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Abstract—The emerging edge computing applications often use
high definition cameras as edge devices to capture video streams
that need to be analyzed in real-time for situational understand-
ing and answering queries. However, such devices suffer from
limited energy (and hence limited computing power) and limited
bandwidth available to stream the data to the edge controllers
that provide much higher computing capacities. In this paper, we
address these issues in the context of vehicular traffic monitoring
and develop a scheme that has two components: YLLO and
BATS. YLLO is a lightweight object recognition algorithm that
runs on the edge device itself and substantially reduces the frame
rate sent to the edge controller without removing the important
information. BATS adapts the transmissions to the available
bandwidth by taking advantage of further redundancy in the
video stream in both single and multi-camera scenarios. We show
that these mechanisms together can maintain object identification
accuracy of above 95%, while transmitting just ~5-10% of all
the frames recorded by the cameras.

Index Terms—Edge Computing, Energy Efficiency, Video An-
alytics, Bandwidth Management

1. INTRODUCTION

Edge computing is a rapidly developing field with numerous
applications in the management of cyber-physical systems as
discussed in [1]. Some of the prominent applications include
intelligent management of road traffic, health-care operations
in health-care facilities, industrial manufacturing, packaging
and inventory control, automated logistics operations, etc.
Most of these applications are increasingly driven by video
streams generated by the monitoring cameras. Fig. 1 shows
the well-accepted 3-tier model of edge computing where the
individual IoT devices form the bottom layer and wirelessly
connect to edge controllers (ECs) which are largely respon-
sible for heavy-duty real-time analytics on the data streams.
Many traditional IoT devices that do not necessarily have any
computing capabilities can be brought into this ecosystem by
connecting them to a local node with compute, storage, and
wireless access capabilities through a regular wired interface
such as USB. Such an arrangement allows every IoT device to
be considered “smart” (i.e., have local compute, storage and
wireless access capabilities).

The top layer is usually a cloud that provides both large
scale storage and large offline analytics capabilities. An EC
may receive data streams from many cameras and other
IoT devices, usually from a specific physical region. Some
common characteristics of the data streams directed to an EC
include the following: they are generated by devices that are
limited in processing power, provide overlapping coverage of

the activities in the area, and must compete for the limited
transmission bandwidth to the EC.

Although the IoT (or edge computing) devices continue to
advance in their processing and storage capabilities, they are
still limited by the restrictions of cost, size, energy consump-
tion, radio bandwidth, etc. The ECs themselves are typically
deployed in a hostile environment (e.g., in a small enclosure
without cooling) and generally need to be designed inexpen-
sively; and hence, an EC may also be constrained by energy
consumption, computational resources, and cost. The energy
consumption of IoT systems remains a significant challenge
and various approaches have tried to reduce it. For example,
the IoT devices may use duty cycling, opportunistic sleep, or
DVFS (dynamic voltage frequency scaling), as appropriate.

In this paper, we focus on the application of edge computing
to intelligent transportation systems (ITS), where it may be
used for a range of functionalities including (a) tracking of
suspicious or abnormally behaving vehicles, (b) management
of vehicles belonging to an organization (for example, city
buses, ambulances, delivery vehicles, and refuse collection
trucks), (c) monitoring congested areas or areas that are prone
to accidents, and (d) monitoring impacts of abnormal events
such as flooding, downed power lines, fallen trees, etc. This
environment has all of the characteristics mentioned above
involving deployment in outdoor environment (e.g., cameras
installed on light poles and an EC also hanging off a light pole,
possibly every few Km, receiving camera streams from all the
cameras in its region). Other environments also have similar
issues and the techniques described here are applicable to them
as well; however, for concreteness, we henceforth only speak
of the ITS environment. In our road traffic application, there
is generally no privacy concern so long as the monitoring is
limited to public roads and other public spaces. In applications
where privacy is an issue, it is possible to filter the frames
and send only a subset or part of frames or just the metadata;
however, addressing the privacy issues is beyond the scope of
this paper.

The goal of this paper is to devise an ITS monitoring
solution that addresses the above limitations. It consists of two
components: (a) design of a lightweight and energy-efficient
video-stream analytics algorithm called YLLO that runs on
individual edge devices (EDs) and substantially reduces the
video frames sent to the EC and the processing needs at
the EC itself, and (b) design of another algorithm called
BATS, that exploits the overlaps between the views of multiple
cameras and dynamically adapts to the available transmission
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Fig. 1: Hierarchical architecture of edge computing.

bandwidth to the EC. We assume that for each important local
spot to be monitored, there are a few cameras mounted on
light poles on both sides of the road (typically 2-6 cameras in
total), that provide an overlapping field of view of the spot.
These cameras may connect to the EC via an already deployed
cellular technology, including 4G-LTE and the emerging 5G,
and in that case, the ECs could potentially be bundled with
base stations. Other techniques include TV whitespace (i.e.,
the unused gap between TV channels in 470-790MHz range)
and even WiFi. We do not assume a specific technology, but
only consider the impact of bandwidth limitations that are
likely to be present in typical deployments.

YLLO stands for “You Look Less Than Once” since it
avoids full processing of all frames by exploiting the redun-
dancy in a video stream. YLLO borrows basic functions from
other popular single-step algorithms such as variants of the
popular YOLO series of algorithms [2], where YOLO stands
for “You Only Look Once”. BATS stand for “Bandwidth
Adaptive Transmissions of Streams” and adapts the frame
transmission rate to EC according to the available wireless
channel capacity. BATS also assume that there are multiple
cameras located in a place (e.g., same or nearby electric poles)
to provide a good coverage of the entire traffic area.

For evaluation purposes, we captured High Definition Video
Streams (HDVS) at 30 FPS both for real road traffic and
toy cars imitating traffic patterns on the road. As discussed
above, a real EC in this application will implement many
capabilities; however, we consider here a single task that does
require extracting a fine-grain feature of the videos, namely
the identification of the license plates using the open-source
Automated License Plate Reader (ALPR) software [3].' Using
the accuracy of this task as evaluation metric, we show that
the combination of YLLO and BATS can maintain an object
identification accuracy of over 95%, by only sending ~5-10%
of all the recorded frames. In the process, we show that our
mechanism saves at least 60% energy at the ED. The savings
at the EC are expected to be even higher because of the fewer
frames sent to ECs that are marked with object IDs, thereby
further reducing the work for EC.

The remainder of this paper is organized as below. Section II
discusses the related work. Section III discusses the YOLOv4
algorithm that forms the basis for our YLLO algorithm.
Section IV presents the YLLO algorithm and compares it
against YOLOv4. Section V formulates the object identifi-
cation optimization problem in a multi-camera environment

I'This is only an example task for EC; we are not focused on optimizing
licence plate detection per se.

and presents the BATS algorithm. Experimental evaluation
and results are summarized in section VI. Section VII then
concludes the paper.

II. RELATED WORK

Applying CNNs to object classification has been showing
excellent performance improvements recently. In [4], the au-
thors have used CNNs to detect the objects that demonstrate
exceptional performance gains in real-time. Reference [5]
compares the speed and accuracy of various CNN models.
In [6] the authors have developed a cognitive assistance
framework using Google Glass along with edge computing to
provide satisfactory performance. A framework by Glimpse [7]
analyzes data from multiple sources and presents a case
study of filtering unnecessary frames for face detection. The
authors in [8] suggested an application using smartphone
cameras to increase pedestrian safety. This application detects
vehicles approaching the pedestrian using the rear camera and
alerts them. CarSafe [9] presents an Android application that
detects driver fatigue using the front-facing camera along with
tracking road conditions using a rear-face camera. Live video
analytics using edge computing has been increasingly popular
in the research community. Reference [10] has discussed
the feasibility of distributed edge computing architecture for
meeting the real-time requirement of large-scale video an-
alytics. Videostorm [11] is a video analytics platform that
performs query processing on live video streams, optimizing
both the query knobs and resource allocation. Similar to our
work, Chameleon [12] presents a video analytics system that
optimizes the inference accuracy and computational resources
by exploiting the temporal and spatial correlation among video
frames. VideoEdge [13] uses a hierarchical architecture for
edge-based video analytics to maintain higher accuracy in
real-world video queries by placing and merging the queries
for processing. However, it does not discuss the reduction in
bandwidth required when uploading the frames to the cloud
for further analysis. Vigil [14] and LAVEA [15] also explore
edge-based real-time video analytics system by partitioning
the analytics between the edge and the cloud. In [16], [17] the
authors have proposed a roadmap for scaling video analytics
using cross-camera correlations. Similar proposals of edge
computing for video surveillance are studied in [18], [19],
[20]. The proposal that is closest to ours is reported in [21]
where the authors have used video analytics to extract some
relevant information from the frames and send the metadata to
the controller. In contrast, our scheme exploits the correlation
between successive frames and transmits frames that have
substantial change with respect to the previous frames. This
is done via a scene change detection algorithm. The BATS
algorithm then exploits overlaps between camera views to
further avoid redundant frame transmission. Metadata trans-
mission may be adequate in some cases, but this would allow
correlation of only the metadata across multiple views from
same or different cameras. A collaborative detection of fine-
grain features at the edge controller would invariably require
raw frames from the cameras.






