host of privacy [141] issues [142]. In essence,

privacy leakage can take the form of a direct exposure of data.

This could be through misconfiguration, poor design, security

17

breaches, etc. It can also be indirectly, through processed or

aggregated data. In the former case, design decisions may

be made to make to protect privacy information at increased

performance cost in retrieving the relevant data when needed.

In the latter case, extra processing of the data may be needed,

whether the data is in motion or at rest, to prevent leakage.

With the vast amounts of user information being collected,

privacy leakage can affect a large number of users.

IX. CONCLUSIONS

In this work we have provided a comprehensive survey

of various facets of efficient big data access, and devised a

taxonomy for numerous techniques that have been considered

in the literature. Owing to the rather complex relationships

between the three key views of data, namely user’s view,

storage system’s view, and device’s view, and the need to

coordinate between them, achieving high performance requires

sophisticated methods including the big-data analytics tech-

niques themselves.

The proposed taxonomy considers three key aspects of

efficient data access, namely exploitation of spatio-temporal

locality of data access, enhancing the proximity of the data

and the computation working on it, and the reduction (or

compression) of data depending on which features of the

data are important for the computation. By viewing a data

access problem through the lens of this taxonomy, we can

understand the relevant issues and possible solutions related

to that problem. This allows us to address the needs of the

problem by looking at techniques, tools, and technologies

in other domains that may transfer to a particular problem.

It also prompts us to consider the representation of data

and its movement across the system, factoring in a range

of considerations, from low level issues such as behavior of

individual bits of data close to the hardware and abstracting out

to consider emergent behavior of the system. Furthermore the

need to trade off performance against other aspects mentioned

in section VIII make the overall problem very challenging.

A fundamental issue in approaching the problem of efficient

data access or the tradeoffs with other requirements is what we

know about the semantics of the situation, i.e., the nature and

representation of data items of interest, how they will be used,

relationships/dependencies between different data items, how

are the three different views of data connected, etc. In most

cases, we do not possess this knowledge, and instead such

knowledge must be gleaned from the behavior and behavioral

relationships, perhaps via big data analytics techniques. Even

when such knowledge is available, its expression and represen-

tation in a usable form is a huge challenge. We believe that in

the foreseeable future, the issues of expressing, representing,

and exploiting the semantics aspects of data and relating them

to behavioral aspect (including the understanding of semantics

through behavioral exploration) will assume increasing sig-

nificance and would both exploit and contribute to efficient

big data analytics techniques. We hope that the structured

treatment of the subject of big data access, the taxonomy,

and the research challenges discussed in this paper will spur

researchers to further examine those issues in the space of

rapidly emerging data intensive applications.

ACKNOWLEDGMENTS

This paper includes the work of many current and former

students including Dusan Ramaljak (developer of BeliefCache

and data summarization ideas), Sanjeev Sondur (cloud storage

gateway and configuration management issues), Lu Pang (heat

prediction issues), Tanaya Roy (storage hierarchy issues), Jit

Gupta (FussyCache), and Madhurima Ray (network conges-

tion issues). We would also like to thank Ayman Abouelwafa

(HPE), Tony Floeder (General Dynamics), and Jeremy Swift

(Dell) for many stimulating discussions, and NSF for support-

ing this work through the grant IIP-1439672.

REFERENCES

[1] C.-W. Tsai et al., “Big data analytics: a survey,” Journal of Big Data,
vol. 2, pp. 1–32, 2015.

[2] N. A. Ghani et al., “Social media big data analytics: A survey,” Comput.

Hum. Behav., vol. 101, pp. 417–428, 2019.

[3] C. Castellanos et al., “A survey on big data analytics solutions deploy-
ment,” in ECSA, ser. Lecture Notes in Computer Science, T. Bures
et al., Eds., vol. 11681. Springer, 2019, pp. 195–210.

[4] X. Chen et al., “Big data deep learning: Challenges and perspectives,”
IEEE Access, vol. 2, pp. 514–525, 2014.

[5] A. Oussous et al., “Big data technologies: A survey,” Journal of King

Saud University - Computer and Information Sciences, vol. 30, no. 4,
pp. 431 – 448, 2018.

[6] S. Mazumdar et al., “A survey on data storage and placement method-
ologies for cloud-big data ecosystem,” Journal of Big Data, vol. 6,
no. 1, feb 2019.

[7] N. Khan et al., “Big data: Survey, technologies, opportunities, and
challenges,” The Scientific World Journal, 2014.

[8] Y. Lv et al., “Traffic flow prediction with big data: A deep learning
approach,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 865–
873, 2015.

[9] G. Aceto et al., “Know your big data trade-offs when classifying
encrypted mobile traffic with deep learning,” in TMA, S. Secci et al.,
Eds., 2019, pp. 121–128.

[10] M. Pandey et al., “Mobile applications in context of big data: A survey,”
in CDAN, 2016.

[11] M. Mohammadi et al., “Deep learning for iot big data and streaming
analytics: A survey,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4,
pp. 2923–2960, 2018.

[12] J. Archenaa et al., “A survey of big data analytics in healthcare and
government,” Procedia Computer Science, vol. 50, pp. 408–413, 2015.

[13] G. Harerimana et al., “Health big data analytics: A technology survey,”
IEEE Access, vol. 6, pp. 65 661–65 678, 2018.

[14] R. A. Alshawish et al., “Big data applications in smart cities,” in
ICEMIS, 2016, pp. 1–7.

[15] Y. Liang et al., “Urbanfm: Inferring fine-grained urban flows,” in ACM

SIGKDD, 2019, pp. 3132–3142.

[16] L.-M. Ang et al., “Big sensor data applications in urban environments,”
Big Data Research, vol. 4, pp. 1–12, 2016.

[17] Y. Liu et al., “Predicting urban water quality with ubiquitous data,”
arXiv preprint arXiv:1610.09462, 2016.

[18] Y. Cai et al., “Error characterization, mitigation, and recovery in flash-
memory-based solid-state drives,” Proceedings of the IEEE, vol. 105,
no. 9, pp. 1666–1704, 2017.

[19] S. Mittal et al., “A survey of software techniques for using non-volatile
memories for storage and main memory systems,” IEEE Transactions

on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1537–1550,
2016.

[20] J. Izraelevitz et al., “Basic performance measurements of the intel op-
tane dc persistent memory module,” arXiv preprint arXiv:1903.05714,
2019.

[21] H. Strass, “An introduction to nvme,” https://www.seagate.com/files/
www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/
shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf.

[22] M. . Ray et al., “Adaptive data center network traffic management for
distributed high speed storage,” IEEE LCN, 2019.

[23] H. J. Singh et al., “Scalable metadata management techniques for ultra-
large distributed storage systems – a systematic review,” 2018, p. 82:1–
82:37, ACM Comput. Surv.

18

https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf
https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf
https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf

[24] Q. Xu et al., “Efficient and scalable metadata management in eb-scale
file systems,” 2014, p. 2840–2850, IEEE Transactions on Parallel and
Distributed Systems.

[25] J. Liu et al., “Using provenance to efficiently improve metadata
searching performance in storage systems,” Future Gener. Comput.

Syst., vol. 50, pp. 99–110, 2015.
[26] “SNIA Object Store: Tutorial: Everything You wanted to Know About

Storage,” https://www.snia.org, 2018.
[27] P. Schwan et al., “Lustre: Building a file system for 1000-node

clusters,” in Linux symposium, 2003, pp. 380–386.
[28] S. A. Weil et al., “Ceph: A scalable, high-performance distributed file

system,” in USENIX OSDI, 2006, pp. 307–320.
[29] R. H. Inc., “Product documentation for red hat gluster storage 3.5,”

2019. [Online]. Available: https://access.redhat.com/documentation/
en-us/red hat gluster storage/3.5/

[30] Apache, “Hdfs architecture guide,” 2019. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs design.html

[31] J. C. Anderson et al., CouchDB: the definitive guide: time to relax.
”O’Reilly Media, Inc.”, 2010.

[32] K. Chodorow, MongoDB: the definitive guide: powerful and scalable

data storage. ”O’Reilly Media, Inc.”, 2013.
[33] M. Minglani et al., “Kinetic action: Performance analysis of integrated

key-value storage devices vs. leveldb servers,” in IEEE ICPADS, 2017.
[34] S. Dong et al., “Optimizing space amplification in rocksdb,” 2017.
[35] M. Ray et al., “Flashkey: A high-performance flash friendly key-value

store,” IPDPS, 2020.
[36] A. Lakshman et al., “Cassandra: a decentralized structured storage

system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp.
35–40, 2010.

[37] A. Khetrapal et al., “Hbase and hypertable for large scale distributed
storage systems,” Dept. of Computer Science, Purdue University,
vol. 10, no. 1376616.1376726, 2006.

[38] L. George, HBase: the definitive guide: random access to your planet-

size data. ”O’Reilly Media, Inc.”, 2011.
[39] J. Webber, “A programmatic introduction to neo4j,” in SPLASH, 2012,

pp. 217–218.
[40] “Janusgraph. distributed, open source, massively scalable graph

database.” [Online]. Available: https://janusgraph.org/
[41] E. Brewer, “Cap twelve years later: How the” rules” have changed,”

Computer, vol. 45, no. 2, pp. 23–29, 2012.
[42] J. Gupta et al., “Fussycache: A caching mechanism for emerging

storage hierarchies,” Submitted for publication, Oct 2020.
[43] T. Xu et al., “Systems approaches to tackling configuration errors: A

survey,” 2015.
[44] K. Kant, Introduction to computer system performance evaluation.

McGraw-Hill, 1992.
[45] S. Sondur et al., “Towards automated configuration of cloud storage

gateways: A data driven approach,” Proc. of Cloud 2019, San Diego,

CA, June 2019.
[46] S. R. Safavian et al., “A survey of decision tree classifier methodology,”

IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp.
660–674, 1991.

[47] M. S. Sorower, “A literature survey on algorithms for multi-label
learning,” Oregon State University, Corvallis, vol. 18, 2010.

[48] G. Tsoumakas et al., “Multi-label classification: An overview,” IJDWM,
vol. 3, no. 3, pp. 1–13, 2007.

[49] S. Braun, “Semantics-driven optimistic data replication: Towards a
framework supporting software architects and developers,” 2017, IEEE
ICSAW.

[50] S. K. Jauhar, “A relation-centric view of semantic representation
learning,” 2017, ph. D. thesis, Carnegie Mellon University.

[51] N. F. Noy, “Semantic integration: A survey of ontology-based ap-
proaches.” SIGMOD Record, vol. 33, no. 4, pp. 65–70, 2004.

[52] J. He et al., “I/o acceleration with pattern detection,” 2013, HPDC.
[53] N. Tran et al., “Automatic arima time series modeling for adaptive i/o

prefetching,” 2004.
[54] M. Hoseinzadeh, “A survey on tiering and caching in high-performance

storage systems,” arXiv preprint arXiv:1904.11560, 2019.
[55] N. Megiddo et al., “Arc: A self-tuning, low overhead replacement

cache,” in USENIX FAST, 2003, pp. 115–130.
[56] B. S. Gill et al., “Sarc: Sequential prefetching in adaptive replacement

cache.” Washington, D.C., 2005, p. 293–308, Proceedings of USENIX
ATC.

[57] B. S. Gill et al., “Amp: Adaptive multi-stream prefetching in a shared
cache.” Washington, D.C., 2007, p. 185–198, Proceedings of FAST.

[58] D. Dai et al., “Vectorizing disks blocks for efficient storage system via
deep learning,” 2018, parallel Computing.

[59] R. H. Patterson et al., “Informed prefetching and caching,” in ACM

SOSP. New York, NY, USA: ACM, 1995, pp. 79–95. [Online].
Available: http://doi.acm.org/10.1145/224056.224064

[60] S. F. Kaplan et al., “Adaptive caching for demand prepaging,” in ACM

SIGPLAN Notices, vol. 38, no. 2 supplement. ACM, 2002, pp. 114–
126.

[61] S. Yang et al., “Tombolo: Performance enhancements for cloud storage
gateways,” Hoes Lane Piscataway, NJ, 2016, p. 1–14, Proceedings of
MSST.

[62] S. I. T. Repository, “Systor’17 fujitsu laboratory traces.” [Online].
Available: http://iotta.snia.org/traces/4964

[63] “Snia iotta trace repository, fiu srcmap trace.” [Online]. Available:
http://iotta.snia.org/traces/414

[64] S. SPEC, “Benchmark, 2014.”

[65] D. Ramljak et al., “Belief-based data prefetching and replacement in
storage systems,” 2017, USENIX FAST.

[66] D. Ramljak et al., “Modular framework for data prefetching and
replacement at the edge,” Cham, 2018, p. 18–33, Proceedings of EDGE.

[67] J. Oly et al., “Markov model prediction of i/o requests for scientific
applications,” New York, NY, 2002.

[68] L. Lin et al., “Amp: an affinity-based metadata prefetching scheme in
large-scale distributed storage systems,” in IEEE CCGRID, 2008, pp.
459–466.

[69] P. Gu et al., “Nexus: a novel weighted-graph-based prefetching algo-
rithm for metadata servers in petabyte-scale storage systems,” in IEEE

CCGRID, 2006, pp. 409–416.

[70] B. Fitzpatrick, “Distributed caching with memcached,” in Linux Jour-

nal, Aug. 2004.

[71] R. Nishtala et al., “Scaling memcache at facebook,” in USENIX NSDI,
N. Feamster et al., Eds., 2013, pp. 385–398.

[72] M. Paksula, “Persisting objects in redis key-value database,” University

of Helsinki, Department of Computer Science, 2010.

[73] D. Karger et al., “Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,” in
ACM symposium on Theory of computing, 1997, pp. 654–663.

[74] P. Pipada et al., “Loadiq: Learning to identify workload phases from
a live storage trace,” 2012, USENIX HotStorage.

[75] N. J. Yadwadkar et al., “Discovery of application workloads from
network file traces.” 2010, p. 183–196, FAST.

[76] R. Salkhordeh et al., “Operating system level data tiering using online
workload characterization,” The Journal of Supercomputing, vol. 71,
no. 4, pp. 1534–1562, 2015.

[77] L. Pang et al., “Data heat prediction in storage systems using behavior
specific prediction models,” IEEE IPCCC, 2019.

[78] Y. Cheng et al., “Cast: Tiering storage for data analytics in the cloud,”
in ACM HPDC, 2015, pp. 45–56.

[79] Z. Yang et al., “Autotiering: automatic data placement manager in
multi-tier all-flash datacenter,” in IEEE IPCCC, 2017, pp. 1–8.

[80] A. Wildani et al., “Can we group storage? statistical techniques to
identify predictive groupings in storage system accesses,” 2016, ACM
Transactions on Storage (TOS).

[81] T. M. Kroeger et al., “Design and implementation of a predictive file
prefetching algorithm.” 2001, p. 105–118, USENIX Annual Technical
Conference, General Track.

[82] E. Bertino et al., “A roadmap for privacy-enhanced secure data prove-
nance,” 2014, p. 481–501, Journal of Intelligent Information Systems.

[83] Y. Chen et al., “Exploring parallel I/O concurrency with speculative
prefetching,” in ICPP, 2008, pp. 422–429.

[84] C. S. Smowton, “I/o optimisation and elimination via partial evalu-
ation,” University of Cambridge, Computer Laboratory, Tech. Rep.,
2014.

[85] D. Narayanan et al., “Write off-loading: Practical power management
for enterprise storage,” 2008, v. 4, n. 3, p. 10, ACM Transactions on
Storage (TOS).

[86] S. Woodman et al., “Workflow provenance: an analysis of long term
storage costs,” in ACM WORKS, J. Montagnat et al., Eds., 2015, pp.
9:1–9:9.

[87] R. Kaplan et al., “Prins: Processing-in-storage acceleration of machine
learning,” 2018, v. 17, n. 5, p. 889–896, IEEE Transactions on
Nanotechnology.

[88] D. Li, “Processing in storage, the next generation of storage system,”
2019.

[89] K. Keeton et al., “A case for intelligent disks (idisks),” 1998, p. 42–52,
SIGMOD Rec.

[90] Y. X et al., “Oasis: An active storage framework for object storage
platform,” 2016, p. 746–758, Future Generation Computer Systems.

19

https://www.snia.org
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.5/
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.5/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://janusgraph.org/
http://doi.acm.org/10.1145/224056.224064
http://iotta.snia.org/traces/4964
http://iotta.snia.org/traces/414

[91] M. Torabzadehkashi et al., “Compstor: An in-storage computation plat-
form for scalable distributed processing,” in IEEE IPDPS Workshops,
2018, pp. 1260–1267.

[92] M. Torabzadehkashi et al., “Catalina: In-storage processing acceler-
ation for scalable big data analytics,” 2019, euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP).

[93] M. T. Runde et al., “An active storage framework for object storage
devices,” Hoes Lane Piscataway, NJ, 2012, p. 1–12, Proceedings of
MSST.

[94] S. Inc., “Seagate kinetic hdd,” https://www.seagate.com/www-content/
product-content/hdd-fam/kinetic-hdd/en-us/docs/100764174b.pdf,
2015.

[95] X. Ma et al., “Mvss: an active storage architecture,” 2003, p. 993–1005,
IEEE Transactions on Parallel and Distributed Systems.

[96] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[97] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[98] K. Shvachko et al., “The hadoop distributed file system,” in IEEE

MSST, 2010, pp. 1–10.

[99] J. Ekanayake et al., “Mapreduce for data intensive scientific analyses,”
in IEEE International Conference on eScience, 2008, pp. 277–284.

[100] J. Sampé et al., “Data-driven serverless functions for object storage,”
New York, NY, USA, 2017, p. 121–133, ACM/IFIP/USENIX Middle-
ware Conference.

[101] B. Han et al., “Network function virtualization: Challenges and op-
portunities for innovations,” IEEE Communications Magazine, vol. 53,
no. 2, pp. 90–97, 2015.

[102] J. Uthayakumar et al., “A survey on data compression techniques:
From the perspective of data quality, coding schemes, data type
and applications,” Journal of King Saud University-Computer and

Information Sciences, 2018.

[103] G. Vijayvargiya et al., “A survey: various techniques of image com-
pression,” arXiv preprint arXiv:1311.6877, 2013.

[104] W. Xia et al., “A comprehensive study of the past, present, and future
of data deduplication,” 2016, p. 1681–1710, Proceedings of the IEEE.

[105] H. Hovhannisyan et al., “Whispers in the cloud storage: A novel cross-
user deduplication-based covert channel design,” 2018, p. 277–286,
Peer-to-Peer Networking and Applications.

[106] C. L. P. Chen et al., “Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data,” 2014, p. 314–347, Inf.
Sci.

[107] R. Kaur et al., “Data deduplication techniques for efficient cloud
storage management: a systematic review,” 2018, p. 2035–2085, The
Journal of Supercomputing.

[108] N. Mandagere et al., “Demystifying data deduplication,” 2008, p. 12–
17, ACM/IFIP/USENIX Middleware.

[109] J. Paulo et al., “A survey and classification of storage deduplication
systems,” 2014, p. 11:1–11:30, ACM Comput. Surv.

[110] M. Fu et al., “Design tradeoffs for data deduplication performance in
backup workloads,” 2015, p. 331–344, USENIX FAST.

[111] D. T. Meyer et al., “A study of practical deduplication,” 2012, v 7, n
4, p. 14:1–14:20, TOS.

[112] Keogh et al., “iSAX: Indexing and mining terabyte sized time series
ecg data,” 1996. [Online]. Available: https://www.cs.ucr.edu/∼eamonn/
iSAX/koski ecg.dat

[113] Keogh et al., “Segmenting time series,” 2008. [On-
line]. Available: http://bearcave.com/software/market trading/intraday
trading/SegmentingTimeSeries.html

[114] T. Palpanas et al., “Online amnesic approximation of streaming time
series,” Hoes Lane Piscataway, NJ, 2004, p. 339–349, IEEE ICDE.

[115] S. Imani et al., “Matrix profile xiii: Time series snippets: A new
primitive for time series data mining,” 2018, IEEE ICBK.

[116] C. Faloutsos et al., “Fast subsequence matching in time-series
databases,” 1994, p. 419–429, ACM SIGMOD.

[117] I. Popivanov et al., “Similarity search over time-series data using
wavelets,” 2002, p. 212–221, IEEE ICDE.

[118] B.-K. Yi et al., “Fast time sequence indexing for arbitrary lp norms,”
2000, p. 385–394, VLDB.

[119] K. Chakrabarti et al., “Locally adaptive dimensionality reduction for
indexing large time series databases,” ACM Trans. Database Syst.,
vol. 27, no. 2, pp. 188–228, 2002.

[120] S. Gandhi et al., “Space-efficient online approximation of time series
data: Streams, amnesia, and out-of-order,” Hoes Lane Piscataway, NJ,
2010.

[121] P. Missier et al., “Preserving the value of large scale data analytics over
time through selective re-computation,” 2017, p. 65–77, Data Analytics.

[122] D. Ramljak et al., “Pattern mining based compression of iot data,” New
York, NY, USA, 2018, p. 12:1–12:6, Proceedings of the Workshops
ICDCN.

[123] N. Tatti et al., “The long and the short of it: summarising event
sequences with serial episodes,” in ACM SIGKDD, 2012, pp. 462–470.

[124] F. Luan et al., “A survey of digital preservation strategies,” World

Digital Libraries-An international journal, vol. 3, no. 2, pp. 133–150,
2010.

[125] B. El Idrissi, “Long-term digital preservation: A preliminary study on
software and format obsolescence,” in ACM ArabWIC, 2019.

[126] A. Cox, “Jedec ssd specifications explained.” [On-
line]. Available: https://www.jedec.org/sites/default/files/Alvin
Cox[CompatibilityMode] 0.pdf

[127] T. Roy et al., “Enhancing endurance of ssd based high-performance
storage systems using emerging nvm technologies,” High-Performance

Storage Workshop, IPDPS, May 2020.
[128] V. Prabhakaran et al., “Analysis and evolution of journaling file

systems.” in USENIX ATC, vol. 194, 2005, pp. 196–215.
[129] J. Valerio et al., “Evaluating the price of consistency in distributed

file storage services,” in IFIP International Conference on Distributed

Applications and Interoperable Systems. Springer, 2013, pp. 141–154.
[130] O. Kirch, “Why nfs sucks,” in Linux symposium, 2006.
[131] A. Shahid et al., “Hardware transactional memories: A survey,” in

Innovative Research and Applications in Next-Generation High Per-

formance Computing. IGI Global, 2016, pp. 47–65.
[132] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing,” in USENIX NSDI, S. D.
Gribble et al., Eds., 2012, pp. 15–28.

[133] S. Balaji et al., “Erasure coding for distributed storage: an overview,”
2018, science China Information Sciences.

[134] A. L. N. Reddy et al., “Design and evaluation of gracefully degradable
disk arrays,” 1993, p. 28–40, Journal of Parallel and Distributed
Computing.

[135] M. Murugan et al., “Software defined deduplicated replica management
in scale-out storage systems,” Future Generation Computer Systems,
vol. 97, pp. 340–354, 2019.

[136] C. Naddeo, “End-to-end quality of service: Cisco, vmware, and netapp
team to enhance multi-tenant environments,” https://www.netapp.com/
fr/communities/tech-ontap/tot-smt-qos-201001-hk.aspx, 2019.

[137] M. Mesnier et al., “Differentiated storage services,” in ACM SOSP,
2011, pp. 57–70.

[138] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[139] S. Myagmar et al., “Threat modeling as a basis for security require-
ments,” in SREIS, vol. 2005, 2005, pp. 1–8.

[140] Y. Demchenko et al., “Big security for big data: Addressing security
challenges for the big data infrastructure,” in Workshop on Secure Data

Management. Springer, 2013, pp. 76–94.
[141] E. Bertino et al., “Big data security and privacy,” in A Comprehensive

Guide Through the Italian Database Research Over the Last 25 Years.
Springer, 2018, pp. 425–439.

[142] D. S. Terzi et al., “A survey on security and privacy issues in big data,”
in IEEE ICITST, 2015, pp. 202–207.

Anis Alazzawe has received both a B.S. in computer science and M.S. in
software engineering from George Mason University. He has received his
Ph.D. from Temple University in 2019. His interests include energy and
resilience issues in HPC and machine learning.

Amitangshu Pal received the B.E. degree in computer science and engineer-
ing from Jadavpur University, in 2008, and the Ph.D. degree in electrical and
computer engineering from The University of North Carolina at Charlotte, in
2013. He is currently an Assistant Professor of Computer and Information
Science Department at Temple University. His current research interests
include wireless sensor networks, reconfigurable optical networks, smart
health-care, cyber-physical systems, mobile and pervasive computing, and
cellular networks.

Krishna Kant is a Professor with Temple University, Philadelphia, PA, USA.
His current areas of research include sustainability and energy efficiency
in data centers, configuration robustness and security, and application of
computing technologies to larger sustainability problems. He has published in
a wide variety of areas in computer science, has authored a graduate textbook
on performance modeling of computer systems, and has co-edited two books
on infrastructure and cloud computing security. He is a Fellow of the IEEE.

20

https://www.seagate.com/www-content/product-content/hdd-fam/kinetic-hdd/en-us/docs/100764174b.pdf
https://www.seagate.com/www-content/product-content/hdd-fam/kinetic-hdd/en-us/docs/100764174b.pdf
https://www.cs.ucr.edu/~eamonn/iSAX/koski_ecg.dat
https://www.cs.ucr.edu/~eamonn/iSAX/koski_ecg.dat
http://bearcave.com/software/market_trading/intraday_trading/Segmenting Time Series.html
http://bearcave.com/software/market_trading/intraday_trading/Segmenting Time Series.html
https://www.jedec.org/sites/default/files/Alvin_Cox [Compatibility Mode]_0.pdf
https://www.jedec.org/sites/default/files/Alvin_Cox [Compatibility Mode]_0.pdf
https://www.netapp.com/fr/communities/tech-ontap/tot-smt-qos-201001-hk.aspx
https://www.netapp.com/fr/communities/tech-ontap/tot-smt-qos-201001-hk.aspx

1

Efficient Big-Data Access: Taxonomy and a

Comprehensive Survey (Supplemental Materials)
Anis Alazzawe, Amitangshu Pal, Krishna Kant

Computer and Information Sciences, Temple University, Philadelphia, PA 19122

[aalazzawe, amitangshu.pal, kkant]@temple.edu

I. EMERGING STORAGE TECHNOLOGIES

In this section, we briefly survey the essential characteristics

of the emerging storage technologies, particularly as they

relate to efficient data access issues.

A. Magnetic Recording Storage Technologies

The most widely deployed storage technology currently is

the traditional hard disk drive (HDD); however, this tech-

nology is by no means static and is itself undergoing rapid

advancements. Much of the action is in advanced magnetic

recording techniques which includes many techniques in dif-

ferent stages of development. For example, perpendicular

recording (i.e., magnetization perpendicular to the disk sur-

face) is already well established. Other techniques include 3D

recording (i.e., being able to select one of several layers and

reading/writing data on it), heat assisted magnetic recording

(HAMR), microwave assisted magnetic recording (MAMR),

heated dot magnetic recording (HDMR), etc. The HAMR

technology, already demonstrated to product 16TB drives,

heats the point where the magnetic pole is to be flipped to a

high but sub-curie temperature to make the flipping easy and

then cools it down rapidly. MAMR technology accomplishes

similar goal (i.e., reduction of coercivity) using microwaves.

These technologies have and will likely continue to keep

HDDs an essential part of the storage hierarchy on the high

capacity end, in spite of rapid advancements in solid state

drives (SSDs). In fact, variants of the HDD technology such as

SMR [1] (shingled magnetic recording) or IMR [2] (interlaced

magnetic recording) further increase the track density but at

the cost much more difficult random data updates. The idea

behind SMR technology is to record successive tracks so

closely that while they can be read individually, writing a

single track disturbs the nearby tracks. The recording is done

in a series of “zones” with either gaps between them (in SMR)

or normal spacing zones (in IMR). Thus it is possible to write

an entire SMR zone sequentially without losing any data but

random writes will not work. Consequently, these technologies

are initially targeted towards backups and archiving, but can

also find other uses where the IO is largely sequential.

B. Flash Storage Technology

The increasingly popular storage media is the solid-state

drive (SSD) based on the flash technology. It is rapidly

augmenting or replacing HDDs [3]–[5] in “higher” tiers (i.e.,

defined as those logically closer to CPU) of the storage

hierarchy. The flash technology is based on the “floating

gate transistor”, i.e., a MOS transistor with an extra gate

encapsulated entirely inside the SiO2 layers but not directly

connected to anything. By applying a high positive voltage to

the normal gate which sits above the floating gate, electrons

can be forced into the floating gate. If the gate voltage is now

withdrawn, the electrons get trapped inside floating gate and

this forms the nonvolatile memory. The only way to force the

electrons out is by applying a large negative voltage to the

regular gate, a process known as “erasure”. Unfortunately, the

erasure is very energy intensive and is designed to be done one

entire “block” at a time. The “block” here refers to flash block

and could be rather large – at least 256KB and continuing to

go up due to technological considerations and could already

be as high as 8MB. A block is divided into “pages” that are

2KB or larger. While the reads and writes are in the units

of pages, because of the erasure process, it is not possible to

overwrite a page once written. Instead, any intended overwrite

must be recorded elsewhere along with suitable metadata to

ensure that the latest copy of the page is always read. A written

page becomes “clean” (or writeable) only after the entire

block containing the page is erased. The erasures are usually

done according to some delayed policy (e.g., periodically or

when number of clean blocks dips below a threshold) by a

process known as Garbage Collection (GC). The extent of

GC is related to how much extra space is available to manage

out-of-place writes (often known as Space Amplification or

Overprovisioning) and how many page writes does the SSD

perform internally for single page write issued by the OS

(often known as Write Amplification). Given the complexity

of these management tasks, SSDs have inbuit computer which

runs a layer called “File Translation Layer” (FTL) to make

the SSD look like a normal HDD.

The trapped electron based operation leads to several other

aspects that need to be managed. First, the electrons do tend

to leak out eventually, thereby leading to limited “Retention”.

That is, the number of times a written page can be read

continuously is not unlimited. Similarly, an SSD left alone for

a very long time may not retain the information, and thus not

suitable for long term storage (10’s of years or more). Also,

when reading or writing a “cell” (or a floating gate transistor),

nearby cells may be affected – known as “read disturb” and

“write disturb” problems respectively. However, the most im-

portant limitation is the “endurance”, or the number of times a

block can erased (and then reprogrammed). This is commonly

specified in terms of PE (program-erase) cycles that a cell

can endure before it can no longer be programmed reliably.

The standard solution to deal with certain cells being heavily

written and thereby wearing out quickly is “wear leveling”.

Internally, the FTL implements a virtual to physical address

translation at the block level, so that it can transparently ensure

that all blocks are programmed roughly at the same rate.

Individual blocks could have significant variations in their life-

times, and increasingly the wear leveling schemes take this

variability into account.

The flash technology started with binary cells, i.e., cells

with trapped electrons representing a “1” and one without

representing a “0”. This is known as SLC (single level cell)

recording. It is the simplest, fastest, and can provide about

100K PE cycles of endurance per block, which is adequate

in most cases. Later versions of the technology have tried to

stuff multiple bits per cell by varying the number of trapped

electrons to represent different levels of programming. As

an illustration, we could have 4 levels as follows: 0: no

electrons trapped, 1: 10 electrons trapped, 2: 20 electrons

trapped, and 3: 30 electrons trapped. This then represents 2

bits/cell, incorrectly known as MLC (multi-level cell). MLC

can provide about 20K PE cycles. More recently, the fastest

growing technologies are TLC (3 bits/cell) with endurance in

the range of a few thousand PE cycles, and QLC (quatro

level cell or 4 bits/cell) with endurance measured in less

than a thousand PE cycles only. The last two are clearly

deficient in terms of endurance; however, with increasing size

of the drives and a good wear leveling, the deficiency can be

made less problematic. For example, a 1TB TLC drive with

endurance of 2000 PE cycles, can, in theory, take 1PB of

writes before it is exhausted. Given a rated 5 year life-time of

the SSD, this amounts to 400 TB/year or 1.08 GB/day. This

may be workable for data that’s updated only infrequently;

however, there is no doubt that the problem of endurance

becomes more serious with more bits/cell. Unfortunately, all

of the other problems (including retention, read disturb, write

disturb, unreliable reads, unreliable writes, etc.) become more

pronounced with shrinking feature size of the flash technology

(which reduces the overall number of trapped electrons) and

with increasing bits/cell.

C. Other Emerging Storage Technologies

Beyond the Flash technology, numerous nonvolatile mem-

ory technologies have been in development, including

Phase Change Memory (PCM), Spin-torque transfer RAM

(STTRAM), Toggle MRAM (TMRAM), etc. Generally, these

technologies are byte addressable (unlike SSD or HDD),

are much faster than flash, are re-writable, and have high

endurance and retention [6]. Their current downside is the

high cost and various technology maturity issues.

The technologies operate using very different principles.

For example, the PCM technology works much like writeable

CD technology; for writing it quickly melts a phase-change

material cell and let’s it cool down. A slow cool results in

crystalline structure (say a “1”) and a fast cool results an amor-

phous structure (say a “0”). (This actually means that writing

a 1 takes longer than writing a 0, which has implications for

suitable low-level coding mechanisms). Obviously, this makes

writing much slower than reading, but the read speed is only

2-4X slower than DRAM.

Spin-transfer Torque MRAM, or STT-RAM, records data

by manipulating the spin of the electrons. Electrons inher-

ently have a small angular momentum (called spin). Electric

current is generally unpolarized (consisting of 50% spin-up

and 50% spin-down electrons); but by passing the current

through a thick magnetic layer (called the “fixed layer”), one

can produce a spin-polarized current. If this spin-polarized

current is directed into a second, thinner magnetic layer (the

“free layer”), the angular momentum can be transferred to

this layer, and even flipped. STT-RAM has the potential

to simultaneously provide nonvolatility, DRAM-like memory

latencies, and extremely high retention and endurance. The

technology is still very new but Everspin Electronics has

recently released 1Gb chip that operates like a DDR3 memory.

Toggle MRAM is a related technology that uses a magneto-

resistive toggle cell. It uses a transistor coupled with a

magnetic tunnel junction (MTJ) memory cell consisting of

a fixed magnetic layer, a thin dielectric tunnel barrier and

a free magnetic layer. When a bias is applied to the MTJ,

electrons that are spin polarized by the magnetic layers tunnel

through the dielectric barrier and change the resistance of the

MTJ device. The MTJ device has a low resistance when the

magnetic moment of the free layer is parallel to the fixed layer

and a high resistance when the free layer moment is oriented

anti-parallel to the fixed layer moment. During a read, the

pass transistor is activated and data is read by comparing the

resistance of the cell to a reference device. During writes, the

magnetic field from two Write Lines writes the cell at the

intersection of the two lines but does not disturb other cells

on either line.

One technology that is already available commercially and

gaining rapid popularity is the Intel “Optane” [7], [8]. It is

organized as a 3D cross-point structure and believed to be

based on the PCM technology, although Intel has not revealed

the underlying technology. It is 10X faster and has 30X higher

endurance than Flash (QLC SSD), but 20X more expensive;

therefore, a suitable use for it in the current storage hierarchy

is in form a nonvolatile cache for enhancing both the overall

storage performance and endurance (by judiciously deciding

whether to accumulate writes in Optane or directly in the

SSD).

With DRAM-like latencies and byte-addressability, the

emerging technologies are challenging the traditional dis-

tinction between memory and storage. The CPU accesses

memory in small chunks (i.e., “cachelines”, typically 64B in

size) and waits until the access is complete. In contrast, the

storage access usually is in large chunks (e.g., 4KB or larger)

and asynchronous, i.e., the CPU issues the storage access

request, and then does something else until informed of the IO

completion. Technologies such as STTRAM can also be used

as “persistent memory” when used like a memory. In fact,

Intel has already released Optane based persistent memory

modules that plug into regular DDR3 memory slots. The

developments lead to the notion of so called “Storage Class

Memory” (SCM), which provides unified view of memory and

storage, and the data using the volatile or nonvolatile storage

2

or different types of nonvolatile storage depending on where it

is best to keep the data. Also, whether to wait for a transaction

inline or not can decided dynamically based on the latencies,

as proposed in [9]. Persistent memory does bring additional

challenges precisely due to its data retention capability, since

the data in the persistent memory at the point of machine crash

may not be consistent or in a known state and thus not usable

following a crash. One instead needs a transactional approach

to persistent memory use and suitable journaling mechanism

to enable restart from a consistent state following the crash.

There are also other storage technologies using new materi-

als or paradigms. For example, Anderson et al. [10] discusses

using glass for storage, Organick et al. [11] discusses DNA

storage for random data, and Caferty et al. [12] discusses

storage using small organic molecules. DNA based archival

storage is discussed in [13].

II. CHARACTERISTICS OF MODERN STORAGE SYSTEMS

The most crucial requirement for efficient access to “big

data” is the storage system that can manage large volumes of

data and distribute them across devices and storage servers

for low latency access without stressing individual devices,

interfaces or the network. In the following we discuss some

of these aspects and point out their role providing low data

access latency and high throughput.

A. Storage Interfacing

Traditional HDD technologies are limited by the device

capabilities, and thus the speed of the hardware/software

interface between the device (or “target”) and the host is not

that important. However, with the emergence of SSD and other

modern storage technologies, both the latency and throughput

capability of the interface has become crucial. This has led

to new developments interfacing technologies as well. In

particular, the traditional SATA (Serial ATA) and SAS (Serial

Attached SCSI) technologies are rapidly being replaced by the

NVMe interface operating directly over the PCI-Express (PCI-

E) bus and using its lightweight “queue-pair” mechanisms.

NVMe provides not only a low-overhead/low-latency transfer

mechanism, but also a number of other features including: (a)

Quality of service (QoS) in data transfer with multiple queues

along with priority and weighted round-robin disciplines, (b)

NVMe sets, that can effectively carve out multiple virtual

devices on a single real device, (c) Endurance classes, which

can guide out-of-place writes and garbage collection on SSDs.

Data transfer to/from a fast NVMe SSD can be done in about

100µs and to/from Optane in under 50µs. The peak data

rates supported can be tremendous; with several current SSDs

capable of doing sequential reads in excess of 25 Gb/sec. An

Optane drive can go even faster.

B. Storage Networking

Since the data storage needs have always outpaced the

storage that can be deployed on one server, much of the storage

access in a large system is typically over the local network.

This is true regardless of whether the storage is concentrated in

a central place or distributed over many servers. Traditionally,

with HDD based storage, the network bandwidth required or

the network latency incurred in the remote storage access

was negligible; therefore, storage was largely concentrated

into a set of “storage towers”, and accessed over either

the regular network (e.g., Ethernet) or specialized network

such as Fiber channel. Distributed storage using the object

model is becoming quite popular and allows for objects to

reside anywhere. However, with SSDs and newer technologies

capable of driving tremendous bandwidths and able to provide

data with very low latency, both the network bandwidth

and latency become important. Thus, specialized protocols

such as NVMe over Fabric (NVMe-OF) are emerging to

seamlessly support remote NVMe storage [14]; such protocols

allow NVMe based access to defined for devices located

remotely across the network. However, network issues such

as bandwidth allocation, congestion notification/management,

and network level QoS become crucial for supporting efficient

storage access. In particular, storage access bursts from even a

few current SSDs can exceed the bandwidth of a 100 Gb/sec

Ethernet link. Thus mechanisms to monitor congestion and

take corrective actions become essential. For example, some

of our recent work has shown how dynamic data migration,

copy creation, and copy inactivation can be used to deal with

network congestion [15].

C. Storage Virtualization

The need to migrate data across multiple devices or storage

servers requires a dissociation between an application’s ad-

dressing of data from its physical location. For example, the

data that is currently hot may be brought in from a lower tier to

the highest tier for more efficient access without affecting ap-

plication’s ability to reference it. This requires the application

to refer to the data in a device and location independent way,

such as a unique data chunk id, which is mapped to a physical

address (e.g., a combination of device, volume, and physical

chunk number) transparently by the “storage virtualization

layer” which is ubiquitous in current large storage systems.

Since logical to physical address translation is required for

every access, it is usually managed via an appliance that can

provide very low lookup latency and high lookup throughput.

However, the downside of the appliance is the funneling of all

requests through a single node which may be unscalable for

large systems. Other techniques are also used, such as built-in

translation capability in the local switch that the host connects

to, or the host software itself. These all have their pros and

cons. For example, switch based translation is the fastest and

least likely to face congestion, but such a solution is expensive.

Host based virtualization can be slow and inelegant since the

host would need to track data mapped to all storage servers.

Note that the latency of translation and the extra network

traffic caused by it become important considerations primarily

because of the emerging high throughput and low latency stor-

age technologies; this would not at all an issue if the storage

system consisted entirely of HDDs. Large storage systems

could even use more than one level of translation for scalability

or flexibility purposes. For example, a single appliance may

3

be inadequate in a large storage system, and multiple such

appliances may be used. In such a case, two lookups may

be used: the first one decides the storage partition ID (and

hence the appliance to use) while the second one decides the

precise location using that appliance. While such an approach

relieves congestion, it adds to the latency. It also requires

careful partitioning so that no appliance is overloaded. Data

driven techniques could again be useful in this optimization.

The appliance load can also be reduced by caching the

translation mapping in the hosts. However, this too becomes

quite complex in a large system. In particular, when a data

chunk is migrated, we need to invalidate all of the caches

that hold relevant translation entry. If not done carefully, the

overhead of tracking this information and the network traffic

caused by it could become overwhelming to the extent of

making the caching undesirable. Even without caching, the

data migration inherently involves some synchronization as

discussed in the context of tiering in section II-D.

D. Storage Tiering

Given the extremely wide range of read/write speeds

offered by different technologies, a natural way to use

them is in the form of a storage hierarchy as shown

in Figure 1. Although the figure shows only 3 lay-

ers, others are possible and often used in real systems.

Fig. 1: Typical storage
hierarchy

For example, SMR/IMR or slow

HDD drives may form the archival

storage layer (“lowest” tier), whereas

the regular HDDs may form the

“near-line” and “primary” storage

sublayers. Similarly, a large sublayer

of QLC SSDs may back a much

smaller layer of fast enterprise MLC

or SLC drives (“highest” tier). The

DRAM can be thought of as the high-

est layer of “storage” in the sense that DRAM buffer cache

usually stores the most active part of the data. However, since

this layer is volatile, it needs to be handled differently.

The key issue in designing a tiered system is to deduce

from the access history the required data migration across the

tiers. The tiering problem is even more complex than caching

since any data moved to a higher tier is deleted from the lower

tier, which means that upon eviction from the higher tier the

data must be written back to the lower tier. Since the lower tier

devices likely offer smaller IO bandwidth, the writeback could

interfere with the reads from the lower tier. There are several

other important aspects to tiering as well including placement,

endurance and access disruption. When data is migrated to

a different level, we need to find a suitable place for it on

Traditional caching has a simple semantics – data update

in the highest level cache, lookup from highest layer to lower

layers, and writeback to next lower level – which makes it easy

the device to minimize fragmentation and slowdowns due to

random access to the data. Also, the greater write activity for

tiering (as compared to caching) has endurance implications

for SSDs that need to be considered carefully.

to ensure consistency.1 With tiering, ensuring the consistency

between the chunk location and the map maintained by the

virtualization mechanism can become a bit tricky. There are

several issues to take care of here: (a) there may be several

requests that have obtained translation (to go to the old place)

when the movement is desired; all these requests must be

allowed to complete first, (b) while we are waiting for old

requests to complete, it is desirable not to allow any new

translations to go through, but this causes delays to these

requests, (c) copy the chunk over after all the pending updates

are handled and then update the map, and (d) eventually

delete the old copy. For some applications, this may cause

serious disruptions, and even timeouts. These issues are not

that important for moving colder data to the lower tier, but for

moving hotter data to higher tier, this could be problematic.

For this reason, moving of hot data may need to wait until the

current high activity on the chunk has subsided.

REFERENCES

[1] T. Feldman et al., “Shingled magnetic recording: Areal density increase
requires new data management,” 2013, p. 22–30, USENIX; login:
Magazine.

[2] E. Hwang et al., “Interlaced magnetic recording,” 2017, p. 1–7, IEEE
Transactions on Magnetics.

[3] L. Norman, “Ramsan-20 pcie flash ssd: Expanding the role of flash in
the enterprise,” 2009, texas Memory Systems White Paper.

[4] D. Cobb et al., “Nvm express and the pci express ssd revolution,” 2012,
intel Developer Forum.

[5] Y. Cai et al., “Error characterization, mitigation, and recovery in flash-
memory-based solid-state drives,” Proceedings of the IEEE, vol. 105,
no. 9, pp. 1666–1704, 2017.

[6] S. Mittal et al., “A survey of software techniques for using non-volatile
memories for storage and main memory systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 5, pp. 1537–1550, 2016.
[7] I. Newsroom, “Intel and micron produce breakthrough memory technol-

ogy,” 2015.
[8] Intel, “Intel optane technology,” 2018, retrieved November, 02,

2018. [Online]. Available: https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology.html

[9] T. H. J. Gim, Y. Won et al., “Smartcon: Smart context switching for fast
block devices,” ACM transactions on Storage, Vol 11, Issue 2, March
2015.

[10] P. Anderson et al., “Glass: A new media for a new era?” 2018, USENIX
HotStorage.

[11] L. Organick et al., “Random access in large-scale dna data storage,”
2018, v. 36, n 3., p. 242, Nature biotechnology.

[12] B. J. Cafferty et al., “Storage of information using small organic
molecules,” 2019, aCS central science.

[13] J. Bornholt et al., “A dna-based archival storage system,” 2016.
[14] D. Minturn et al., “Under the hood with nvme over fabrics,” in Ethernet

Storage Forum. SNIA, 2015.
[15] M. . Ray et al., “Adaptive data center network traffic management for

distributed high speed storage,” IEEE LCN, 2019.

1Write-through also works, but perhaps not useful in storage context.

4

	Introduction
	Overview of Modern Storage Systems
	Basic Storage System Concepts
	MetaData Issues in Storage Systems
	Raising the Storage Abstraction Level
	Storage vs. Databases

	Key Issues in Efficient Big-Data Access
	Role of Big Data
	Role of Data Analytics
	Role of Optimal Configuration

	A Taxonomy For Efficient Data Access Techniques
	Semantics Driven Optimizations
	Behavior Driven Optimizations

	Locality Exploitation Techniques
	Caching Based Locality Exploitation
	Traditional Caching Mechanisms
	Caching From Fast Storage Devices
	Caching of Remote Storage
	Distributed caching

	Locality Exploitation for Tiering
	Grouping and Correlations
	Open Issues in Locality Exploitation

	Proximity Optimization Techniques
	Data Near Computation
	Computation Near Data
	Open Issues in Proximity Optimization

	Data Reduction Techniques
	Redundancy Removal in Unsequenced Data
	Redundancy Removal in Sequenced Data
	Open Issues in Data Reduction

	Other Considerations in Efficient Data Access
	Performance vs. Data Consistency and Device Life
	Performance vs. Resilience
	Performance vs. Energy Consumption
	Differentiated Services in Data Access
	Performance vs. Security

	Conclusions
	References
	Biographies
	Anis Alazzawe
	Amitangshu Pal
	Krishna Kant

