
A Fast Prekeying Based Integrity Protection for
Smart Grid Communications

Amitangshu Pal∗, Alireza Jolfaei†, Krishna Kant∗, Haotian Chi∗
∗ Temple University, Philadelphia, PA
† Macquarie University, Australia

E-mail:{amitangshu.pal@temple.edu, alireza.jolfaei@mq.edu.au, kkant@temple.edu, haotian.chi@temple.edu}

Abstract—Due to the mission-critical nature of energy man-
agement, smart electric grid is a prime target for cyber-attacks.
Maintaining the integrity of smart grid communications is thus
crucial to avoid harmful actions triggered by data corruption or
false data injection. Because of the very tight latency require-
ments for some of these communications, the standard integrity
mechanisms are too expensive and such communications are
often left unprotected. In this paper, we propose a prekeying
based integrity protection (PreKIP) mechanism that computes
the key for the next message in advance followed by a simple
exclusive-or operation with the message when it is generated.
This allows for very fast encryption that protects both integrity
and confidentiality of the messages. The rigorous security analysis
shows that the proposed method is secure against CRC and
message replay attacks. A comparison with existing integrity
protection methods showed that the proposed method is much
faster (upto 21 times faster than the HMAC scheme, and even
faster as compared to other crypto algorithms) and it meets the
strict 3 ms timing requirement in power protection applications.

Keywords—Smart Grid, integrity protection, GOOSE protocol,
Sampled Value protocol, IEEE C37.188

I. INTRODUCTION

The emerging smart grid architecture uses real-time mon-
itoring and control of the power grid in order to provide high
efficiency, stability and robustness in the power supply. A
series of communications protocols have been defined for this
purpose over the years. In particular, there are 3 protocols
in existence currently. The earliest one is the IEEE C37.118,
which is now split into two parts, with C37.118.2 being aligned
with more widely deployed IEC 61850-9-5 for synchrophaser
communications [1]. It is currently the most widely deployed
protocol for synchrophasors but lacks security. On the other
end is the DoE developed STTP protocol [1] which has been
recently picked up by IEEE for standardization but currently
not deployed except on an experimental basis. Therefore, we
will largely focus on IEC 61850-9-5 which is rapidly being
adopted world-wide for deployment.

Although IEC 61850-9-5 includes integrity protection
mechanisms for the communications; they are optional for
critical messages requiring very low latency. Without any in-
tegrity protection, active attackers may intercept, modify, inject
or replay messages to launch various attacks. As an example
of possible attack, if a protection message is falsely set to
indicate abnormal voltage or current value, it could trigger
protective relays and/or the generation control equipment to
react, potentially leading to blackouts. It is worth mentioning
that even for less latency sensitive applications, the penetration

Fig. 1. Typical model of a power grid architecture.

of elaborate IEC 61850-90-5 security procedures into real
implementations is likely take many more years.

In this paper, we propose a lightweight prekeying based
integrity protection mechanism, named PreKIP, for carrying
such messages. The key idea in our approach is to generate the
keys dynamically based on a salting procedure independently
on both send and receive sides and have it ready for use by the
next message. The “use” is merely a very fast XOR operation
and thus can achieve extremely low latency. The rigorous
security analysis shows that the method can successfully thwart
both ciphertext-only attacks and known/chosen plaintext at-
tacks. A comparison with existing integrity protection methods
shows that despite having the same level of computational
complexity, the proposed method is upto 21 times faster than
the HMAC scheme (and even faster than others), and it is the
only integrity protection scheme that meets the strict timing
requirement, that is, 3ms.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background of smart grid communications
including protocols and the need for integrity protection. Sec-
tion III discusses our proposed method and Section IV provides
the security analysis. Section V evaluates the computational
complexity and running time of the proposed algorithm. Sec-
tion VI summarizes the related work. Finally, the paper is
concluded in section VII.

II. SMART GRID ARCHITECTURE AND COMMUNICATIONS

A. Smart-Grid Architecture

The emerging smart grid architecture uses PMUs to con-
tinuously monitor line data (for example, voltage, phase,
frequency, and GPS location) and communicates them to the
supervisory control and data acquisition (SCADA) systems
to ensure that any issues related to grid health are handled
promptly. Fig. 1 shows the overall architecture where the data

from PMUs is “concentrated” through Phasor data concen-
trarors (PDCs) installed in key substations. PMUs collect and
send samples 30 or 60 times a second through a publish-
subscribe mechanism, where the PMUs work as publishers
to which the PDCs subscribe. A PDC receives data from
many (typically 3 to 32) PMUs, and then sorts and aggregates
the received data based on the time-tag. The aggregated data
is then relayed using a two-way communication system to
a number of local control centers (LCCs), which coordinate
their actions interacting with a federated control center (FCC).
Subsequently, LCCs draw the best overall snapshot solution
using all PMU measurements [2]. Control centers use the IEC
61850-90-5 standard to communicate with smart measurement
units [3].

Fig. 2. An Illustration of Smart Grid Communications Protocols

The IEC 61850-9-5 standard is itself a collection of proto-
cols, each defined for a different set of smart grid applications.
This is shown in Fig. 2. The MMS (Manufacturing Mes-
sage Specification) protocol connects communications centers
and gateways through a client-server connection with the
IEDs (Intelligent Electronic Devices) inside the substation and
TimeSync provides time synchronization. The two important
protocols of interest here are SV or SMV (sampled value)
and GOOSE (generic object oriented station event), and both
were originally defined to operate directly on top of Ethernet
and thus are not routable. SV protocol is used to exchange
messages containing samples of electrical quantities such as
the very fast rate sampling of voltage/current at a relay. While
SV was originally designed for intra-substation use, it is also
useful for sending the PMU data stream to PDCs and LCCs.
The GOOSE protocol is used to exchange information between
IEDs (Intelligent Electronic Devices) based on the important
events that occur in the system. Such messages include power
measurements going between protection relays, status updates,
sending command requests, and critical messages that demand
immediate action (e.g., relay trip). The use of GOOSE for
transporting PMU data is also reported in several publica-
tions [4], but in this case, repetition of the message would
not be useful. Both GOOSE/SV messages require very low
transmission latency, which is the main reason for running
them directly on layer-2. However, more recently the routable
version of these protocols known, respectively, as R-SV and
R-GOOSE have been defined, so that it is possible to transport
data from several substation networks to a concentrator or
control center over UDP or TCP. Tunneling can also be used
to carry layer-2 GOOSE/SV messages to points outside a
substation.

TABLE I. PAYLOAD DATA SIZE UNDER VARIOUS PMU/PDC
CONFIGURATIONS

Number
of PMU
voltage

PMU
data
size

PDC data size Applicability

channels (bytes) 3 PMUs 6 PMUs 10 PMUs

1 40 104 200 328 Single-phase lines in
distribution systems

3 56 120 216 344 3-phase power
transmission lines

6 80 144 240 368 Power transmission lines
8 96 160 256 384 Power transmission lines
10 112 176 272 400 Power transmission lines

Assuming that the PDC’s are located on the local substation
network, SV/GOOSE can be used for transmission from PMU
to PDC. However, since LCC is must necessarily be located
remotely and connect to multiple substations, all exchanges
between PDCs and LCC must be using either a routable pro-
tocol such as R-SV/R-GOOSE or by tunneling the SV/GOOSE
protocols. In the following, we largely focus on non-routable
versions of SV/GOOSE which can be carried over Ethernet
frames riding a SONET or similar lower-level network. These
are appropriate for low-latency, and low-packet-loss commu-
nications. R-SV/R-GOOSE instead usually ride TCP and are
more appropriate for less critical communications. Table I
gives the size of payload data in transmission and distribution
substations under various PMU/PDC configurations.

B. GOOSE Protocol

Both GOOSE and SV protocols operate on publish-
subscribe principle. That is, each IED publishes its data,
and other entities interested in the data (IEDs, PDCs, LCCs)
subscribe to the data stream. In such an environment, the
communication is largely one-way; the subscriber does not
send any ACK/NACK to the publisher and thus the publisher
cannot tell if the data was received correctly. The publisher
can, however, retransmit the data.

When GOOSE is used for communicating events, it will
typically generate bursts of messages (e.g., on an over-voltage
detection), with significant quiet periods in between. It con-
tinues to retransmit these events (with successively increasing
gap between retransmissions) until a new event occurs. In such
situation, the transmission interval exponentially increases to
the normal periodic interval as shown in Fig. 4. Assume that
T0 is the time interval between GOOSE messages in periodic
mode, and T1, T2, . . . , Tn = T0 are the time intervals in the
burst mode, with T1 < T2 . . . < Tn. In IEC 61850, T0 is
typically in the range of 5–100 ms, whereas T1 is in the
range of 0.5–5 ms [5]. After the first retransmission after
T1, each successive intervals doubles until it reaches T0. The
requirements for the delivery of GOOSE messages are pretty
stringent; the messages should be delivered within 4 ms from
the time an event occurs to the time the message is received for
protection and control applications; this requirement is revised
to 3 ms in IEC 61850-5 [6].

Fig. 3(a) shows the composition of a GOOSE PDU,
named APDU [7]. GOOSE tries to deliver messages in se-
quence by using two fields called stNum (state number)
and sqNum (sequence number). Every time a new event
occurs, the transmitter increments stNum and transmits a

(a)

(b) (c)

Fig. 3. Format of (a) GOOSE, (b) IEEE C37.188.2 and (c) SV messages.

new message with this stNum. If no event occurs and a
time timeAllowedtoLive elapses, the transmitted simply
repeats the last message. Note that if the next event happens
rather quickly, it is considered to override the previous one
and hence no repetition of previous message is done. The
counter sqNum is incremented each time the previous message
is repeated.

C. Sample Value Protocol

As stated earlier, SV protocol is primarily intended for fast
transmission of samples of analog measurements from various
substation devices on to the local bus for which it may use
very high sampling rates (e.g., 80 to 256 samples per cycle).
However, for use in the PMU context, the rates will usually be
far lower, perhaps less than once per cycle. Like GOOSE, it
also uses the publisher/subscriber model, it does not retransmit
data, since retransmission is not meaningful for data stream

delivery. Each SV PDU can include several measurements, one
per ASDU (application service data unit) as shown in Fig. 3(c).
Each ASDU contains the measurement data (e.g., voltages
and currents for each phase in a 3-phase circuit) plus some
predefined fields, only one of which is of interest here. This is
smpCnt, which is incremented each time a new data sample
in ASDU is taken. smpCnt is only 2-bytes and it is reset every
second through the TimeSync based synchronization protocol.

The sampling rate of SV involves two factors: measured
signal frequency and Samples Per Periode (SPP). IEC 61850-
9-2LE defines two SPP values of 80 and 256. Thus, if the
measured signal frequency is 50 Hz and SPP is 80, then the
sending time interval is 1/50/80, or 250 µs [9]. Fig. 5 shows the
packet transmission frequencies of different formats proposed
in IEC 61869-9 which is based on IEC 61850 series [10].
Fig. 5 shows that the packet transmission frequencies vary
from 2400–5760 Hz, i.e. the transmission intervals vary from
173–416 µs. To ensure that the messages are not delayed, the
samples need to be packetized before the next sampling time
(i.e. much less than 250 µs). Similar to GOOSE messaging,
the SV messages are also time sensitive the, thus messages
should be delivered within 3 ms.

D. IEEE C37.118.2 Protocol

Even though this protocol is being replaced by IEC 81650-
9-5, it remains the most widely deployed protocol for PMU
communications and also lacks security. Each synchrophasor
measurement is tagged with a UTC timestamp consisting of
three components: 1. Second-Of-Century (SOC), 2. FRACtion-
of-SECond (FRACSEC), and 3. Message time quality flag,
which is shown in Fig. 3(b). The SOC count is a 4B integer
count in seconds from UTC midnight (00:00:00) on January
1, 1970. Each second is divided into an integer number of
subdivisions by the TIME BASE parameter that is defined in
configuration frame. The FRACSEC count is an integer repre-
senting the numerator of the FRACSEC with TIME BASE as
the denominator. The time quality flag provides the accuracy
of the time measurement.

E. Protecting Messages

In general, the adversaries may be passive or active.
Passive attackers eavesdrop on the communications between
devices by wiretapping to the links between end devices and
the substation switches to obtain the message contents and
traffic characteristics of the substation; they neither modify
the messages in the channel nor communicate with the end
devices. The objective of active attacks includes learning
more about substation’s operations which can be helpful in
later disruptions. In fact, with the dramatic rise in analytics
capabilities, a long-term silent monitoring could derive im-
portant information about the types and sources of messages.
For example, an attacker may be able to determine what
type of perturbation will cause the greatest disruption in the
power flows through active attacks. Thus, encryption may be
desirable for privacy and integrity purposes, although ensuring
communication availability is regarded as the primary goal in
smart grids.

However, the current smart grid deployments generally
do not use any encryption or integrity protection to reduce

Fig. 4. Timing diagram of GOOSE message transfer.

Sampling Samples/ Packet
Frequency packet Frequency

4000 Hz (80 SPC @ 50 Hz) 1 4000 Hz
4800 Hz (80 SPC @ 60 Hz) 1 4800 Hz

12800 Hz (256 SPC @ 50 Hz) 8 1600 Hz
153600 Hz (256 SPC @ 60 Hz) 8 1920 Hz

4800 2 2400 Hz
14400 6 2400 Hz
5760 1 5760 Hz

Fig. 5. Packet Frequencies of SV in IEC 61869-9 [8].

Fig. 6. Timing diagram of PreKIP.

communication latency in time-critical applications; for exam-
ple, the standard for formatting and delivery of PMU data
(IEEE Standard C37.118 [11]) includes no end-to-end secu-
rity mechanisms. Although a standard IEC 62351 introduces
several message authentication code (MAC) algorithms to
protect GOOSE integrity, but it still allows an escape route
for latency critical messages by specifying an identifier in
the message header to zero. Thus for time critical messages
requiring a latency of 3 ms, no encryption is likely to be
used. This includes GOOSE and SV messages that are used to
transmit both the streaming PMU data and the event based data
concerning load shed [12] and synchrophasor-assisted transfer
trip [13]. The latter involves sending a trip signal from one
substation to another that could be more than 100 miles away.

We make no assumption on the attacker’s ability to disrupt
communications by intruding the system via physical or net-
work based access to the substation switches. In this paper, we
focus on hardening the communication protocol and ensuring
the end-to-end confidentiality and integrity with assumption
of trusted and uncompromised IEDs. Attacks that exploit the
hardware or firmware vulnerabilities to bypass the integrity
protection are beyond the scope of this paper and should
be taken care of by the device manufacturers and substation
operators to guarantee the authenticity of original data being
protected by our scheme.

Because of the one-way communication and a quiet over-
riding of previous message with a new one in GOOSE/SV, it is
simply not possible to synchronize the two sides precisely or
account for every message. Note that the PDC does have the
capability to send a message to PMU for special purposes (e.g.,
key exchange) which are outside the scope of the proposed
mechanism. In this paper, we develop a scheme of having the
key for the next message to ready so that the next message can
be encrypted via a simple XOR operation. Thus, so long as
there is some minimum gap between the successive messages,
the additional latency caused by the encryption can be kept
almost negligible. Unfortunately, the lack of synchronization
makes this a difficult proposition in general, and we take
advantage of the special context of various message types.

III. PROPOSED INTEGRITY PROTECTION SCHEME

The purpose of the proposed mechanism is to ensure
integrity via the use of CRC and confidentiality via a fast
encryption mechanism that generates a new key for almost
every message between transmissions so that the latency can
be largely hidden. This is summarized in Fig. 6. As depicted
in Fig. 6, the key Ki corresponding to Pi is calculated
before it arrives; thus, after the packet arrives, the payload
is XOR-ed with the key to produce the ciphertext Ci before
transmitting. The XOR operation is very fast and does not
have any significantly contribution to the encryption latency.
Unfortunately, the use of XoR along with CRC introduces
some vulnerabilities that we address by obfuscating the CRC,
as discussed below.

A. Key Stream Generation

Assume that the lengths of the original message and the
CRC checksum be Lm and Lc bits respectively. To this, we add
an additional 2Lc bits for CRC obfuscation (see Section III-E),
and thus get a plaintext of length L = Lm + 3Lc bits. Now,
both the transmitter and receiver need to generate the same
key stream KS of length L bits for a message without any
explicit handshake. In the following we discuss the generation
of KS, which will be ultimately XOR’ed with the plaintext to
generate the ciphertext.

To generate KS for the jth new message, we start with a
one-time key skj which is defined as

skj = K||saltj , (1)

where || refers to the concatenation of a pre-distributed key
K and a per-transmission “salt” to make the key unique
to each transmission. We assume that K is either manually
configured on both transmit and receive side, or communicated
in an out-of-band manner. Note that once we establish an
encrypted communication channel, K can be changed easily
through a handshake, and the best practice demands that this
be done periodically (e.g., once a month). The length of the
preconfigured key K should be adequate to avoid brute-force
attacks, e.g., 128 bits.

However, saltj needs to be generated correctly for each
message by both transmit and receive sides without any further
message exchanges, as we shall discuss shortly in Subsec-
tions III-B to III-D for different communication protocols. The
resultant one-time key skj is not used directly for encryption;
instead, we compute a one-way, secure hash H over it so that
the KS does not reveal the key. The hash H could be SHA1,
SHA256 or another suitable one-way function. Notice that the

resulting message digest, say dj , will be a fixed length value
Ld (e.g., 160 bits for SHA1 or 256 bits for SHA256).

dj = H(K||saltj) (2)

Thus to generate a long enough key stream, we utilize the
avalanche effect of the hash function H to output significantly
changing digests by adding an additional counter into the
salting. By concatenating the counter’s value cnt from 0 to
N − 1 to saltj , we obtain N salts for each message, which
are used to generate N hash digests d(i)j , i = 1..N . The final
key stream is then a concatenation of the hash digests, i.e.,

KS = d
(1)
j ||d

(2)
j || · · · ||d

(N)
j , (3)

where N is chosen as N =
⌈

L
Ld

⌉
so that the KS is at least as

long as L. The KS is then XoR’ed with the plaintext of length
L. Our salting scheme differs based on the communication
protocols which we discuss in the following subsections.

B. Salting Scheme for GOOSE

Here we consider general GOOSE messages that are ini-
tiated by specific events, as well as the retransmitted ones.
The intent of the salting scheme is to generate a unique KS
for every message – including both new and retransmitted
messages; unfortunately, given the lack of acknowledgements
(ACK or NACK), it is very difficult to realize this intent. As
stated earlier, stNum is incremented by 1 when the message
transmits a new event and sqNum is incremented by 1 if the
message retransmits an old event. Thus, to realize the intent,
we need to set salt = stNum||sqNum for every message,
which means that stNum and sqNum must be transmitted in
the clear to receiver, so that it too can construct KS. However,
that will expose the keys to the attacker, thus, the receiver must
be able to predict the pair (stNum,sqNum) before it decodes
the message, which we discuss in section III-C.

One other situation to consider is the rollover of stNum.
First, the rollover of 32 bit sqNum is a nonissue, since that
can only happen if the same message is continues to be
retransmitted without success for a very long time. (Note
that sqNum will be reset to 0 each time a transmission
succeeds or the next overriding event occurs.) Furthermore the
rollover of stNum is easily handled by the modulo arithmetic
on both sender and receiver sides, since there is no chance
that a rollover would collide with a previous message with
stNum = 0.

C. Key Synchronization

To decrypt and verify the received message, the subscribers
need to use the same key stream KS. To this end, the sub-
scribers need to use the same salts as those on the publisher’s
side. Recall that each salt is computed from 3 parameters,
i.e. stNum, sqNum and cnt. The cnt is easy to synchronize
since it takes the same values from 0 to N−1 for all messages.

The challenge for synchronizing stNum and sqNum in key
stream generation is that both a publisher and its subscribers
cannot predict the next message is to transmit a new event or to
re-transmit an old event (recall that key streams are generated
ahead of time and that the publisher keeps retransmitting

messages for an event until a new event comes). From the
publisher’s side, if a new event happens then it needs to send
a packet instantly with stNum = stNum+1 and sqNum = 0.
As in a pathological scenario multiple events can occur one af-
ter other (or within a interval of very short time), the publisher
needs to be proactive in making the key streams for the next
possible set of event driven messages, with increasing stNum
values. The publisher can do so by proactively maintain a
certain number (say N) of key streams and store it in a queue.
Whenever a new event occurs, the publisher can dequeue a
new key stream, execute the XOR operation and transmit.
This is required only for critical event reporting and not for
PMUs. Furthermore, generation of too many critical events at
the same time is very unlikely, therefore a rather small value
of N should be enough. The publishers can generate the key
streams for the retransmitted messages in between the message
transmission intervals, with sqNum = sqNum + 1. As the
minimum time interval for fast retransmission is around 0.5–
5 ms, such key stream generation process needs to be fast
enough. Algorithm 1 summarizes the key stream generation
for the publisher.

Algorithm 1: Key stream generation at the publisher
Input : L← the required key stream length;

msg ← last sent GOOSE message;
K ← secret key;

Output: Key stream KS;
cnt← 0;
stNum← (msg.stNum == 232 − 1)?1 : msg.stNum;
if msg.isNewEvent() then

sqNum← 0;
else

sqNum← (sqNum+ 1 ≤ 232 − 1)?(sqNum+ 1) : 1;
while cnt <

⌈
L/Ld

⌉
do

saltcnt ← (stNum||sqNum||cnt);
KS ← H(ski||saltcnt);
cnt = cnt+ 1;

On the other hand, the subscriber side also needs to gener-
ate the same key stream to decrypt the incoming messages. To
ensure this, the subscriber follows the following set of steps
after receiving the message. We assume that the subscriber is
equipped with a fast computing unit, so it can generate the key
streams very fast, and thus can try out multiple key streams
for decryption. First assume that the last correctly delivered
message was not a retransmission. So the receiver knows the
received stNum, and sqNum = 0. There are 5 cases in this
regard, which are followed by the subscriber in sequence if
the integrity check fails:

(1) Next message also makes it to the receiver without cor-
ruption. In this case, the receiver can predict (stNum+ 1, 0),
decrypt the message, and do the integrity check. This is the
normal case and likely to occur in all but a small number of
cases.

(2) Next message is lost but a new message is generated
before time for its retransmission and makes it to the receiver.
In this case, the receiver can predict (stNum+ 2, 0).

(3) Next k − 1 messages are lost (for some k > 1), but
the kth message, which is correctly received, is still generated
before the retransmission time. In this case, the receiver can
still determine how many messages might have been lost and
thus predicts (stNum+k, 0) for a suitable k. The probability of

this should vanish very quickly with k. Notice that cases (1)-(3)
can be distinguished by the receiver from the retransmission
cases by monitoring the time between receives, which in cases
(1)-(3) will be smaller than the minimum retransmission time.

(4) No new messages are generated until it is time for re-
transmission. This is the normal case of retransmission, so the
receiver can predict the key stream with sqNum = sqNum+1.

(5) Several messages are lost, which include some new mes-
sages as well as some retransmitted ones. In such scenario, the
receiver tries all combinations of (stNum+ k1,sqNum+ k2),
where (k1, k2) varies from 0 to a certain threshold K. However,
with tunneled GOOSE, the probability of multiple message
losses should be negligible.

The most time consuming operation in the key generation
is the secure hash; therefore, to ensure that the key is ready for
each transmission, we require that the key-stream generation
time TKS should satisfy the inequality

TKS = N · TH =
⌈ L
Ld

⌉
· TH ≤ T1. (4)

where T1 is the minimum retransmission interval and TH is
the time to execute the hashing once.

Note that in case of message loss, the receiver may need to
try decoding the message with multiple potential keys. This is
acceptable for the following reasons: (a) the receiver, being a
PDC or LCC, has substantially more computing power than
the sender (a PMU) – for example, a desktop/server level
machine as opposed to a micro-controller, (b) the message
loss probability is expected to be quite low for non-routable
critical communications, and thus trying with multiple keys is
needed only occasionally, and (c) when a message loss does
occur, the 3 ms latency objective is unlikely to be met already,
and a small additional delay should not be significant.

D. Salting Scheme for SV and IEEE C37.118.2

Since SV is specifically intended for streaming data without
any retransmissions, the proposed mechanism is ideally suited
for it. In particular, assuming a maximum packet transmission
frequencies vary from 2400 to 5760 Hz, we have a total
of 173–416 µs between samples to generate the key for the
next sample. Of course, because of the time needed for other
operations, not the entire 173 to 416 µs is available for key
generation, but generation times in the range of few tens of
µs should be workable.

Now let us consider the salting scheme for SV, which
requires a unique sequence number for each sample. We can
use the smpCnt of the first ASDU as the salt, however,
smpCnt is only 2-bytes and it is reset every second. Thus,
smpCnt by itself is unable to provide a unique sequence
number for a ASDU. However, this issue can be addressed
by defining a virtual sequence number VsqNum which is
incremented each time the smpCnt of first ASDU is reset
to zero. Note that for this to work, we need to make the
implicit assumption that the first ASDU sent by a PMU always
concerns the same entity (e.g., the same bus). A 32bit counter
is quite adequate since it will overflow in about 138 years.
Now the pair (smpCnt, VsqNum) together can be as the
unique sequence number.

TABLE II. KEYED OBFUSCATION AND DE-OBFUSCATION

Key Bits Obfuscation Operation De-obfuscation Operation
00 Do nothing Do nothing
01 Flip the current CRC bit Flip the current CRC bit
10 Flip all CRC bits except the cur-

rent bit
Flip all CRC bits except the cur-
rent bit

11 Rotate the current CRC byte Reverse-rotate the current CRC
byte

IEEE C37.118.2 messages are transmitted with a relatively
lower frequencies, around 30–60 frames/seconds [4], which
gives a gap of 16.67–33.33 ms. Thus the key generation key
of around 10 ms should be sufficient for IEEE C37.118.2.
As for IEEE C37.118.2, we can use a combination of SOC
and FRACSEC as salt. The “TIME BASE” that defines the
range of FRACSEC is a configuration parameter and should
not be changed during operation (it may be changed by
taking the IED offline and making configuration changes). As
the IEEE C37.118.2 messages are generated and transmitted
periodically, the receiver can predict the next salt (or set of
salts in case of packet loss) for generating the key stream.
Effectively, the pair (SOC, FRACSEC) can act like a unique
sequence number.

E. CRC Obfuscation

The common practice of appending CRC code to the
message introduces a vulnerability in XOR based encryption
due to the linearity property of CRC [14]. It is easy to verify
that CRC(X ⊕ Y) = CRC(X) ⊕ CRC(Y). Thus, an attacker
could XOR the ciphertext X with an arbitary message Y
through a Man-in-the-Middle (MitM) attack and XOR CRC
bits with CRC(Y). This is easy to do if the CRC bits appear in
a known position in the message (e.g., at the end). The attacker
could also choose Y such that CRC(Y) = 0. To address this,
we employ a keyed obfuscation algorithm to shield the CRC
bits, disabling CRC cracking attacks. The obfuscation function
should alter the CRC significantly and yet should be easily
recoverable using the key. Here we propose a method that not
only changes the CRC bits but also introduces uncertainty by
using 2 key stream bits for each CRC bit.

The detailed operations are shown in Table II. Without the
key for obfuscation, the bits in the CRC segment become ob-
scure and “non-linear” to attackers. It also becomes impractical
to perform brute-force attacks since frequent CRC verification
failures on the publisher side can trigger alarms, which can be
easily achieved by adding this type of anomaly to the alarm
systems in current smart grid deployments.

F. Message Embedding and Verification

After obfuscating the CRC, the publisher uses the first
L = Lm + Lc bits of KS to encrypt the concatenation of
the message and the obfuscated CRC by performing an XOR
operation. Upon receiving the message, the subscribers reverse
the above process by: (1) decrypting the message with the first
L = Lm + Lc of KS; (2) de-obfuscation the CRC based on
the operations in Table II; (3) verifying the derived CRC. The
received message is untampered if the CRC checking is passed.

Notice that this mechanism achieves the confidentiality
using the one-time key encryption mechanism, whereas the
message integrity is provided in two ways. First, the receiver

predicts the salt for the next message to decrypt it, and after the
decryption it matches the salt with the corresponding portion of
the message. For example, in case of GOOSE the salt consists
of stNum and sqNum, which can be matched with the original
message after decryption. Similarly in case of SV, the smpCnt
is used in the salt, which can also be checked with that of
the decrypted message. In addition to matching the salt fields,
CRC can further check for integrity.

G. Secret Key Management

Recall that the initial secret key K is shared among the
publisher and its subscribers. In XOR-based stream ciphers,
attackers who have access to the original plaintext afterwards
(from published PMU datasets) can gain access to the key
stream by XOR-ing the plaintext and the sniffed ciphertext,
namely the N hash digests dj . However, because of the one-
way hash function, it is very difficult to derive the original
string from there (required to get at the underlying fixed key).
Nevertheless, there is some risk in using the same fixed secret
key for extended periods. Therefore, the transmitter can exploit
our encryption mechanism to occasionally provide a new key
to the subscribers.

IV. SECURITY ANALYSIS

The proposed scheme provides confidentiality and integrity
in the presence of passive or active attacks. A powerful attacker
(for example, an inside attacker) can acquire both the plain-
text and ciphertext of messages transmitted in the substation
system. Thus, he can obtain the historical key streams easily
by performing an XOR calculation over the plaintext and
ciphertext of the same messages. Note that the key streams are
the digests output by hash functions with the shared secret key
and the synchronized salts. Through the historical key streams,
the attacker can collect hash samples, mappings between hash
salts, and hash digests. Then, the attacker can make attempts
to find out the secret keys ski with these samples. With a 128
bit preconfigured key, a brute-force attack needs 2127 attempts
to discover it. The SHA1 secure hash used as function H()
is known to have a collision attack length of 63 bits, whereas
use of SHA-256 raises it to 128 bits [15], [16]. Both of these
are more than adequate particularly since collision attacks
are unstructured. In the following, we analyze the security of
the proposed method with respect to CRC attacks and replay
attacks.

A. CRC Attacks

We assume an active, strong adversary who has access
to the encryption machine without the knowledge of the
secret key. The adversary can control the parameters stNum,
sqNum, and cnt, and can input arbitrary measurements to the
encryption machine and generate corresponding ciphertexts.
Such an adversary is able to encrypt different measurement
payloads using the same key stream. In particular, to mount a
successful attack and perturb a message y without disturbing
the integrity, the adversary only needs to generate a message
x such that CRC(x) = 0. If CRC(x) = 0, then for all y,
CRC(x ⊕ y) = CRC(x) ⊕ CRC(y) = CRC(y). The adversary
can compute (KS ⊕ (x||CRC(x)))⊕ (KS ⊕ (y||CRC(y))) =
(x||CRC(x))) ⊕ (y||CRC(y)), where KS is the key stream.

If CRC(x) = 0, then for all y, CRC(x ⊕ y) = CRC(x) ⊕
CRC(y) = CRC(y).

The CRC obfuscation avoids such an attack by altering
the bit value or the position of every CRC bit to the padding
key. The padded result is an obfuscated CRC with length
more than 32 bits. Without the padding key, attackers cannot
determine which bits belong to the original CRC and therefore
cannot leverage the linear properties of CRC to perform active
attacks. Moreover, the intercepted messages are encrypted with
a stream cipher, which further randomizes the bit value distri-
bution of the obfuscated CRC. When intercepting a ciphertext,
the attackers cannot determine the correct positions and thus
cannot modify the original message at will.

B. Replay Attack

The adversary can launch a replay attack by overhearing
a legitimate message and replaying it at some later time. In
PreKIP, as the hashing is salted by incorporating the state
number, sequence number, and a counter, a replayed message
can easily be identified and discarded at the control center. The
adversary may only succeed if he replays a message within a
short time window of its origin, however, such an attack will
not have a detrimental impact on knowing the current state of
the grid and it cannot perturb the state as it would be easily
detected and discarded.

V. PERFORMANCE EVALUATION

One of the key issue in the performance of an integrity
protection algorithm is the resource-constrained microproces-
sors used by PMUs. Although the power of these processors is
increasing, it will always be limited because of the small form
factors. In this section we show that PreKIP is substantially
faster as compared to other well-known cryptographic algo-
rithms and can even meet the timing requirements of IEEE
C37.118 when implemented on an inexpensive microprocessor
such as LPC2148 [17].

Comparison between PreKIP and other schemes: We first
compare between PreKIP and other well-known security and
integrity techniques are summarized them in Fig 7. The results
are obtained from a Intel Core i5-6500T @ 2.50GHz processor
with 16 GB RAM, with compiler optimizations set to minimize
execution time. All the simulations are averaged over 100
runs. In PreKIP we define the post-processing stage as the
stage after the event (or packet) arrival, which includes CRC
computation, obfuscation and encryption. The post-processing
stage on the subscriber side is symmetric.

In Fig 7 we have compared the post-processing stage of our
proposed PreKIP scheme along with (a) RSA-1536 (1536 bit
RSA for public key crypto-system), (b) AES-CBC-128 (128
bit AES with block chaining) and (c) HMAC-256 (256 bit hash
based MAC). Fig 7(b) is merely a zoomed version of Fig 7(a)
for better visibility. We first compare RSA with other schemes.
Not surprisingly, HMAC based signature generation is ∼80
times faster than RSA, whereas at the time of verification
HMAC is ∼2 times faster than RSA. The results is also
similar to some studies in [18], [19]. As compared to AES
encryption, HMAC signature generation is ∼3x faster with a
payload size of 400 Bytes. However, AES decryption performs

(a) (b)

Fig. 7. (a) Comparison of PreKIP along with AES, HMAC and RSA, along with its (b) enlarged view.

Fig. 8. The key-stream generation time with SHA-1 and SHA-256.

poorly which results in ∼16x slower decryption than HMAC
verification.

While comparing between PreKIP and HMAC-256, we ob-
serve that PreKIP is roughly 21x faster with a payload length
of 10 Bytes, and ∼4x faster with 400 Bytes payload, than its
nearest competitor HMAC-256, and even more as compared to
others. In fact, PreKIP only takes 3–4µs in the post-processing
stage with is much lesser than the inter-packet transmission
time of SV (i.e. 173–416 µs) and the minimum retransmission
interval of GOOSE (i.e. 0.5–5 ms). Notice that in Fig. 7
HMAC embedding and verification takes upto 12µs and 14µs
respectively, which also fulfils the timing requirement of both
SV and GOOSE. However, PreKIP is several times faster, and
thus can be implemented even older/cheaper processors than
HMAC. At the same time PreKIP also provides confidentiality
of the information in addition to integrity. This experiment
clearly shows the lightweight nature of PreKIP that makes it
suitable for such low-latency cyrpto applications.

Key Generation Latency of PreKIP: Fig. 8 shows the key
generation latency of PreKIP. We have compared SHA-1 and
SHA-256 for generating the digests. From Fig. 8 we can
observe that the key generation using SHA-256 is faster as
compared to SHA-1. This is because of the fact that for a
message with length L, and a digest length of length Ld, the
hash function is called

⌈
L
Ld

⌉
times. Even if SHA-1 is faster

Fig. 9. Processing time of PreKIP for LPC2148.

than SHA-256, the
⌈

L
Ld

⌉
for SHA-1 is larger due to its smaller

digest size (20 bytes as compared to 32 bytes in case of SHA-
256). Hence, SHA-256 performs much faster than SHA-1 in
key generation phase, especially for larger message length.
Also notice that the key generation of PreKIP is actually
slower than HMAC embedding. This is because of the fact that
in PreKIP the hash function is called

⌈
L
Ld

⌉
times, as opposed

to just once in HMAC. However, this does not matter for smart
grid message forwarding so long as the key stream is generated
in between the samples (or retransmissions).

Performance of PreKIP on LPC2148: Fig. 9 shows the per-
formance of PreKIP on LPC2148 microprocessor. LPC2148
ARM7TDMI microcontroller has a limited memory with 40 kB
of on-chip static RAM and 512 kB of on-chip flash memory.
Because of this limitation, it is not possible to implement
arbitrary algorithms on it. Therefore, we have shown our
evaluations only for PreKIP. Fig. 9 also shows faster key
generation with SHA-256 as compared to SHA-1. Even with
the largest message size of 400 bytes, the key generation
is only 11 ms with SHA-256. With a maximum sampling
rate of 60 samples/second, the total inter-sampling time is
16.67 ms, which is adequate for both key generation using the
LPC2148 microprocessor. Furthermore, the post-processing
stage is extremely fast, and just takes less than a millisecond.
This shows the feasibility of implementing PreKIP on a low-
end microprocessor for real-life applications.

From Fig. 9 we can also observe that LPC2148 micro-
processor will not be suitable for SV or GOOSE message
integrity checking, where sampling rate or minimum retrans-
mission interval are 173–416 µs and 0.5–5 ms respectively.
However, such high rates are unnecessary in IEEE C37.118
for transmitting PMU data where rates are limited to 30 to 60
samples per second (or 1/2 sample/cycle). In such applications,
PreKIP can provide a secured communication even with an
inexpensive microprocessor like LPC2148.

VI. RELATED WORK

Security features have mostly remained unaddressed in
IEEE C37.118 [20]. Whereas CRC based integrity check
does exist in IEEE C37.118, such checks do not provide
enough security to the messages and thus can be modified
by the intruders. References [21]–[23] provide some study on
cyber security challenges along with several potential threats
in IEC 61850-substation network. To alleviate the security
issues, IEC 62351-6 [24] recommends RSA digital signature
algorithm for signing and verifying the substation messages.
However, the timing related performances are studied in [18],
[19], [25]–[27], which raised concerns over the applicabil-
ity of RSA-based signature scheme for GOOSE messages.
References [18], [19] have further studied that HMAC based
provides faster integrity check as compared to RSA-based
scheme and can satisfy the timing requirements for the GOOSE
messages with today’s commodity processors. In [28] the au-
thors have implemented a framework for RSA and MAC based
digital signature schemes to compare them. Reference [29]
has presented a sequence hopping algorithm for securing the
GOOSE messages. However, this requires a separate sequence
synchronization and monitoring server, thus needs a separate
infrastructure to be installed. As opposed to these contribu-
tions we have proposed a novel lightweight solution for the
confidentiality and integrity problem mechanism, where the
key is generated within subsequent message transfer, and thus
the post-proceesing stage is 4–21 times faster than the HMAC
scheme. The scheme also provides extra confidentiality and is
secure from well-known attacks.

VII. CONCLUSION

In this paper, a lightweight and secure integrity protection
algorithm PreKIP has been proposed to maintain the integrity
of smart grid’s measurements taken from the transmission
and distribution networks. PreKIP achieves low latency by
generating a new key between samples, and then simply XOR
it with the generated sample. We show that our mechanism
can meet the 3 ms delay target of IEC 61850 protection mes-
sages and is secure against powerful adversarial attacks. The
proposed scheme is 4–21 times faster than the HMAC scheme
while signing/encryption, and even faster than other crypto
algorithms. In future we will explore the use of PreKIP in
other applications (such as vehicle-to-vehicle communications
in intelligent transportation systems) which require low latency
for key generation, signing and verification.

REFERENCES

[1] J. R. Carroll et al., “A comparison of phasor communications protocols,”
Pacific Northwest National Lab.(PNNL), Richland, WA (United States),
Tech. Rep., 2019.

[2] Y. Weng et al., “Robust data-driven state estimation for smart grid,”
IEEE Transactions on Smart Grid, pp. 1–12, 2016.

[3] IEC 61850-90-5, “Use of IEC 61850 to transmit synchrophasor infor-
mation according to IEEE C37. 118,” 2012.

[4] S. R. Firouzi et al., “Design, Implementation and Validation of an
IEC 61850-90-5 Gateway for IEEE C37. 118.2 Synchrophasor Data
Transfer,” Ph.D. dissertation, Escola Tècnica Superior d’Enginyeria,
2015.

[5] Stefan Nohe, Oliver Hartmann, Farel Becker and Cedric Harispuru,
“Designing non-deterministic pac systems to meet deterministic require-
ments,” http://rtpis.org/psc13/files/PSC2013 final 1358893882.pdf.

[6] Herbert Falk, “Iec 61850-90-5 - an overview,” https://www.pacw.
org/issue/december 2012 issue/iec 61850905 an overview/iec
61850905 an overview/complete article/1.html.

[7] Y. Fan et al., “A cross-layer defense mechanism against GPS spoofing
attacks on PMUs in smart grids,” IEEE Transactions on Smart Grid,
vol. 6, no. 6, pp. 2659–2668, 2015.

[8] Fred Steinhauser, “Route to IEC 61850 (2016): Client/Server,
GOOSE and Sampled Values,” https://www.youtube.com/watch?v=
DuBayMLGrDY.

[9] “IEC 61850 Sampled Values protocol,” https://www.typhoon-
hil.com/documentation/typhoon-hil-schematic-editor-library/
References/iec 61850 sampled values protocol.html.

[10] “IEC 61869-9:2016,” https://webstore.iec.ch/publication/24663, 2016.
[11] K. Martin et al., “Exploring the IEEE standard C37. 118–2005 syn-

chrophasors for power systems,” IEEE transactions on power delivery,
vol. 23, no. 4, pp. 1805–1811, 2008.

[12] M. Adamiak et al., “Design of a priority-based load shed scheme and
operation tests,” IEEE Transactions on Industry Applications, vol. 50,
no. 1, pp. 182–187, 2014.

[13] P. Kundu et al., “Synchrophasor-assisted zone 3 operation,” IEEE
Transactions on Power Delivery, vol. 29, no. 2, pp. 660–667, 2014.

[14] L. K. et al., “Active attacks on stream ciphers with cyclic redundancy
checks (crcs),” http://www.cix.co.uk/∼klockstone/crchack.htm, 2000.

[15] M. Stevens et al., “The first collision for full sha-1,” in Annual
International Cryptology Conference, 2017, pp. 570–596.

[16] G. Leurent et al., “From collisions to chosen-prefix collisions applica-
tion to full sha-1,” in EUROCRYPT, 2019, pp. 527–555.

[17] “Arm7 based (lpc2148) microcontroller pin configuration,” https://www.
elprocus.com/arm7-based-lpc2148-microcontroller-pin-configuration/.

[18] D. Ishchenko et al., “Secure communication of intelligent electronic
devices in digital substations,” in IEEE/PES Transmission and Distri-
bution Conference and Exposition, 2018, pp. 1–5.

[19] H. B. K. Ghada Elbez et al., “Authentication of goose messages under
timing constraints in iec 61850 substations,” in ICS-CSR, 2019.

[20] I. Ali et al., “Performance comparison of IEC 61850-90-5 and IEEE
C37.118.2 based wide area PMU communication networks,” Journal of
Modern Power Systems and Clean Energy, vol. 4, pp. 487–495, 2016.

[21] J. Cai et al., “Review of cyber-security challenges and measures in
smart substation,” in ICSGCE, 2016, pp. 65–69.

[22] A. Chattopadhyay et al., “Toward threat of implementation attacks on
substation security: Case study on fault detection and isolation,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2442–2451,
2018.

[23] T. S. Ustun et al., “A review of cybersecurity issues in smartgrid
communication networks,” in ICPECA, 2019, pp. 1–6.

[24] IEC TS 62351-6, “Power systems management and associated informa-
tion exchange - data and communications security - part 6: Security for
IEC 61850,” 2007.

[25] F. Hohlbaum et al., “Cyber security practical considerations for imple-
menting iec 62351,” in PAC World Conference, 2010.

[26] S. M. Farooq et al., “Performance Evaluation and Analysis of IEC
62351-6 Probabilistic Signature Scheme for Securing GOOSE Mes-
sages,” IEEE Access, vol. 7, pp. 32 343–32 351, 2019.

[27] S. S. Hussain et al., “Analysis and implementation of message authenti-
cation code (mac) algorithms for goose message security,” IEEE Access,
vol. 7, pp. 80 980–80 984, 2019.

[28] S. M. Farooq et al., “S-GoSV: Framework for Generating Secure IEC
61850 GOOSE and Sample Value Messages,” Energies, vol. 12, no. 13,
pp. 1–13, 2019.

[29] Osama Mohammed, “Security aware microgrids:securing goose mes-
sages against cyberattacks,” in American Public Power Association and
Florida Municipal Power Agency Southeast Regional Municipal Utility
Cybersecurity Summit, 2019.

