
A Framework For Misconfiguration Diagnosis in
Interconnected Multiparty Systems

Malek Athamnah, Amitangshu Pal and Krishna Kant
Computer and Information Sciences, Temple University, Philadelphia, PA 19122

E-mail:{mathamna,amitangshu.pal,kkant}@temple.edu

Abstract—Most large systems involve multiple zones with
distinct ownership or control and one or more such zones
must be traversed by the transactions. Therefore, in case of
misconfigurations, it is necessary to conduct tests that go across
parties. Such tests are complex as they must consider composition
of test functionalities provided by each party and the feasible tests
must abide by the access restrictions. In this paper we propose
a framework for defining test functionalities their composition,
and their access control. We then discuss an efficient algorithm to
determine the realization of the given test via valid compositions
of individual functionalities in a way to minimize the number of
parties involved.

Keywords: Misconfiguration, multiparty system, access
control, testing, diagnosis.

I. INTRODUCTION

Large-scale cyber and cyberphysical infrastructures are nat-
urally composed of multiple administrative domains, each
manged or controlled by a party with potentially unique
policies and configurations that are not shared with other
parties. Yet user requests pass through the infrastructure of
multiple parties. For example in the typical situation of a
customer in an organization accessing a remote web service,
at least 3 parties are involved: the local organization, the
internet service provider (ISP) that provides wide area network
access, and the data center that hosts the web service. Each
of these parties has its own configuration and test procedures
to diagnose problems. However, in order to properly diagnose
end to end problem, it is essential to run multiparty tests,
and these would require cross party access. We envision them
as compositions of test probes provided by individual parties
along with suitable cross party access rules. These access rules
may not be statically granted, and instead granted specifically
for testing purposes.

The multiparty access problem arises in a variety of sce-
narios, even including those involving a single enterprise. For
example, large enterprises often have multiple business that
do not freely share information and thus may use separate
private clouds hosted in the same server farm. Even within
an owned data center, there are often different teams with
different expertise and responsibilities, (e.g., network team,
security team, and database team), each of them has their
own configuration and perhaps some limited access by other
teams. In all these cases, when problems arise, a multi-party

testing may be essential and such testing may grant more
access rights than in the normal situation. In any case, given
a basic test functionalities and access rights, one could ask
several questions such as: Is the set of given access rights
adequate to do a multiparty test? If a test can be carried out
in multiple ways, what is the shortest test, or test involving
fewest parties? These are the types of questions that we are
interested in addressing in this paper.

It is important to point out the issues that we do not
address in this paper. First, we assume that the parties involved
have a collaborative, rather than adversarial relationship. In
other words, the parties do not attempt to circumvent the
specified access rules, do not corrupt/alter the data provided
to other parties, and do not hold back or filter any legitimate
information. We assume that all collaborating parties are
mutually authenticated using standard mechanisms, and the
global controller tracks and limits the rate and number of
concurrent tests in order to prevent DDoS scenarios.

Accessing data across parties can be technically challenging
due to varying format and semantics of the data used by them,
but these are not the focus of this work. Thus we proceed with
the simple assumption that each party creates a “stub” for its
data for uniform access by others.

Building a comprehensive misconfiguration diagnosis in-
frastructure involves many significant research, design, and
implementation challenges. These include (a) exploring con-
straints to be exploited by the probes for diagnosis, (b)
defining and handling access control across parties, (c) test
design and selection, and overall testing infrastructure design,
implementation, and evaluation. We note that this paper is not
concerned with the design of the probes provided by various
parties or the design of suitable tests to uncover a specific
issue. Instead our focus is on whether the given test can be
implemented using the given probes, and if so, how it can be
implemented most efficiently.

The outline of the paper is as follows. Section II provides
an example of a common multiparty system, namely the
email system. Section III discusses various issues in building
multiparty tests from individual probes provided by the parties.
Section IV defines the problem of test selection formally and
proposes a solution. Section V then shows sample performance
evaluation. Related works are discussed in section VI. Finally,
section VII concludes the discussion.

This research was supported by the NSF grant CNS-1527346.

Fig. 1: Typical Email Flow

II. AN EXAMPLE OF MULTIPARTY SERVICE

In this section we discuss in some depth the configuration
of Internet email, the inherent involvement of multiple parties,
and how multiparty testing would be needed to diagnose the
misconfiguration.

Fig. 1 shows the typical flow for email involving the email
filtering appliance (EA). The E-mail server resolves the E-mail
domain name to the public IP address of the domain using the
DNS service. It then sends the E-mail using SMTP (Simple
Mail Transfer Protocol) to the corresponding IP address. The
email is intercepted by the enterprise firewall (FW), which
translates the public IP address of EA to its (private) DMZ
IP address and forwards traffic to the EA. The EA then does
a DNS query on the sender domain name, compares the IP
address of the sender to its own SensorBase database, and
determines the reputation score of the sender. It rejects the
E-mail if it falls within a pre-configured reputation score, and
sends a failure email back to the sender. The receiver then
retrieves the email at its convenience.

The key resources here are obviously DNS, FW, EA, and
Mail Server (MS). The DNS can be probed directly, but others
generally do not provide any direct interface for querying.
Thus it is necessary to design and install Resource Probing
Module (RPM) on others. With that, and assuming that FW,
EA and MS are owned by the same party, it is adequate to
have a single Mirror for this email system. Unfortunately, the
email setups are rarely this simple, as illustrated in Fig. 2,
which shows 3 popular configuration methods and highlights
the need for multi-party coordination.

In Fig. 2, ei’s denote different enterprises, and cj’s denote
different cloud or service providers. Enterprise e1 delegates
email filtering to a third party c1, a Managed Security Services
(MSS) provider. In this case, any incoming email to e1 is
delivered through cloud c1. Note that the outbound mail from
e1 is configured to be sent directly as shown by arrows to e2
and c3. (Not showing all arrows to avoid clutter.) In contrast,
e2 and e4 configure their email service locally for direct

Fig. 2: Email Configurations

sends/receives to/from other entities. Finally, e3 uses a cloud
SaaS service for email; i.e., both sends and receives happen
through the provider c3. This means that no email server talks
with e3 directly and is instead forced to go through c3. In all
cases, the enterprises use a public DNS service hosted by the
service provider c2.

In order to diagnose email problems in such an environment,
each party will need to setup a number of probes relating to
various problems in its sphere of control. Some common email
issues include the following: (a) Spammers could use email
servers to relay emails through them, usually by pretending to
be the higher distance MX servers for the domain that may be
engaged under heavy load or failure of the primary. (b) When
an email DNS server has an “A” record for the sender but not
the reverse record, the recipient email server may force all
emails into the junk/spam folder or reject them outright. The
same happens if the sender erroneously gets on a blacklist
(not uncommon). (c) Email could be disrupted from other
misconfigurations such as those in the ISP network or those
in the email appliances (EA) discussed above.

III. DIAGNOSIS IN MULTIPARTY SYSTEMS

Diagnosis of problems in a multi party environment is
particularly difficult because the infrastructure owned or ac-
cessible by each party is differently configured/managed and
other parties have no visibility into or understanding of a
party’s infrastructure, configuration, or compatibility issues
across parties. The multiparty diagnosis problem can be eased
by each party providing a set of “probes” with well defined
interfaces and cross party access rights to the probes so that
a multiparty test can be constructed out of such probes. Note
that several parties may provide the same probing capability;
this is quite normal since the available probing capability often
depends on the location and vantage point of the party. In fact,
a large organization often has multiple physical locations, each
with different access capabilities; for example, a branch office
may not have the same visibility and probing capability as the
main office. For the purposes of this paper, we shall consider
such multiple locations as different “parties” with the access
rules across our parties reflecting any organizations boundary
considerations. In particular, if an organization has access
to some probing capabilities, they will likely be available

(a) (b)
Fig. 3: Combination of probes in (a) series, and (b) parallel.

from multiple locations of the organization (which we are
considering as different “parties” in our modeling).

The key to such multi-organizational and multi-location
testing mechanism is a clear definition of semantics and format
of the inputs and outputs of each probe such that they can be
meaningfully connected across parties. This involves several
issues that we discuss in the following, namely, how to build
multiparty tests from party-specific probes, how to define
cross-party access rights, and various questions that would
interesting to study regarding the testing.

A. Generating Tests from Probes

Consider parties Pi, and Pj , each of which define the
probe Bi and Bj respectively. Let (IBi

, OBi
) and (IBj

, OBj
)

denote the input/output of probes Bi and Bj respectively. Now
consider a requesting party PR that constructs an multiparty
test (MPT) T out of these probes and runs it, eventually
receiving the results.

The two obvious ways of combining the probes are: (a)
Series, i.e., run Bi and use OBi to define IBj . Then run Bj

and use OBj to define the test output OT for PR, and (b)
Parallel, i.e., run Bi and Bj concurrently using IBi

, OBi
and

use a some composition OBi
, OBj

to generate the test output
OT for PR. This is depicted in Fig. 3. In the series case, IBj

needs to be compatible with OBi , which means that (a) either
both probes Bi and Bj are simple, or both are structured, and
(b) it is possible to derive IBj

from OBi
.

For a parallel test, the crucial part is the “join” node, which
represents some type of composition of the outputs (OBi

and
OBj) received from the preceding probes. In this case, we
requires both outputs to be either simple or both structured.
In case of structured outputs, this composition could be any
of the standard relational operations such as equi-join, union,
intersection, etc. In case of simply outputs, there is no explicit
composition, both inputs are provided to the next probe.

In general the test graph could be an arbitrary acyclic
graph with a single source and single destination. However,
such graphs become tricky with respect to I/O compatibility;
furthermore, finding efficient ways of conducting tests with
arbitrary structure becomes quite difficult. Therefore, in this
paper, we assume that the test graphs are recursively composed
of series or parallel subcomponents.

One other point in defining the tests is whether to specify the
needed probes uniquely (e.g., via a unique id of the probe) or
more generally. The constituent probes of a test are specified
uniquely, the test construction problem is trivial (since there

is no choice). A somewhat more general method is to specify
probe in terms of its input, functionality and output (simply
called “functionality” for short), rather than a unique id. This
allows consideration of probes that have identical or superset
of the requested functionality owned by various parties, and
we will consider this as discussed later. It is possible to make
the specification even more abstract, but we do not consider
it here.

B. Defining Cross-Party Access Rights

The key attribute of the multiparty environment is the
restrictions on cross party accesses. The access control can
be specified at two levels: (a) access to the data, i.e., access
to the output of a probe (or set of probes), and (b) access to
the entire probe, meaning ability to give input to the probe,
command its execution, and collect the output.1 It is important
to make data vs. probe access since it is possible to provide
access to the output of a probe result to a party, without that
party having the ability to actually run the probe. Also note
that in case of a parallel arrangement of probes, the input to
the next probe is derived from the composition of the outputs,
only the access to this composition is crucial.

B1I1 O1 B2I2 O2 B3I3 O3

Pi

B1I1 O1 B2I2 O2 B3I3 O3

Pi

P2 P3

B1I1 O1 B2I2 O2 B3I3 O3

Pi

(a)

(b)

(c)

Fig. 4: Illustration of Access Possibilities

Several models are possible for connecting multiple probes
with regard to access control, ranging from very strict to
promiscuous. In a strict model, a party must have direct access
to all the probes used in the test and also to their outputs. This
is illustrated in Fig. 4(a) for a simple test with 3 probes (B1,
B2, B3) in series, but similar situation applies in general. In
this figure, we have an implicit assumption that probes B1,
B2, B3 are owned by parties P1, P2, and P3 respectively, and
the test is to be invoked by some other party Pi. the dotted

1Bundling probe and data access here is just for clarity in discussion; the
detailed specification in section IV-A actually defines the data and probe
access functionalities separately.

ovals show compatibility between inputs and outputs, and this
is always required. More important, the figure shows that the
requesting party Pi must have access to all 3 probes and their
inputs and outputs.

A considerably looser model would allow the requester to
only possess end point access rights, as illustrated in Fig. 4(b).
Here Pi only needs the ability to run probe B1 and access the
output O3. However, to move the access along, we need P2
to have access to the output O1 and P3 should have access
to O2. With this, the entire chain is completed, which means
that the test can be run and resulted obtained by Pi.

Finally, Fig. 4(c) shows the loosest model. Here Pi needs
the ability to run B1 and collect result O3 (as in case (b));
however, no other intermediate access restrictions are required
to complete the test.

Many other possibilities also exist, such as granting access
rights based on the results of the tests; however, these 3
cases illustrate the tradeoff between flexibility of testing and
the protection/accessibility of the probes. Case (a) is easy to
handle in determining the feasibility and minimality of the
test; however, the restrictions it places are perhaps identical to
access restrictions during normal functioning. We believe that
when problems arise, a looser access control model is more
appropriate in order to grant the necessary accesses quickly.
Case (c) is the easiest in this regard; however, it allows for
many possibilities, which means that the question of minimal
test construction becomes more interesting, and is in fact NP-
hard, as discussed later.

C. Testing Issues

Now consider a requesting party PR that has the rights to
its desired inputs and outputs, and it wants to design a suitable
MPT to obtain the output. Then, we can pose the following
problems:

• Feasibility: Can we select the probes, probe graph, and
probe I/O mappings for an MPT such that the output
produced by the MPT is a superset of the output requested
by PR?

• Additional Rights: If the problem is infeasible, what is
the minimum additional access rights that PR needs in
order to construct a feasible MPT?

• Effectiveness/Cost: If there are multiple ways to define
an MPT that satisfies PR’s needs, how do we define a
suitable measure of “effectiveness” or “Cost” that can be
optimized?

The cost/effectiveness of the test can be defined in multiple
ways. One simple definition, that we shall use in this paper,
is the involvement of minimum number of parties. However,
one may instead want to minimize the number of probes, or
the overall cost/overhead of running the test.

These problems can be considered as extended versions
of the issues addressed in our earlier work [1], [2], [3]. In
particular, we have shown in [1] that the rule enforceability

problem (similar to the feasibility problem above) is NP-hard,
and highly efficient and effective minimum cost enforcement
algorithms are developed in [2], along with further extensions
and generalizations in [3]. Furthermore, we have considered
the question of rule change and minimal extension of the rules
in [4]. These approaches are applicable here as well, except for
a significant additional complication that (a) the test is given as
a graph, rather than a single rule to be enforced, (b) one needs
to consider the input/output compatibility and corresponding
access rights as well.

Because of these complications, we will not all these
problems in this paper. In particular, we do not consider
the problem of adding minimal additional access rights to
make the testing feasible. We also do not consider different
variations in access rights requirements for running tests
(discussed in section III-B). Instead we only consider the
most promiscuous case, where there may be many ways of
satisfying the test.

IV. PROBLEM DESCRIPTION AND SOLUTION METHOD

In this section we describe the problem of minimal cost
test construction and show that the problem is quite complex
and easily shown to be NP-Hard. We then describe a heuristic
solution.

A. Preliminaries and notations

Assume that there is a set of parties P = {P1, P2, . . . , Pp}.
Also assume that there are n probes F = {F1, F2, . . . , Fn},
each one can be provided/accessed by multiple parties. Each
party Pi provides a set of probes Bi ⊆ F. Each probe Fi

can take a set of inputs Ii, and produces an output Oi. For
example, a probe can be a DNS lookup that takes an input type
domain names and produces an output that is a numerical IP
address corresponding to a computer service or device.

As each probe is accessed by multiple parties, we will have
multiple, possibly overlapping probes across parties. Also the
parties can give controlled access to specific data from their
provided probes to one another. The specific access of each
probe is governed by an explicit set of rules. The rules are of
two different types: run access and data access.

The run access R is described by 2-tuple, R(Pi, Fj), means
party Pi is allowed to run probe Fj using an arbitrary valid
input. The data access D is also described by a 2-tuple,
D(Pi, Oj), which indicates that party Pi is allowed to access
the data Oj (i.e., the output of probe Fj). The success function
is the result of the combination of the run access and data
access, which means that a party can successfully execute a
probe. Thus a success function S can be described by 3-tuple,
S(Pi, Ij , Oj), which means that the party Pi can successfully
execute probe Fj with input Ij and obtain output Oj . This is
denoted as Pi → Fj .

We also have a controller C who can communicate with
all parties. The controller has multiple roles. The controller
figures out which probes from other parties can serve particular

Fig. 5: Controller graph

party’s test, and what are the required input types and values
for the probes. It also provides the best routing plan for specific
test through all available probes. The controller can be thought
of as a party that can be trusted to perform these functions
correctly and reliably.

We also assume that there are some input/output compat-
ibility relationships across the probes. That is, a probe Fj’s
input is compatible with Fi’s output (denoted as Fi → Fj), if
Fj’s input can be derived from Fi’s output, i.e. Ij ⊆ Oi.

If a party PR wants to run a test, it first sends a request
to the controller C with all the required information. C then
provides the plan for the test to PR after considering the access
rights across different parties along with a one-time certificate
(OTC) for accessing the probes across other parties. The OTC
comes with a timeout and can be used by PR only for carrying
out that specific test. In this paper we assume that given a
test from PR, the controller C finds out the test plan that
involves minimum number of parties needed to be involved
for conducting the test, which we define as minimum party
testing (MPT) problem.

B. Problem Definition and Complexity of MPT

Given the access rights across the parties, and the in-
put/output compatibility across the probes, the controller C
generates a directed graph G = (V,E), where V is the set of
vertices and E is the set of directed edges. Here V consists of
the set of parties and probes, i.e. V = (P,F). E consists of the
access rights of the parties, and the input/output compatibility
across the probes, i.e. E = (Pi → Fj , Fj → Fk) ∀Pi ∈ P and
Fj , Fk ∈ F. An example of the graph G is depicted in Fig. 5.
In Fig. 5, the graph G consists of four parties P1, P2, P3, and
P4, each one has access to all 4 probes (shown in solid colored
lines). For example, P1 has access to F1 − F4. Furthermore,
a probe can be accessed by multiple parties. For example, F3

Fig. 6: Illustration of the MPT problem.

is accessed by P1, P2 and P4. The input/output compatibility
across the probes are also shown by dashed lines. For example,
F1 → F3, F3 → F6 and so on.

A test can also be represented by a graph T = (Tv, Te),
where Tv and Te represent a set of vertices and edges of T .
In a test graph Tv represents the set of probes and Te represents
the input/output compatibility across the probes. An example
of a test graph is illustrated in Fig. 6, where {a, b, c, d, e} is
the set of probes and the edges in between them represent the
input/output compatibility across the probes.

Given a test graph PR, the controller first checks whether
T is a legitimate test of not. The condition for checking
a legitimate test is described in section IV-C. Once a test
T is found to be legitimate, C then finds the test plan for
conducting the test by solving the MPT problem. Below we
first prove that the MPT problem is NP-hard. For this proof
we assume a special case of the MPT problem where T ⊆ G.

Theorem 1. The MPT problem for given test is NP-hard.

Proof: For this proof we reduce the well-known set cover
problem to MPT. The set cover problem can be described as
follows. Assume an universe U that consists of a set of n
elements, i.e. U = {A1, A2, . . . , An}. Also assume that S is a
collection of sets, i.e. S = {S1, S2, . . . , Sm} where Si is a set
of elements from U. Given the input pair (U,S) the minimum
set cover problem is to find out the minimum subfamily C ⊆ S
whose union is U.

Assume a legitimate test graph T = (Tv, Te). Also assume
that F′ = {Tv ∩ B1, Tv ∩ B2, . . . , Tv ∩ Bp} represents the
derived set of probes from original probes F that only includes
T ′s probes corresponding to the parties P = {P1, P2, . . . , Pp}.
Now the task is to find out the minimum C′ ⊆ F′ whose
union is T . This is identical to find the MPT for conducting a
given test. To map the set cover problem to MPT we construct
a universe U which consists of the vertices of T . We also
construct S which is identical to F′. Now the problem becomes
how to find minimum number of sets in S that cover all probes
in U. In such case, if the MPT can be found in polynomial
time, the set covering problem also has a polynomial solution.
Thus the MPT problem is NP-hard.

Fig. 6 shows an example test graph with T ⊆ G. Assume
that P1, P2, P3 and P4 have accesses to the probes {a, b, c},
{b, e},{c, e} and {d, e}. Thus C finds the minimum number
of sets (i.e. parties), union of which constructs the test graph
T , by solving the minimum set cover problem. For Fig. 6 we

Algorithm 1 Greedy set cover (U, S)

1: C = φ
2: while U 6= φ do
3: Pick Si ∈ S that maximizes |S ∩ U|;
4: C = C ∪ Si;
5: U = U− Si;
6: end while
7: return C;

can observe that by involving P1 and P4, the controller can
conduct T . For solving the minimum set cover problem, we
use a greedy heuristic shown in Algorithm 1. The heuristic se-
lects the party containing the maximum number of uncovered
probes at each step, until all the probes in the test graph are
covered.

C. Proposed solution

In the previous subsection we assume that a test T is a
legitimate test if T ⊆ G. Considering the test graph of Fig. 6,
b has input/output compatibility with a in G, which we denote
as (a → b) ∈ G. In this section we relax this condition to
generalize the test model by using the transitive relations, i.e.

(x1 → x2)∧ (x2 → x3)∧ . . .∧ (xn−1 → xn) =⇒ (x1 → xn)

which we define as transitive input/output compatibility
(TIOC). To check whether T is a legitimate test or not, C
checks two conditions. First it checks whether the requesting
party PR has access to the initial and terminal probes of T , so
that it can pass the initial input and access the final output of
the test. (In Fig. 6, these are a and e respectively.) In addition,
we also need to ensure that for each (x→ y) ∈ T , there is a
TIOC in between x and y in G, i.e. there exists a path from
x to y in G. For example in Fig. 6 to ensure the test graph to
be legitimate, there needs to be a path in between a to b, a to
d, b to c, d to c and c to e in G.

If the test is legitimate, we need to find the minimum
number of parties that the controller C needs to involve for
conducting the test. In view of the NP-hardness result, we
develop a greedy algorithm explained in Algorithm 2. For
finding the minimum number of parties needed for conducting
the test, the controller C first computes the K shortest paths in
between the initial and terminal nodes. We use Yen’s algorithm
[5] to find out the K shortest paths (line 7). For each path
Γi ∈ Γ, C records the edges of the test graph whose TIOC is
satisfied by the Γi. It then generates all possible sets of Γi’s
whose union covers all edges of the test graph.

As an example, in Fig. 6, the union of two paths Γ1 = a→
b → c → e and Γ2 = a → d → c → e will cover the test
graph T . Another path Γ3 = a → b → d → c → e will
also satisfy the TIOC conditions, thus this can also be a valid
set to cover T . In reality finding all possible sets of Γi’s for
covering the test graph’s edges can be exponential; therefore,
we remove the paths from Γ once they are chosen by the set

Algorithm 2 Finding the minimum number of parties MPT(T , G)

1: PR : Requesting party in T ;
2: S : Initial probe in T ;
3: D : Terminal probe in T ;
4: if PR has access to S and D then
5: Min Party = null;
6: Γ = Yen Algorithm(S, D, G, K); B Generate K

shortest paths
7: while Γ6=null && Set Cover(T , Paths) 6=null do
8: Selected Paths = Set Cover(T , Γ); B Cover TIOC

conditions
9: Party subsets = NULL;

10: for each party Pi in G do
11: Party probes = NULL
12: for each probe Fj that is accessed by Pi do
13: if Fj in Selected Path then
14: Party probes = Party probes ∪ Fj ;
15: end if
16: end for
17: Party subsets= Party subsets ∪ Party probes;
18: end for
19: Min Party=Min Party∪Set Cover(T , Party subsets)
20: Γ = Γ - Selected Paths;
21: end while
22: end if
23: return the set of parties having minimum cardinality in

Min Party;

(a)

(b)

Fig. 7: Illustration of the (a) serial and (b) parallel test graphs.

cover algorithm (line 21). We repeat the process until all Γ is
empty or there is there is no possible combination of Γi’s that
covers the T (line 8-22).

For all these possible set of Γi’s whose union covers T , we
find the minimum number of parties to run these set of probes
by solving the minimum set cover problem (line 20). We then
choose the set of Γis that can be conducted by involving the
minimum number of parties (line 24).

V. PERFORMANCE EVALUATION

For the experimental evaluation, we generate the graph
G and the test graph T randomly. For constructing G, the
access rights for parties towards the probes are generated
uniformly randomly with a probability of 0.7. The input/output
compatibility among the probes are also generated with a
probability of 0.7. The test graphs consist of 7 distinct probes

(a)

(b)

Fig. 8: Comparison of the minimum number of parties with different
number of probes in G for (a) serial and (b) parallel test graphs.

(as shown in Fig. 7) that are generated uniformly randomly
among the number of available probes. Unless otherwise
stated, K (the maximum number of paths) is assumed to be
50 for the experiments.

A. Effect of total number of probes

Fig. 8 shows the variation of the minimum number of parties
with different number of probes. In Fig. 8 we assume 10
parties each having access to 5 probes. We randomly generate
10 different test cases and find out the minimum number of
parties in each case. From Fig. 8 we can observe that the
minimum number of parties almost doubles when the number
of probes increases from 10 to 40. This is because as the
total number of probes increases, each probe is accessed by
fewer parties. This results in an increasing number of parties
required to conduct the tests. Also notice that the number of
parties for conducting the tests are similar for both serial and
parallel cases.

B. Effect of total number of parties

Fig. 9 shows the variation in the number of parties required
to conduct the tests with different number of parties. The total
number of probes is assumed to be 15. Each party has access
to 5 probes. From Fig. 9 we can observe that the number of
parties for conducting the tests decreases approximately from
4 to 2 on the average when the total number of parties increase

(a)

(b)

Fig. 9: Comparison of the minimum number of parties with different
number of parties in G for (a) serial and (b) parallel test graphs.

Fig. 10: Variation of number of parties required for conducting the
tests with different K.

from 5 to 20. This is because as the total number of parties
increases, MPT generates shorter paths between the initial and
terminal probes, which results in fewer required parties for
conducting the tests. The number of parties for conducting
the tests does not change significantly for serial and parallel
test cases.

C. Effects of K

Fig. 10 shows the minimum number of parties involved for
conducting two arbitrary serial and parallel test cases with
increasing K. For Fig. 10 we the total number of parties are

assumed to be 10, each one having 5 probes. The total number
of probes is assumed to be 30. From Fig. 10 we can observe
that the required number of parties decreases with increasing
K and then saturates beyond a certain point. This is because
the MPT scheme generates more paths from the initial probe
to the terminal probe as K increases, which provides more
options for finding the minimum number of required parties
for conducting the tests. Notice that in Fig. 10 the specific test
cases for the serial and parallel are chosen arbitrarily, and thus
the relative gap in between the serial and parallel test cases is
not important.

VI. RELATED WORK

A proper management of configuration is undoubtedly the
Achilles heel of large systems. Due to substantial complexity
and interdependencies, troubleshooting configuration problems
is invariably a manual process, often consuming much of
engineers’ time and taking days and weeks to resolve. Yet,
due to the daunting nature of the problem, it largely remains
unsolved and has not attracted research attention it deserves.
For example, a recent, rather comprehensive survey of config-
uration management issues in [6] largely serves as a reminder
that there is a real lack of viable approaches for tackling the
problems at hand.

Change management is an active and well studied subject
in the literature, and there are many commercial products
available. The general idea is to record the system behavior
as a function of various configuration parameters. Since most
systems often go through configuration changes for various
reasons, one could collect rich logs over time, which can be
exploited to assess what combinations of parameters lead to
“good” or “bad” behavior. This is often known as “configu-
ration drift” problem, i.e., when a normally working system
drifts to a less desirable state due to changes in the workload
that make current configuration unsuitable or change in pa-
rameters. Furthermore, when multiple servers have identical
configuration, as is often the case, data across them can be
used collectively for identifying problematic configurations.

Evolven [7] provides many tools based on such an approach
that use machine learning techniques to determine normal
and abnormal patterns. The STRIDER tool reported in [8]
applies a black box approach that assumes an underlying
“statistical golden state” and uses a Hidden Markov Model
based estimation procedure to detect and fix problems. Another
tool, called “Glean” uses pre-built constraints to describe
the “good” state of the registry and diagnosis errors [9].
Yet another tool called “PeerPressure” applies statistics from
a set of sample machines to diagnose root-cause miscon-
figurations on a test machine [10]. Lao et al. attempt to
correlate faults symptoms expressed abstractly with low-level
state information by using machine learning on text-based
knowledge sources [11]. Dean et al. [12] propose a self-
organizing map based machine learning method to exploit
the common patterns of resource usage behavior of a virtual
machine and compare the current resource usage behavior with

the patterns to report performance anomalies. Xu et al. [13]
use a principle component analysis based anomaly detection
method on the metrics extracted from log files to detect the
abnormal drift. Meng, et.al. propose a machine learning based
approach to detecting configuration drift [14].

Although such automated approaches can be useful in
identifying and even fixing problems, they generally apply
to specific types of errors and also suffer from substantial
false alarms. In particular, such approaches are limited by
the comprehensiveness of the collected data and the nature
of dependencies. For example, if the misbehavior happens for
certain combination of parameters which cannot be deduced
from the available data, the approach is not useful. In short,
there are still numerous instances where human involvement
is essential to identify what tests might be most useful to get
to the bottom of the problem. Our proposal concerns building
an infrastructure that can automate constructing and selecting
tests.

Another diagnosis approach is to define processes based on
best practices such as ITIL (Information Technology Infras-
tructure Library), which are then automatically managed by
incident management systems such as IBM’s Tivoli Service
Request Manager [15] and BMC Remedy Service Suite [16].
The known problems can be diagnosed automatically but
others are left to administrators. Yet another method is to
define a set of configuration rules which can be checked
automatically. EnCore uses this approach to detect software
misconfigurations [17]. This approach is simple but applies to
only very specific cases.

The work of [18] has discussed a configuration management
infrastructure named REST in the context of a multi-domain,
enterprise Web services. They have proposed a decentralized
configuration change management architecture, which takes
into account the distribution of configuration information and
facilitates the execution of management processes across or-
ganizational boundaries while maintaining each organization’s
autonomy. Social media activities such as photo sharing ex-
periences multi-party conflict scenarios too. Mechanisms for
resolving such issues have been studied in [19] and could be
useful for considering complex constraints.

VII. CONCLUSIONS

Misconfigurations in large scale cyber systems are known
to be responsible for an overwhelming percentage of failures,
poor service, and exploitation by hackers for cyber-attacks. In
this paper, we explored a comprehensive, multi-party infras-
tructure to assist in the diagnosis by considering the access
rights across different parties. We proposed an efficient way
of finding out the minimum number of parties involved in
conducting different multi-party test cases via valid connection
of different probes (along with suitable access control) to allow
for a flexible multiparty probe mechanism. In future we want
to build a comprehensive testing infrastructure that includes
multi-party test design and selection by using a small cluster of

machines (along with some switches and routers). We want to
emulate such a diagnosis scenario in Common Open Research
Emulator (CORE) [20], [21] package to support multiple par-
ties, including situations of multiple, geographically separated
data centers with intervening connection layers (e.g., DMZ,
WAN edge, WAN, etc.).

REFERENCES

[1] M. Le, K. Kant, and S. Jajodia, “Consistency and enforcement of
access rules in cooperative data sharing environment,” in Computers
and Security, Nov. 2013, pp. 10–12.

[2] M. Le, K. Kant, M. Athamnah, and S. Jajodia, “Minimum cost rule
enforcement for cooperative database access,” Journal of Computer
Security, vol. 24, no. 3, pp. 379–403, 2016.

[3] M. Athamnah and K. Kant, “Multiparty database sharing with general-
ized access rules,” in Proc. of CloudCom, Luxemburg, Dec 2016, pp.
198–205.

[4] M. Le, K. Kant, and S. Jajodia, “Access rule consistency in coop-
erative data access environment,” in 8th International Conference on
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom2012), oct. 2012, pp. 11 –20.

[5] http://www.mathworks.com/matlabcentral/fileexchange/32513-k-
shortest-path-yen-s-algorithm.

[6] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 70, 2015.

[7] B. Kaluza, “Top 5 it ops challenges and how maching learning can
help.” [Online]. Available: https://www.evolven.com/resources.html

[8] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang, “Strider: A black-box, state-based approach to change
and configuration management and support,” Science of Computer
Programming, vol. 53, no. 2, pp. 143–164, 2004.

[9] E. Kiciman and Y.-M. Wang, “Discovering correctness constraints for
self-management of system configuration,” in Autonomic Computing,

[20] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A
real-time network emulator,” in Military Communications Conference,
2008. MILCOM 2008. IEEE. IEEE, 2008, pp. 1–7.

2004. Proceedings. International Conference on. IEEE, 2004, pp. 28–
35.

[10] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
misconfiguration troubleshooting with peerpressure.” in OSDI, vol. 4,
2004, pp. 245–257.

[11] N. Lao, J.-R. Wen, W.-Y. Ma, and Y.-M. Wang, “Combining high level
symptom descriptions and low level state information for configuration
fault diagnosis.” in LISA, vol. 4, 2004, pp. 151–158.

[12] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud sys-
tems,” in Proceedings of the 9th international conference on Autonomic
computing. ACM, 2012, pp. 191–200.

[13] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 117–132.

[14] F. Meng, M. N. Wegman, J. Xu, X. Zhang, P. Chen, and G. Chafle, “It
troubleshooting with drift analysis in the devops era,” IBM Journal of
Research and Development, vol. 61, no. 1, pp. 6–62, 2017.

[15] I. Corp., “Ibm tivoli service request manager.” [Online]. Available:
www-03.ibm.com/software/products/en/servicerequestmanager/

[16] B. Corp., “Bmc remedy9 service suite.” [Online]. Available: www.bmc.
com/it-solutions/remedy-itsm.html

[17] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “Encore: Exploiting system environment and correlation infor-
mation for misconfiguration detection,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 687–700, 2014.

[18] L. Pasquale, J. Laredo, H. Ludwig, K. Bhattacharya, and B. Wassermann,
“Distributed cross-domain configuration management,” Service-Oriented
Computing, pp. 622–636, 2009.

[19] J. M. Such and N. Criado, “Resolving multi-party privacy conflicts in
social media,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 7, pp. 1851–1863, 2016.

[21] J. Ahrenholz, “Comparison of core network emulation platforms,” in
Military Communications Conference, 2010-MILCOM 2010. IEEE,
2010, pp. 166–171.

