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Abstract—Spatial clustering of the events scattered over a
geographical region has many important applications, including
the assessment of needs of the people affected by a disaster. In this
paper we consider spatial clustering of social media data (e.g.,
tweets) generated by smart phones in the disaster region. Our
goal in this context is to find high density areas within the affected
area with abundance of messages concerning specific needs that
we call simply as “situations”. Unfortunately, a direct spatial
clustering is not only unstable or unreliable in the presence of
mobility or changing conditions but also fails to recognize the
fact that the ”situation” expressed by a tweet remains valid for
some time beyond the time of its emission. We address this by
associating a decay function with each information content and
define an incremental spatial clustering algorithm (ISCA) based
on the decay model. We study the performance of incremental
clustering as a function of decay rate to provide insights into
how it can be chosen appropriately for different situations.

Index Terms—Spatial Big Data Analytics; Crowd Big Data;
Incremental Spatial Clustering; Information Decay Model

I. Introduction
Social networks, particularly Twitter, have become a popular

platform for communicating information relevant for rescue
and recovery during disasters [1,2]. For example, the following
information was used during and after the Great East Japan
Earthquake [3,4]: (1) The tag ‘# j j helpme’ was used on
Twitter following the earthquake and tsunami as a way for
emergency personnel to rapidly identify people in need of
rescue; (2) Google tweeted a link on Twitter to its Google
Person Finder tool, which enables people to search for missing
family members. An automated analysis of the twitter data to
extract and understand the “situation” and the needs of the
affected people can allow for quick and focused help in order
to maximize benefit to the affected people [5]. Our focus in this
paper is to identify these “situations” based on the analysis of
the tweets in a way that recognizes that the situation expressed
by the tweets remains valid over a period of time rather than
being of instantaneous value only.

Spatial big data analytics is the science of finding hidden
patterns in geospatial data. It has a lot of applications espe-
cially in emergency situations to support rescue and recovery
activities during or following a disaster by understanding the
“situations”, such as injuries to the people, need for medical
care, shortage food or water, etc. Spatial clustering is the
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process of grouping a set of spatial objects into clusters so
that the objects within a cluster have high similarity than those
across clusters. By applying spatial clustering, it becomes
possible to discover hot-spot areas, which we define as high
density clusters with a given situation (e.g., areas where many
people are injured or need some type of help), and track the
migration of such areas.

Fig. 1(a) shows the distribution of earthquake related tweets
(with keywords ‘earthquake’, and ‘地震’ which means disaster
in Japanese) in the Kumamoto Earthquake that struck at
Kumamoto City of Kumamoto Prefecture in Kyushu Region,
Japan in 2016. Fig. 1(b) shows the shake map observed to
the east of Kumamoto City [6]. This figure clearly shows
that the distribution of the disaster related tweets can provide
some useful information regrading the extent of damage, the
real needs of the locals, etc. In this paper our main objective
is to understand situations in a disaster area through spatial
clustering of social big data. Such analysis can be useful to
discover hot-spot areas (or the regions of interests), where
emergency supplies need to be deployed as soon as possible.

* Red points: earthquake related tweets
* Green points: normal tweets

(a) (b)
Fig. 1. Distribution of Kumamoto Earthquake (April-May, 2016). (a) Hotspot
of Earthquake related Tweets after Kumamoto Earthquake and (b) the region
of the epicenter as obtained the ground reality [6].

Spatial clustering is commonly used in the context of
epidemiological applications [7,8], to help the epidemiologists
identify the region of a possible outbreak. More specifically
such applications measure the overdensities according to some
measure of density measure (such as number of cases reported,
units of medication sold, fraction of population affected etc.).
However such techniques cannot be directly applied for finding
the high-density regions in a disaster scenario by analyzing
the tweets. This is because in an evolving disaster scenario,
the situation and the needs over a region change over time,
sometimes rather rapidly. Also, the incoming tweet data from



(a) (b) (c)

Fig. 2. An illustrative example for the proposed problem statement. Clustering the tweets at time instances (a) t and (b) t + 1 results in unstable hot-spot
identification. This can be alleviated with the (c) proposed energy decay model, where the tweets from the previous time instance are considered with less
information energy. In this figure the circles and squares denote the tweets with and without situation respectively.

the crowd is highly dynamic, and the observed situation
is intermittent, which becomes a big obstacle when trying
to achieve reliable data analysis to support decision-making
after a disaster occurs. Thus analyzing the tweets at different
contiguous time scales result in a drastic or haphazard change
in the hot-spot regions, which complicates the caregiver’s
operations for focusing on the regions of interest.

To address this problem we introduce a temporal decay
factor along with the density measures. The intuition behind
this temporal decay factor is that in a disaster scenario the
needs over a region cannot be satisfied immediately or the
importance of some tweets do not disappear instantly, rather
gradually over time. In other words, the needs are often
“sticky”. For example, the affected population needs water,
the need arises at the instant of the corresponding tweets, and
the status sustains for a period. The obsolescence rate of the
tweets varies depending on multiple factors such as the topic,
how fast a need is served, or how fast the situation evolves.
The proposed incremental spatial clustering algorithm (ISCA)
can smoothen the situation estimation and make it more stable,
and thus more useful from the help-provider’s perspective. The
proposed technique provides an adaptive visual observation of
the dynamic change in situation in spatial big crowd data.

The paper is organized as follows. Section II describes the
related works. The overall problem statement is discussed
in Section III. The proposed ISCA scheme is presented in
Section IV. Extensive evaluations are carried out in Section V.
Conclusion and future works are highlighted in Section VI.

II. RelatedWork
Spatial clustering is the process of grouping a set of spatial

objects into clusters so that objects within a cluster have a high
similarity in comparison to one another, but are dissimilar to
objects in other clusters. The traditional clustering methods
such as k-means and k-medoids [9] break n objects into k
clusters to optimize a given criterion; they can only output
clusters of spherical shape and similar size. The density-based
clustering methods such as DBSCAN and DBCLASD [10],
which define a cluster to be a maximum set of density-
connected points, is featured in detection on clusters of arbi-
trary shape and noise detection, but requires heuristic distance
function that can not be applied equivalently to different data
space. In comparison, the grid-based clustering methods [11]

partition the data space into a certain number of cells, and
perform clustering operations on the cells. The performance
of grid-based clustering is affected by the choice of spatial-
partition models, they can be more efficient when cells’ scale
is much less than data scale.

Evolving clustering has been studied in recent years to deal
with stream data. In [12,13] TEDA (Typicality and Eccentric-
ity Data Analytics) based evolving clustering are investigated.
Based on the definitions of “typicality” and “eccentricity” in,
affiliation of new data with existing clusters are first found. The
affiliation can be one to many by adopting fuzzy theory. Finally
mutual joint clusters are merged together by checking the
number of common points. As the data comes in a streaming
way, small clusters are first temporarily created to organize the
received data in the clustering process [14,15]. A decay based
function further judges whether the existing small clusters
should be removed. Finally small clusters merge together to
achieve the final clusters. However it would be more precise if
decay function is adopted for each point, since the emergence
time for each point is different in one cluster. In this paper, we
propose an information energy model to represent the decay
for each point, and the proposed spatial clustering algorithm
works on the decay function instead of original point, to deal
with updates of cluster for stream data.

The research problem in this paper is similar to the uncer-
tainty problem in big data analytics [16]–[19]. Uncertainty-
based big data learning is investigated in [16] where the
authors first introduce several uncertainty definitions (Shan-
non entropy, Classification entropy, Fuzziness, etc.), and then
discuss uncertainty based machine learning to solve the uncer-
tainty problem. A scalable uncertainty-aware truth discovery
mechanism is proposed in [19] which solves the uncertainty
problem with source reliability and implements a parallel GPU
based algorithm. In [17], the authors investigate a fuzzy theory
based big data processing framework for uncertainties in trans-
portation. Finally, reference [18] proposes a formal logical
representation framework for video scenario recognition and
a logic based uncertainty reasoning mechanism to infer the
undergoing events. However our research problem is different
in that the superfluous variation in the estimated situation
exists in every data unit at every location and needs a new
approach.



TABLE I
Notations and Parameters

Parameter Description
p ∈ P Point objects of Information Element
s ∈ S Location of point objects
z ∈ Z Zone or region
t ∈ T Time instance
ε ∈ E Keywords-based expression for situation ε

E Energy Function for Situation Instance
D Density Function
ηλ Exponential decay rate

III. Problem Statement and Proposed Approach

We first discuss the detailed research problem and our
proposed approach using Fig. 2. Notations are listed in Table
I. In the following a topical situation refers to the main
situational information that is expressed or discussed in a
twitter message. A spatial or point object is the location or
place that the topic is associated with, here it refers to the
geotag in a twitter message. The spatial objects in rectangular
shape denote the point data that are not associated with a
targeted situation, whereas the ones in circular shape are the
points associated with the targeted situation. In a disaster
scenario, the targeted situation indicates the damage level after
the disaster, so that the rescue services can be provided as soon
as possible.

As the tweet messages are generated continuously by the
users, various opinions/messages exist for the same situation,
which also evolves with time. Although a spatial clustering
implemented at different time instants can find high density
areas, such an approach will lead to unstable or unreliable
identification of the hot-spot areas, as shown in Fig. 2(a)-(b).
An unstable clustering is of little use to rescue operations
which may take a significant amount of time to plan and
execute. We address this issue by associating the messages
with a decay function that assigns less weights to the older
messages (shown in Fig. 2(c)), and propose an incremental
clustering scheme so that the hot-spots regions can evolve
steadily and smoothly over time.

Information Weight

Time Ttp tct0

Point p’s information weight about 
situation ε decays from time tp to tc

ts

ts

tp
Location s’s information weight about 
situation ε decays from time ts to tc

 it was reinforced at time tp by point p

Fig. 3. Decay and Reinforcement of the Information Weight.

A. Information Energy of the Tweets

It’s been observed repeatedly that much of the data has
a popularity pattern: Very hot when the data is generated,
and then the popularity wanes. The data may become hot
again. For example, think of the files associated with the
paper you are working on. It’s popular for some days or
weeks, and then there is no activity until you come back to it
again. For measurement data coming from the cyberphysical
infrastructure or physics experiments, the new data is hot only
for some time. It may become hot again, but perhaps with
decreasing peak popularity, i.e., short term decay functions
superimposed on a long term decay function. In storage and
other systems, the popularity is often captured using caching
mechanisms such as LRU, but LRU is useful only at short
time scales and small access granularities (blocks or objects).
At longer time scales and large blobs of data, the stickiness
may provide more insights.

In this context, we define the “information energy” of a
tweet as the intensity of the tweet that is the highest power
when a tweet originates, and then gradually fades over time.
Information energy for a specific location can be accumulated
with the other messages (or tweets) describing the same
situation. An example of information energy is shown in
Fig. 3. This ensures that the importance (or needs) of a tweet
remains valid beyond the time when it emerges, however, with
less energy.

Assume that the information energy for a point object
p in spatial big crowd data at time instance tc is denoted
as Eε(p, tc). Also assume that the temporal decay of the
information energy (TDIE) for each spatial data follows an
exponential decay. That is,

Eε(p, tc) = Eε(p, tp) · η−λ·(tc−tp) (1)

where tp denotes the time stamp when spatial data/object p
appears, and η is the base of the exponential decay.

Multiple messages, i.e., point objects, can originate at
a location/region for a time period to describe a situation
from different users. Generally speaking, if more number of
messages originate at a location, higher will be the reliability
that the situation happens in that location/region at that time
instant. Therefore, TDIE can be calculated as an accumulation
from multiple point objects of messages at a specific time
instant, as shown in Fig. 3. Here P(s, tc− ts) is the set of point
objects located at location s, all of them are generated during
the time span (tc− ts) and labeled with situation ε. Let Eε(s, tp)
denotes the information energy of points located at location s
at its generating time tp. Then,

Eε(s, tc) =
∑

p∈Pε (s,tc−ts)
Eε(p, tp) · η−λ·(tc−tp) (2)

Thus, the information energy is accumulated for each region
Z at time tc is given by

Eε(Z, tc) =
∑

s∈Z
Eε(s, tc) (3)



B. Density Function to Detect Hot-spot Areas

We first define the density function D similar to [20].
The density D(z) of a region z is a function of the total
information energy corresponding to a situation E(z), and
the total population P(z) of the region with following three
properties:

1) For a fixed population, the density increases monotoni-
cally with information energy.

2) For a fixed information energy, the density decreases
monotonically with the population.

3) For a fixed ratio E
P , the density increases monotonically

with the population.
We choose a density measure based on Kulldorff’s spatial

scan statistic [21], which is commonly used in finding the
significant spatial clusters in case of an emerging outbreaks.
Assume that Z denotes the entire region. The density value for
each region z ∈ Z on time-stamp tc for a specific situation ε is
denoted as Dε(z, tc). Using the Kulldorff’s spatial scan statistic
[20], Dε(z, tc) can be calculated as

Dε (z, tc) = log
(

Lε (z, tc)
Lε (Z, tc)

)
= Eε (z, tc) · log

(
Eε (z, tc)
P(z, tc)

)
− Eε (z0, tc) · log

(
Eε (Z, tc)
P(Z, tc)

)
+ (Eε (Z, tc) − Eε (z, tc)) · log

(
Eε (Z, tc) − Eε (z, tc)
P(Z, tc) − P(z, tc)

) (4)

if Eε (z,tc)
P(z,tc) > Eε (Z,tc)

P(Z,tc) and 0 otherwise. Here Lε(z, tc) is the
likelihood function and, P(z, tc) is the total population in region
z at time tc. With this the spatial clustering algorithm needs
to discover the hot-spot area zC where

zC = arg max
(

Dε
∀z∈Z

(z, tc)
)

(5)
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Fig. 4. Grid-based Partition and the Scan Window.

IV. Incremental Spatial Clustering

The proposed ISCA for evolving disaster scenario has
two main functions, the spatial data aggregation (SDA) and
spatial data clustering (SDC). The SDA handles decay and

reinforcement of the information weight over regions. The
SDC tracks the boundary and movement of the dense regions
of the targeted evolving disasters. With these the incremental
grid-based spatial scan is implemented as follows.

The commonly used grid-based partition works for the
decay model because its partition boundary does not change
over time. Thus the plain for the point data is partitioned
into an N × M grid (see the left side of Fig. 4, and there
are N × M cell-regions, and each cell-region is denoted as
z(n,m,0,0), where 0 ≤ n < N and 0 ≤ m < M), and the
point data comes chronologically onto the plain. The spatial
clustering component periodically (at time tc) scans for the
hot-spot of targeted situation ε, and compare the density value
Dε of each candidate region z (denoted as z(n,m,n′,m′), whose
columns × rows equals to [n...(n + n′)] × [m...(m + m′)], and
0 ≤ n < n + n′ < N and 0 ≤ m < m + m′ < M). As shown in
Fig. 4, there are (n + 1) × (m + 1) number of regions in total
with same shape

(
size=(n′ + 1)× (m′ + 1)

)
as that of z(n,m,n′,m′).

Algorithm 1 Incremental Grid-based Spatial Scan
1: Eε=InitMeasure(N,M), P=InitBase(N,M) . List of value for Eε Measurement-,

and P Basement-point data of all N × M cell-regions
2: procedure SpatialScan((zG = z(0,0,N−1,M−1)))
3: zC = z(0,0,0,0) . zC : cluster
4: for n′ = 0; n′ < N; n′++ do
5: for m′ = 0; m′ < M; m′++ do
6: for n = 0; n < N − n′; n++ do
7: for m = 0; m < M − m′; m++ do
8: Pz = 0, Ez

ε = 0
9: for i = n; i < n + n′; i++ do

10: for j = m; j < m + m′; j++ do
11: Pz += P[i][ j]; Ez

ε += Eε [i][ j]
12: if Ez

ε
Eε

< 1 AND Pz
P < 1 AND Ez

ε
Pz < Eε

P then

13: zW .d = Ez
ε

˙log( Ez
ε

Pz ) + (Eε −Ez
ε ) ˙log( Eε−Ez

ε
P−Pz )−Eε

˙log( Eε
P )

14: if zW .d > z.d then zC = zW

15: return zC

Here we introduce a naive implementation of the grid-based
scan in Alg. 1, which return a rectangle as hot-spot. The
performance of this algorithm could be improved for example
by indexing the spatial data in tree-based model [20]. In this
study, we mainly optimize the implementation of SDA to
handle the information weight reinforcement and decay so as
to investigate the stickiness of the incremental data.
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Fig. 5 shows the data processing flow in this system. The
spatial clustering is implemented in JavaScript. It gets the
collection of spatial point data (such as the Twitter data with
geo-tag) from database, classify the point data as measurement
data (to be labeled with situation ε) and basement data. The
system will take temporal and spatial partition of the data
into several time spans and sub-regions, and then apply spatial
clustering to find the dense region of the targeted situation ε
in each time span. The program then output the hot-spot in
GeoJSON format, and visualized in QGIS tool.
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V. Evaluation and Discussion

This section presents evaluation results of ISCA that are
obtained from a synthetic dataset as well as from a real
disaster-related social data.

A. Simulation on Synthetic Data Set

We first simulated ISCA using a synthetic database obtained
from [22]. The database is composed of several datasets that
model the temporal evolution of the information contents in
a two dimensional space. The datasets were generated by
Gaussian distributions whose mean and/or variance change
over time. We use the “3C2D2400Spiral” dataset, which
presents a helix alike movement of 3 clusters. These three
clusters could be considered as three groups of population
with dynamic ratios of the situation ε over the time series, as
shown in Fig. 6.

The point data distribution of all three groups and the hot-
spot over the time series are shown in Fig. and 7(a). We can
observe that the hot-spot corresponding to these two data sets
is mainly concentrated on Group 2, which has the highest
percentage of situation labels among the three groups.

Metrics Used: We believe that the information contained
in the crowd data, e.g., a tweet, about the situation remains
valid for some time. For how long it remains valid is a
property of the situation, and this property is modeled as
energy decay in Section III-A. With the exponential decay
base η = 2, different values of λ (the exponential decay
exponent) represent different values of ‘half-life’ for the decay,
i.e. the time when the weight of the tweet becomes one-half.
In order to estimate the effect for the decay ratio λ on the
spatial clustering result under different ‘half-life’ periods, we
introduce a sensitivity metric. Assume that the centriod of the
point objects at two time instances t and t + 1 are µt and
µt+1, and that of the hotspots are Ct and Ct+1 respectively.

(a) Overall Hot-spot.
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Then the unnormalized sensitivity at those two instances is
given by ‖Ct−Ct+1‖

‖µt−µt+1‖
, where ‖A − B‖ denotes the absolute value

of the Euclidean distance between two points A and B. The
hot-spot movement is most sensitive when the decay ratio is
infinite, so we normalize the value of unnormalized sensitivity
with its maximum value (when λ = ∞). The sensitivity
signifies whether the hot-spot movement is proportionate to
the movement of the point objects.

Selection of Decay Rate ηλ for Adaptive Observation:
Fig. 7(c) shows the changes in the sensitivity function for
different value of λ with η = 2. A slower decay rate results in
a smoother and more stable clustering, but at the cost of larger
inaccuracies in characterizing the dynamics of the situation as
the point data evolves. Here we consider λ as an appropriate
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Fig. 8. Position of Hot-spot (ηλ = 24/4) for Helix Movement Data Set.

(a) Time 0 (b) Time 1 (c) Time 2 (d) Time 3 (e) Time 4

(f) Time 5 (g) Time 6 (h) Time 7 (i) Time 8 (j) Time 9

Fig. 9. Position of Hot-spot (ηλ = 2∞/4) for Helix Movement Data Set.

selection, where the sensitivity value is approximately close to
its middle value for both data sets. Given ηλ = 2 for the point
data, the situation is expected to experience its half-life during
each time span, and the information weight of the situation
becomes 1/2 after each time span if there is no reinforcement.

We next investigate the spatial clustering result when ηλ =

24/4. Fig. 7(b) illustrates the centroid movement of the hot-spot

(when ηλ = 24/4) in comparison with that of the point data.
Fig. 7(d) show the sum of the Euclidean distances between
centriods in between the time spans. The figures depict the
case with ηλ = 24/4 as opposed to two extreme scenarios ηλ =

20/4 and ηλ = 2∞/4.

We visually illustrate the effect of our proposed decay model
on the helix movement dataset using Fig. 8-9. These figures
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Fig. 10. Time Series of Tweets with Different Mentions nearby New York city, during Hurricane Sandy 2012.

illustrate the position, movement and coverage of the hot-spots
when ηλ = 2 and 2∞ respectively. As expected the former is
more sensitive than the latter, but the centroid movement of
the hot-spot is still smooth. A slower decay rate results in a
smoother and more stable clustering, but at the cost of larger
inaccuracies in characterizing the dynamics of the situation as
the topics evolve.

B. Observation to Sandy Hurricane 2012 Data Set

We used the geo-tagged twitter data located in New York
city during the occurrence of Sandy Hurricane 2012. Accord-
ing to report [23], it hit New York city hard on Oct. 29th
night, leaving hundreds of thousands without power. Regions
of Lower Manhattan from Madison Square to the tip of the
island was hit the hardest, with more than 0.24 million people
without power as of noon on Nov. 1st.

We observed 440K Geo-tagged tweets located in New York
city during the Hurricane. The power outage was the most
concerned topic as shown in the time series in Fig. 10. The
daily spike of tweets frequency related with ‘power outage’
is detected by using Python library ‘peakutils’. The tweets
frequency experienced exponential decay, with its half-life
time being close to 24 hours. We also plot the accumulated
information weight of tweets by setting different decay rate,
the ηλ = 21 looks most reasonable.

The Geo-tagged tweets distribution of power outage, as
shown in Fig. 11(a), is crowded in Lower Manhattan. We use
the grid-based spatial scan to track the daily hot-spots of power
outage. The effects of different decay rates are shown in Fig.
11, 12, and 13. As expected the slower decay rate (or smaller
λ) results in a smoother/stable clustering and vice versa.

VI. Conclusions

In this paper, we proposed an incremental spatial cluster-
ing algorithm based on information weight decay, in order
to achieve a stable and reliable decision-making based on
dynamic big crowd data. We have evaluated the proposed

method by using a disaster related social data set as well as
a synthetic data-set. The incremental spatial clustering using
the decay model provides an adaptive observation of dynamic
changes to the crowd situation. We introduce the metric of
sensitivity to assist the user of this system to select proper
decay rate to observe the spatial clustering result. In the future
work, we will consider how to select decay rate for more real
data sets. We will also work on improving the computational
performance of ISCA to meet the emergency requirement in
a disaster.
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