
1

Resource Efficient Edge Computing Infrastructure
for Video Surveillance
Pavana Pradeep, Amitangshu Pal, Krishna Kant

Computer and Information Sciences, Temple University, Philadelphia, USA
Email: {pavana.pradeep, amitangshu.pal, kkant}@temple.edu

Abstract—The emerging edge computing applications often use
high definition cameras as edge devices to capture video streams
that need to be analyzed in real-time for situational understand-
ing and answering queries. However, such devices suffer from
limited energy (and hence limited computing power) and limited
bandwidth available to stream the data to the edge controllers
that provide much higher computing capacities. In this paper, we
address these issues in the context of vehicular traffic monitoring
and develop a scheme that has two components: YLLO and
BATS. YLLO is a lightweight object recognition algorithm that
runs on the edge device itself and substantially reduces the frame
rate sent to the edge controller without removing the important
information. BATS adapts the transmissions to the available
bandwidth by taking advantage of further redundancy in the
video stream in both single and multi-camera scenarios. We show
that these mechanisms together can maintain object identification
accuracy of above 95%, while transmitting just ∼5-10% of all
the frames recorded by the cameras.

Index Terms—Edge Computing, Energy Efficiency, Video An-
alytics, Bandwidth Management

I. Introduction

Edge computing is a rapidly developing field with numerous
applications in the management of cyber-physical systems as
discussed in [1]. Some of the prominent applications include
intelligent management of road traffic, health-care operations
in health-care facilities, industrial manufacturing, packaging
and inventory control, automated logistics operations, etc.
Most of these applications are increasingly driven by video
streams generated by the monitoring cameras. Fig. 1 shows
the well-accepted 3-tier model of edge computing where the
individual IoT devices form the bottom layer and wirelessly
connect to edge controllers (ECs) which are largely respon-
sible for heavy-duty real-time analytics on the data streams.
Many traditional IoT devices that do not necessarily have any
computing capabilities can be brought into this ecosystem by
connecting them to a local node with compute, storage, and
wireless access capabilities through a regular wired interface
such as USB. Such an arrangement allows every IoT device to
be considered “smart” (i.e., have local compute, storage and
wireless access capabilities).

The top layer is usually a cloud that provides both large
scale storage and large offline analytics capabilities. An EC
may receive data streams from many cameras and other
IoT devices, usually from a specific physical region. Some
common characteristics of the data streams directed to an EC
include the following: they are generated by devices that are
limited in processing power, provide overlapping coverage of

the activities in the area, and must compete for the limited
transmission bandwidth to the EC.

Although the IoT (or edge computing) devices continue to
advance in their processing and storage capabilities, they are
still limited by the restrictions of cost, size, energy consump-
tion, radio bandwidth, etc. The ECs themselves are typically
deployed in a hostile environment (e.g., in a small enclosure
without cooling) and generally need to be designed inexpen-
sively; and hence, an EC may also be constrained by energy
consumption, computational resources, and cost. The energy
consumption of IoT systems remains a significant challenge
and various approaches have tried to reduce it. For example,
the IoT devices may use duty cycling, opportunistic sleep, or
DVFS (dynamic voltage frequency scaling), as appropriate.

In this paper, we focus on the application of edge computing
to intelligent transportation systems (ITS), where it may be
used for a range of functionalities including (a) tracking of
suspicious or abnormally behaving vehicles, (b) management
of vehicles belonging to an organization (for example, city
buses, ambulances, delivery vehicles, and refuse collection
trucks), (c) monitoring congested areas or areas that are prone
to accidents, and (d) monitoring impacts of abnormal events
such as flooding, downed power lines, fallen trees, etc. This
environment has all of the characteristics mentioned above
involving deployment in outdoor environment (e.g., cameras
installed on light poles and an EC also hanging off a light pole,
possibly every few Km, receiving camera streams from all the
cameras in its region). Other environments also have similar
issues and the techniques described here are applicable to them
as well; however, for concreteness, we henceforth only speak
of the ITS environment. In our road traffic application, there
is generally no privacy concern so long as the monitoring is
limited to public roads and other public spaces. In applications
where privacy is an issue, it is possible to filter the frames
and send only a subset or part of frames or just the metadata;
however, addressing the privacy issues is beyond the scope of
this paper.

The goal of this paper is to devise an ITS monitoring
solution that addresses the above limitations. It consists of two
components: (a) design of a lightweight and energy-efficient
video-stream analytics algorithm called YLLO that runs on
individual edge devices (EDs) and substantially reduces the
video frames sent to the EC and the processing needs at
the EC itself, and (b) design of another algorithm called
BATS, that exploits the overlaps between the views of multiple
cameras and dynamically adapts to the available transmission

Fig. 1: Hierarchical architecture of edge computing.

bandwidth to the EC. We assume that for each important local
spot to be monitored, there are a few cameras mounted on
light poles on both sides of the road (typically 2-6 cameras in
total), that provide an overlapping field of view of the spot.
These cameras may connect to the EC via an already deployed
cellular technology, including 4G-LTE and the emerging 5G,
and in that case, the ECs could potentially be bundled with
base stations. Other techniques include TV whitespace (i.e.,
the unused gap between TV channels in 470-790MHz range)
and even WiFi. We do not assume a specific technology, but
only consider the impact of bandwidth limitations that are
likely to be present in typical deployments.

YLLO stands for “You Look Less Than Once” since it
avoids full processing of all frames by exploiting the redun-
dancy in a video stream. YLLO borrows basic functions from
other popular single-step algorithms such as variants of the
popular YOLO series of algorithms [2], where YOLO stands
for “You Only Look Once”. BATS stand for “Bandwidth
Adaptive Transmissions of Streams” and adapts the frame
transmission rate to EC according to the available wireless
channel capacity. BATS also assume that there are multiple
cameras located in a place (e.g., same or nearby electric poles)
to provide a good coverage of the entire traffic area.

For evaluation purposes, we captured High Definition Video
Streams (HDVS) at 30 FPS both for real road traffic and
toy cars imitating traffic patterns on the road. As discussed
above, a real EC in this application will implement many
capabilities; however, we consider here a single task that does
require extracting a fine-grain feature of the videos, namely
the identification of the license plates using the open-source
Automated License Plate Reader (ALPR) software [3].1 Using
the accuracy of this task as evaluation metric, we show that
the combination of YLLO and BATS can maintain an object
identification accuracy of over 95%, by only sending ∼5-10%
of all the recorded frames. In the process, we show that our
mechanism saves at least 60% energy at the ED. The savings
at the EC are expected to be even higher because of the fewer
frames sent to ECs that are marked with object IDs, thereby
further reducing the work for EC.

The remainder of this paper is organized as below. Section II
discusses the related work. Section III discusses the YOLOv4
algorithm that forms the basis for our YLLO algorithm.
Section IV presents the YLLO algorithm and compares it
against YOLOv4. Section V formulates the object identifi-
cation optimization problem in a multi-camera environment

1This is only an example task for EC; we are not focused on optimizing
licence plate detection per se.

and presents the BATS algorithm. Experimental evaluation
and results are summarized in section VI. Section VII then
concludes the paper.

II. RelatedWork

Applying CNNs to object classification has been showing
excellent performance improvements recently. In [4], the au-
thors have used CNNs to detect the objects that demonstrate
exceptional performance gains in real-time. Reference [5]
compares the speed and accuracy of various CNN models.
In [6] the authors have developed a cognitive assistance
framework using Google Glass along with edge computing to
provide satisfactory performance. A framework by Glimpse [7]
analyzes data from multiple sources and presents a case
study of filtering unnecessary frames for face detection. The
authors in [8] suggested an application using smartphone
cameras to increase pedestrian safety. This application detects
vehicles approaching the pedestrian using the rear camera and
alerts them. CarSafe [9] presents an Android application that
detects driver fatigue using the front-facing camera along with
tracking road conditions using a rear-face camera. Live video
analytics using edge computing has been increasingly popular
in the research community. Reference [10] has discussed
the feasibility of distributed edge computing architecture for
meeting the real-time requirement of large-scale video an-
alytics. Videostorm [11] is a video analytics platform that
performs query processing on live video streams, optimizing
both the query knobs and resource allocation. Similar to our
work, Chameleon [12] presents a video analytics system that
optimizes the inference accuracy and computational resources
by exploiting the temporal and spatial correlation among video
frames. VideoEdge [13] uses a hierarchical architecture for
edge-based video analytics to maintain higher accuracy in
real-world video queries by placing and merging the queries
for processing. However, it does not discuss the reduction in
bandwidth required when uploading the frames to the cloud
for further analysis. Vigil [14] and LAVEA [15] also explore
edge-based real-time video analytics system by partitioning
the analytics between the edge and the cloud. In [16], [17] the
authors have proposed a roadmap for scaling video analytics
using cross-camera correlations. Similar proposals of edge
computing for video surveillance are studied in [18], [19],
[20]. The proposal that is closest to ours is reported in [21]
where the authors have used video analytics to extract some
relevant information from the frames and send the metadata to
the controller. In contrast, our scheme exploits the correlation
between successive frames and transmits frames that have
substantial change with respect to the previous frames. This
is done via a scene change detection algorithm. The BATS
algorithm then exploits overlaps between camera views to
further avoid redundant frame transmission. Metadata trans-
mission may be adequate in some cases, but this would allow
correlation of only the metadata across multiple views from
same or different cameras. A collaborative detection of fine-
grain features at the edge controller would invariably require
raw frames from the cameras.

2

III. Device Based Object Recognition

Avoiding the transmission of all video frames from edge
devices to the EC requires that the device be able to analyze
the frames for the presence of “interesting” objects so that
the other frames can be either discarded or stored locally
and sent later for archival purposes (if necessary). Thus, the
critical challenge for edge devices is the real-time recognition
of evidence of relevant objects in the video stream.

A. Feature vs. Object Detection

In general, there are two ways to identify frames with
interesting objects: (a) look for features that relate to the
presence of relevant objects, or (b) directly detect and classify
the objects in the stream. From the perspective of real-
time operation on low-end devices, option (a) appears quite
attractive. We initially explored option (a) using state of the
art feature detection methods such as FAST, BRIEF, SIFT,
and ORB [22]. Of these, the combined algorithm “Oriented
FAST and rotated BRIEF” (ORB) is the fastest and designed
for real-time use [23].

Key points are low-level features which do not use
a hierarchical layer-wise representation. Fig. 2 shows
the key-point characterization of a frame using ORB.

Fig. 2: Keypoint based characterization
of a frame (ORB).

The accuracy of key points
is affected by the image
noise, the similarities
between the foreground
and the background, and
high texture repetition.
Under such conditions, it
is challenging to achieve
discriminative features across the frames using ORB or
any other traditional feature detectors. Our experimentation
showed that ORB could indeed work reasonably fast (frame
rate of 26/sec on Lenovo machine, with Intel core i7
generation 10 processor, using 12 GB memory and 1 TB of
HDD). However, the object identification accuracy of ORB
failed to classify objects like cars of different types accurately.
Therefore, after considerable experimentation, we abandoned
option (a) and focused on (b). Fig. 3 shows the detection of
the object with a bounding box, which is of high importance
in our research.

Fig. 3: Object based characterization of
a frame (YLLO).

An accurate object recog-
nition requires deep learn-
ing, such as a convolutional
neural network (CNN) as a
backbone network [24]. The
complexity of CNN depends
on the variety of objects to
be recognized (e.g., vehi-
cles, people, animals, bikes,
etc. in the traffic context) and the discrimination desired such
as vehicle type (e.g., car, minivan, small truck, etc.), color, and
other features. Running such a CNN model on an ED using
HDVS at 30 frames/sec requires high computing power and
not practical given the constraints (explained above).

We are interested in finding frames if the scene has changed
sufficiently for a new object added, to limit the number of
frames sent to the EC. Thus a CNN with a smaller number of
layers may be useful provided that it does not miss interesting
objects or changes to the scene. In particular, we should have
a very low false-negative rate for recognizing the objects in
the scene, but a higher false-positive rate is acceptable. In
addition, the new approach should reliably predict the new
objects and/or the new position of the objects in successive
frames, to skip other frames intelligently. We shall discuss
in detail these issues after an introduction to the primary
approach.

B. Object Detection Algorithms

A variety of algorithms have been proposed in the literature
for object detection [25], [26], but most of them are not appro-
priate for the real-time video-stream use that we are targeting.
The existing object detection algorithms can be classified into
two categories: (A) a two-step process that generates region
proposals at first and then classifies each proposal into different
object categories, and (B) a single-step procedure that regards
object detection as a regression or classification problem for
the entire frame. The first category includes R-CNN, SPP-
net, Fast R-CNN, Faster R-CNN, R-FCN, FPN, and Mask R-
CNN. The second category comprises MultiBox, AttentionNet,
G-CNN, YOLO, SSD, YOLOv2, DSSD, YOLOv3, DSOD,
RetinaNet, YOLOv4 etc. For brevity, we do not discuss
these; a comprehensive review of most of these is presented
by the authors in [2]. Generally, the type (A) methods are
inappropriate for real-time use because of their computational
costs and hence will not be considered.

TABLE I: Comparison of Various Algorithms

Algorithm AP50 Speed
SSD300 43.1 43
SSD512 48.5 22
EfficientDet 512 × 512 52.2 62.5
YOLOv2 608 × 608 48.1 40
YOLOv3 416 × 416 55.3 45
YOLOv3 608 × 608 57.9 20
YOLOv4 416 × 416 62.8 38
YOLOv4 608 × 608 65.7 23

Table I list the performance of some of the algorithms
known for speed measured in Frames Per Second (FPS) and
accuracy measured as Average Precision (AP50). For compari-
son, we also include Faster R-CNN, which is among the fastest
algorithms of type (A). Note that the numbers here are for a
certain combination of CPU and GPU and on a specific dataset
(MS-COCO); therefore, the FPS numbers especially have
no meaning beyond the comparisons shown in the Table. A
modification of YOLOv2 [27], called YOLOv3 [28] improves
accuracy but at the cost of much higher number of layers
(106 vs 32). It is less appropriate for edge device applications
because of its computational cost and memory requirements.
A lighter version of YOLOv3 and YOLOv4 called, YOLOv3-
tiny and YOLOv4-tiny respectively, still has a higher FPS but
its accuracy is compromised [29]. The Single Shot Multi-
Box Detector (SSD) [30] is rather fast and was specifically
designed for mobile devices. However, unlike YOLO, SSD

3

outputs the low resolution version of the classified image
which may be unsuitable for sending to EC since the analytics
done by EC will usually focus on fine-grain features of the
video recognition. In fact, we verified that SSD performs
poorly with the license plate detection task that we assigned
to the EC.

C. An Overview of YOLOv4

In this section, we provide a brief overview of the two most
promising lightweight algorithms, namely YOLOv4 and SSD,
mainly from the perspective of their appropriateness for our
application. As stated earlier, we use the bounding box, and
object detection features of such algorithms, and thus could,
in principle, use any single-step algorithm.

YOLO [31] was the first effort to create a fast-real object
detector with subsequent update to YOLOv2 in 2017 to
increase model performance. This was followed by YOLOv3
and then YOLOv4, generally with more features and hence
better accuracy but with increased processing requirements.
In the following we briefly describe YOLOv4 and its simpler
version YOLOv4tiny.

YOLOv4 is a more complex, deeper network architecture
based on the same principles as YOLOv3 and TinyYOLO,
but with improvements incorporated. The authors examined
the possibilities of combining a large number of state-of-the-
art improvements in object-based neural network detection
with YOLO-based backbone architecture. Among many, they
decided to use: (a) cutting-edge model training techniques such
as mosaic-based data increase and self-adversarial training;
(b) continuously differentiated activation function (Swish and
Mish) and self-normalizing networks (SELU) function; (c)
additional bounding box regression loss term (parametric
intersection over union (IOU) based losses); (d) advanced reg-
ularization methods; (e) state-of-the-art normalization methods
(such as Cross mini-batch normalization). After additional
modification and tuning, the authors optimized YOLOv4’s
performance for both CPU- and GPU-based processing and
showed superiority in both detection accuracy and time re-
quirements on the general object detection dataset. YOLOv4
is twice as fast as EfficientDet (competitive recognition model)
with comparable performance. In addition, AP (Average Pre-
cision) and FPS (Frames Per Second) increased by 10% and
12% compared to YOLOv3 [2].

Any YOLO-based detector will try to find an object in
each grid cell at each central point. An image’s upright
rectangular division makes the grid. Each grid cell has a 32x32
pixel neighborhood, so the number of grid cells depends on
the image size. The vertical and horizontal number of grid
cells is equal to the image height and width divided by 32.
Therefore, the number of objects to detect increases with the
size of the image input. Furthermore, as the entire image
context is used for training, objects from nearby grid cells
can overlap, and each grid cell can be used to detect an
object at different scales. The input image is downsampled
with a stride size of 32 during the propagation process, so the
first detection layer is used to detect large objects. Successive
layers include up-sampling convolution, skip-connections, and

(a) Time series (b) Cumulative distribution

Fig. 4: New car detection per frame during a rush hour traffic.

feature concatenations. The second layer receives a feature
map, which is downsampled with a stride size of 16 that can
detect medium-sized objects. Finally, the third detection layer
receives a downsampled feature map with a stride size 8 to
detect small objects.

Table I shows the comparison of various object detection al-
gorithms. It is seen that YOLOv4 achieves better performance
with comparable or faster speed compared to predecessor
architecture YOLOv3 and Tiny-YOLO.

YOLOv4 also has a simpler version, called YOLOv4-Tiny,
which uses only two YOLO layers (instead of three) and has
fewer anchor boxes for prediction. YOLOv4-Tiny is roughly
8X as fast at inference time and 2/3 as performance as
YOLOv4. We performed experiments on some videos and
observed that both detection and tracking accuracy dropped
by around 30 percent. Because of this, we have decided not
to use YOLOv4-tiny.

Fig. 5: Structure of YLLO Algorithm.

IV. YLLO: Efficient Object Identification in Video streams

A. Motivation for YLLO Algorithm

As stated earlier, our proposed YOLO algorithm which uses
YOLOv4’s basic building blocks and is designed specifically
for continuous video-streams, rather than individual snapshots.
Thus our focus is only exploiting redundancies in the video-
stream to quickly recognize the essential frames for transmis-
sion to the edge controller.

Fig. 4 shows the distribution of the number of new cars
detected in a video that was captured on the road during a
typical rush hour. As seen from this figure, no new objects
(vehicles) are detected in most of the frames (∼97%). This
phenomenon is true for many surveillance applications, includ-
ing occupancy detection in an office building, or face detection
within a cafeteria, etc.

B. Description of YLLO

In the traffic monitoring application, many fast-moving ve-
hicles may enter and exit the scene frequently. YLLO uses the
underlying object recognizer to identify the objects and tracks
them over the successive frame. By doing object recognition,

4

Fig. 6: Histogram difference of video frames

we not only reduce the computational load on the edge device
but also reduce the bandwidth used for frame transmission to
the EC. Depending on the application requirements, the un-
transmitted frames may either be discarded or stored locally by
the edge device for some time (e.g., a few hours) and retrieved
by the EC as-needed basis.

The overall structure of YLLO is shown in Fig. 5. YLLO
uses the coordinates of the detected object and initializes the
object tracker when it receives the first frame. The object
tracker associates each detected object between successive
frames using the bounding box coordinates. To perform this
multiple object tracking task, the Simple Online and Real-time
Tracking (SORT) [32] algorithm is used. YLLO also performs
scene change detection by analyzing inter-frame differences.
Below we explain the components of Fig. 5 separately.

Scene change detection: In most videos, a scene changes
typically slowly, but occasionally abrupt changes do occur.
The scene change detection considers both local (a portion
of the region in a frame) and global (the whole frame) scene
changes. In our scheme, we combine the edge orientation and
histogram-based difference for scene change detection [33].

Edge orientation can represent the object boundaries and
texture structures, thereby providing more semantic informa-
tion about the object shape than the flat regions. This is
based on the Laplacian of the image, defined as the second
order derivative of pixel intensity values. A high Laplacian
value indicates area of rapid change in density. Unfortunately,
the second order derivative makes this approach susceptible
to noise, which we address by first smoothing the spatial
images. In particular, we combine Gaussian Smoothing with
Laplacian Filter for edge detection as in [34]. These filters are
utilized for identifying sudden intensity changes by locating
irregular sharp edges. The Laplacian-Gaussian edge detection
framework convolves the images with a mask to detect zero
crossings of the calculated second derivatives. The pixels that
define local maximum gradient are considered as edges by
the edge detector. Next, for the scene change detection, we
generate Color Difference Histograms (CDH) Hn for edge ori-
entations. Such differences are primarily insensitive to moving
cameras, object motion, and changes in illumination.

In our experiments, given a video frame (color image),
we quantize the luminance (brightness) channel into 10 bins
and the two chrominance channels (U and V components of
YUV system) into 3 bins each. We also quantize the edge
orientations into 18 bins, which corresponds to angle intervals
of 20 degree (similar to [33]). The result is a 10×3×3+18 or
108-dimensional color feature vector. The distance metric for

measuring the similarity between histograms is the L1 norm
defined as:

dn =

108∑
i=1

|Hn(i)−Hn−1(i) | (1)

where H0(i) = 0 for 0 ≤ i ≤ 108. Finally, the scene changes S
is calculated using a threshold T of the distance of histograms:

S = {n | dn ≥T,n = 1,2,...N} (2)
where N is the number of frames.

Fig. 6 shows the histogram difference between successive
frames. For scene change detection, we determined the ap-
propriate threshold T at a color distance score greater than
8500.

Object detection: For object detection we have used
YOLOv4, which is summarized in section III-C.

Object tracking: The SORT algorithm used for object
tracking implements (a) Kalman Filter [35] that predicts the
location of objects for the next frame by using successful
detection from the current frame, and (b) The Hungarian algo-
rithm [36] for optimally solving the association and matching
between predictions and the bounding boxes. The detected
objects between the successive frames that are successfully
associated with a tracked object will inherit the existing object
ID, otherwise a new unique ID is assigned to the object and
the tracker is updated. If none of the detected bounding boxes
can be associated with the tracked bounding box, the tracker
component is deleted. Fig. 7 shows some of the frames that
are sent to the EC upon detecting a new object.

C. Comparison of YLLO and YOLOv4

Dataset: We investigated the performance of our YLLO
mechanism in terms of speed and accuracy. We evaluated the
accuracy and performance of our model to detect vehicles on
two data sets. A data set by Longyin Wen [37], which is
a real-world multi-object detection and multi-object tracking
benchmark, consisting of 10 hours of videos captured at 25
frames per seconds (fps), with resolution of 960×540 pixels.
This data set has more than 140,000 frames with 8250 vehicles
that are manually annotated. Another dataset by Fisher Yu [38]
comprising of over 100,000 images with rich annotations such
as image level tagging, object bounding boxes, drive-able
areas, lane markings, and full-frame instance segmentation.

Ground Truth: In both the datasets, the objects like cars,
trucks, bikes, persons, traffic lights etc. were annotated in the
video by the authors. Therefore, we assess the performance of
our model by comparing results to the ground truth.

Metrics: The primary performance metric for YLLO is de-
tection accuracy. We use detection accuracy as the percentage
of correctly predicted examples out of all predictions, formally
known as TP+TN

TP+FP+TN+FN . The metric parameters are defined as:
• YLLO is said to generate a True Positive (TP) when there

is an object and the model detects it with an IOU against
ground truth box above the threshold. When multiple boxes
detect the same object, the box with the highest IOU is
considered as TP. All other boxes are considered as False
Positives (FP). We set the IOU threshold to 0.5.

5

(a) Frame 1 - YLLO (b) Frame 17 - YLLO (c) Frame 31 - YLLO

Fig. 7: Frames sent for EC when a new object is detected.

• YLLO is said to generate a False Negative (FN) if the object
is present and the predicted box has an IOU < threshold with
ground truth box.

• If the object is not in the image, yet the model detects one
then the prediction is considered as False Positive (FP).
We considered an additional metric called Multiple Object

Tracking Accuracy (MOTA) as defined by Bernadin. [39] to
measure accuracy of YLLO. This metric denotes the char-
acteristics of a tracking system in terms of its accuracy in
recognizing object configurations like localizing the object and
their ability to track objects across the frames consistently.
Table II shows the comparison of the tracking performance of
YOLOv4 along with our proposed YLLO scheme.

TABLE II: Comparison of Original YOLOv4 with YLLO.

Detection Speed Detection MOTA
Algorithm (FPS) Accuracy Accuracy

Dataset1 [37] YOLOv4 8-9 FPS 80.15 % 79.65 %
YLLO 23-24 FPS 86.35 % 88.14 %

Dataset2 [38] YOLOv4 8-9 FPS 79.62 % 79.9 %
YLLO 23-24FPS 86.63 % 88.15 %

The original YOLOv4 model with tracker has no scene
change detection introduced between frames, so all frames are
considered for object detection. The YLLO model with the
tracker is more accurate than the YOLOv4 model with tracker
by introducing a scene change detection between successive
frames before performing classification that reduces the total
number of false positives. The experiments for calculating the
accuracy tests were run on a Lenovo 90HV0005US machine,
with Intel core i7 (generation 10) processor, using 32 GB
memory and 1 TB of HDD. These experiments on a somewhat
dated desktop processor explain how much faster YLLO can
run compared with YOLOv4; the numbers show the perfor-
mance when using Intel Neural compute stick2 (NCS2) [40].
The Intel R© NCS2 is built on the Intel R©MovidiusTM MyriadTM

X VPU featuring 16 programmable shave cores and a ded-
icated neural compute engine for accelerating deep neural
network inferences. The actual numbers will be reduced by
50 percent when run on the same machine configuration
without NCS2. On both datasets, YLLO achieves ∼3-4× speed
as compared to YOLOv4. In particular, YLLO achieves a
frame rate of ∼23-24 FPS which is near-real time, without
compromising the accuracy.

V. BATS: Bandwidth Adaptive Transmissions of Streams
Next, we discuss the second component of our scheme,

namely, an intelligent transmission of the video stream frames
that accounts for the available transmission bandwidth. When
multiple cameras are covering the same scene, it takes advan-
tage of the redundancy in deciding which frames to transmit.

YLLO selectively transmits frames whenever the cameras
detect a new object; however, the available bandwidth may
not allow transmission of all such frames. For this, we exploit
the overlapping coverage areas of multiple cameras to transmit
selective frames, while maximizing the level of coverage.

In a multi-camera system, there may be a significant amount
of coverage area overlaps in between the cameras. For ex-
ample, a pair of cameras at both sides of a highway will
capture approximately the same number of cars passing the
highway. Similarly, two cameras on the same pole on different
angles may have overlapping coverage. Thus, if a user query
asks to capture all the cars passing the highway within a
time interval, then sending frames from one of these cameras
may be sufficient. A set of such cameras monitoring a single
geographic area with a significant amount of overlapping
views form a cluster. BATS provide an intra-cluster algorithm,
which will only transmit the selected frames after eliminating
the redundant/overlapping ones when the wireless channel has
limited channel capacity.

A. Determining the primary cameras

We consider a set of cameras as primary cameras whose
frames are essential for sufficient coverage purposes. For
simplicity, we divide the region into several small grids. Next,
we mark the grids that are covered by these cameras, and
the associated weights based on the quality of coverage of
the grids by the corresponding cameras. Assume that γg is a
binary variable if grid-g is covered by at least one camera and
zero otherwise. Assume that Ccg is a binary variable which
is one if camera-c covers grid-g, and the coverage quality of
camera-c corresponding to grid point g is qcg. xc is a binary
decision variable if camera-c is chosen as a primary camera
and zero otherwise, whereas wc is its weight. Thus to ensure
that none of the viewpoints are missed, we need to at least
accumulate camera-frames such that the amount of coverage
(i.e the number of grids covered) is maximized, whereas the
number of cameras in the primary set is minimized, while
improving the overall quality of coverage. This results in the
following optimization problem:

Maximize
∑
g

γg−α
∑

c

xc/wc +β
∑
g

Qg (3)

subject to C1 : γg ≥ ζ
∑

c

Ccgxc (4)

C2 : Qg = maxc qcgxc (5)
where α, β, ζ are small numbers. A small α ensures

that for two solutions with same coverage, the solution with
fewer cameras and higher weights is chosen. When all these

6

Fig. 8: Illustration of an edge device operations flow.

are identical, then the solution with better overall quality is
chosen, which is ensured by the variable β<<α.

In constraint C1, the parameter ζ ensures that γg is one if
grid-g is covered by at least one camera. Because γg is binary,
it can be at most one irrespective of the number of cameras
covering it. The constraints C2 records the variable Qg, which
is the quality of coverage of a grid-g by at least one of the
primary cameras.

Theorem 1: The primary camera selection problem is NP-
complete.

Proof 1: We prove the NP-completeness of the primary
camera selection problem by considering its special case,
where all the grids are covered by at least one camera, and
the quality of coverage of all the cameras are identical. This
special case can be seen as an instance of the set cover
problem [41] which is known to be NP-complete.

As the primary camera selection problem is NP-complete,
we propose a simple heuristic that flows as follows. We first
mark all the grids as uncovered. At first, the camera with
maximum coverage (calculated in terms of the total number
of uncovered grids) is chosen to be a primary camera. If
multiple cameras have equal coverage, then ties are broken
by selecting the camera with (a) higher weight, and (b) better
quality of coverage. After choosing the first primary camera,
the grids that are covered by the camera is marked as covered.
Then the same process is repeated for choosing the next set
of cameras that maximizes the number of uncovered grids.
The iteration stops when adding more cameras does not result
in exploring any more uncovered grids. In the special case
where all cameras are of identical weights, and all the grids are
covered by at least one camera, the proposed heuristic becomes
the approximation algorithm proposed in [41] that achieves an
approximation ratio of H(n), where n is the number of grids,
and H(n) is the n-th harmonic mean.

B. Collaborative rate adaptation in multi-camera system

We now formulate an optimization problem to maximize
the amount of information availabile from a cluster at the
controller end, with the constraints that (a) the channel ca-
pacity is not overshot, and (b) at the same time the controller
can receive frames from the cameras at a certain minimum
rate. Let us assume that there are C cameras, and the channel
capacity is assumed to be C. The controller can dynamically
measure the channel capacity by periodically measuring the
packet transmission rate and their corresponding losses. Thus
if the time averaged packet loss rate is L and the physical-layer
bit rate is R, then C= R(1−L) [14]

Considering these factors, the weighted proportional fair-
ness within a cluster can be achieved by modeling the utility
function of node i as Ui(ri) =αi.log(ri), where αi is the

normalized weight of the window i. The weights may be
assigned by the controller based on their locations and area
of coverage, orientations and can be time-dependent. Our
objective is to maximize the overall utility of the cluster, i.e.∑N

i=1Ui(ri), after satisfying the required constraints. We also
assume that each frame consumes F bps, thus to avoid the
channel to be overloaded, i.e.

∑N
i=1ri.F ≤C, or

∑N
i=1ri ≤

C
F =M.

Intuitively we can think that the cameras in a cluster work as
a single virtual camera that reports at a maximum rate of
M frames/interval. M is a controlling parameter that controls
the overall sampling rate of the coalition, i.e. if the controller
wants to receive the frames more frequently, it increases M
and vice versa.

Let us denote the set of primary cameras after solving
problem (5) is S . Thus each of these cameras need to transmit
at a rate of R/|S |=S to ensure that any point is tracked at
least at a rate of R, i.e. ri ≥S,∀i ∈ S . For all the other cameras
can transmit at least at a rate of some minimum rate of Rm.
We assume that all the cameras need to transmit at least at a
rate of Rm to ensure that the controller can do some analytic
in regards to the surveillance. Thus the overall optimization
problem becomes:

Maximize
N∑

i=1

Ui(ri)

subject to C1 :
N∑

i=1

ri ≤M,

C2 : ri ≥S,∀i ∈ S , C3 : ri ≥Rm,∀i ∈ S̄

(6)

Algorithm 1 Collaborative Multi-Camera Rate Allocation scheme

1: INPUT : Maximum sampling rate Ri, utility weights αi and M.
2: OUTPUT : Sampling rates ri ∀i ∈ {1,2,...,N}.
3: ri =S, ∀i ∈ S ;
4: ri = Rm, ∀i ∈ S̄ ;
5: Tot =

∑
i ri;

6: M=M−Tot; ‘
7: for each node i = {1,2,...,N} do
8: ri = ri +

αi∑
i∈U αi
M;

9: end for
10: return ri ∀i;

We propose an algorithm to solve this problem, which is
presented in the Algorithm 1, and is addressed centrally at
the edge controller. Algorithm 1 first assigns the minimum
required frame transmission rate for each camera (line 3-4),
and then the total rate is calculated (line 5). The remaining M
is calculated in line 6. After this step the constraints C2−C3
are satisfied.

We then construct the modified optimization problem after
eliminating constraints C2−C3 as follows:

Maximize
N∑

i=1

Ui(ri) subject to C1 :
N∑

i=1

ri ≤M (7)

As log is a concave function, the above problem becomes
a convex optimization problem. Thus by solving the KKT
conditions of problem (7), we obtain ri = αi∑

i∈Uαi
M.

Thus in line 7-9 of Algorithm 1, the remaining M is
then shared proportionately among all the cameras, i.e ri =

7

Fig. 9: Example of a frame where ALPR cannot identify one of the license
plate (i.e. silver car) due to lack of clarity.

ri +
αi∑

i∈Uαi
M. The calculated sampling rates then sent to the

corresponding edge devices.

C. Queue Management

Fig. 8 shows the overall block diagram of the set of steps
executed in an edge device. The selected frames sent by the
YLLO are stored in an outgoing queue, whose maximum
transmission rate is determined by Algorithm 1. Thus, after
getting the maximum allowable transmission rate from the
controller, the individual edge devices set this as the maximum
service rate of their queues. Typically any queue management
policy can be adopted; however, for our experiments we
have adopted a simple packet dropping policy. When the
queue is filled up by a certain threshold Γ, then we drop
ξ percentage of equally spaced packets from the queue. We
believe that dropping the equally spaced packets is suitable
for the streaming applications, rather than dropping some
packets in succession, which may hurt the object identification
accuracy. For our experiments, Γ and ξ are assumed to be 65%
and 20% respectively.

VI. Experimental Evaluation

In this section, we evaluate the performance of our scheme-
with the real video traces. The effectiveness of our schemeis
measured using these metrics: (a) object identification accu-
racy, (b) the fraction of total packets transmitted and, (c)
energy consumed. We pass the frames received by EC to
the license plate detection software (ALPR) and find out the
percentage of vehicle nameplates identified correctly for all the
objects that are classified by YLLO. Fig. 9 shows an example
of a transmitted frame to the EC. Here, one of the license plates
is not identified due to clarity. Unless otherwise mentioned,
the frame resolution is kept as 720p (1280 × 720) which is a
recommended resolution level specified by the ALPR software.

A. Experimental Setup

We have an experimental setup with three machines, which
consists of an EC and two EDs with machine configurations
supporting Intel Neural Compute Stick2. The ED connected to
the camera transmits the relevant frames to the EC whenever
it detects a new object as described in section IV. The EC
then passes these frames to the ALPR software to record the
vehicle number-plates. The EC machine is (6th generation)
2.40GHZ Intel i5-6300U CPU with 32 GB memory and 1TB
SSD with Linux Ubuntu 18.04, and among the two EDs, ED1

(a) Video from car dashboard (b) Video from static cameras

Fig. 10: Vehicle identification accuracy and % of frame transmissions for
independent transmissions.

(Machine1) sports a recent (8th generation) 1.80GHz Intel
i7 CPU, 16GB memory, 512GB SSD with Windows-10 OS.
ED2 (Machine2) is (8th generation) 3.20GHz Intel i7 CPU,
32GB memory, 1TB HDD with Linux Ubuntu 18.04. All the
algorithms are written in Python3.

B. Performance of transmitting frames independently

We first evaluate the performance when each camera trans-
mits the frames independently to the EC. We collected video
traces from four different environments around the Philadel-
phia metropolitan area. We have recorded a total of 10 video
traces with ∼45,000 image frames/video for moving camera
and 8 video traces for static camera.

For videos captured using a moving camera (see Fig. 10(a)),
the object identification accuracy is more than 95% for all
video, and the frame transmitted to EC is around ∼20-30%.
The inaccuracy of 5% arises mainly because new frames are
sent to the EC whenever the cameras detect a new object.
This selective transmission can cause some frames to be
incomplete or obscure views, thereby hindering the ALPR
software incorrectly identifying the nameplate. For video from
a static source (see Fig. 10(b)), the scheme achieves the same
high accuracy level of around 95% by transmitting only ∼5-
11% of its captured frames. In both cases, the lower frame
rate directly equates to energy saving in both the ED and EC.

Fig. 11: Power consumption for moving camera videos.

C. Energy Consumption Analysis

Energy consumption is a primary concern in video surveil-
lance since video cameras collect a vast amount of data that
must be transmitted to the edge controller over the wireless
link. A significant part of the energy consumption in a smart
camera is due to data transmission and the computation energy
of local video frame processing. As part of additional en-
ergy evaluation of the proposed YLLO algorithm, tests were

8

(a) Dashboard video (b) Static Camera Capture

Fig. 12: Energy & accuracy of YLLO vs YOLOv4 at 30 FPS.

(a) Dashboard video (b) Static Camera Capture

Fig. 13: Energy & Accuracy of YLLO vs YOLOv4 at 15FPS.

conducted with multiple HD video streams on the EDs with
specifications listed above. We compared the test results with
energy consumed by YOLOv4 at two frame rates of 30 and 15
FPS. In [12], authors have found that the frame sampling rate
independently impacts accuracy. We used a single-phase watt-
meter to record the average AC power consumption for both
machines (with batteries removed). To minimize influence of
other processes, all unnecessary background jobs and services
were terminated. The power measurements reported exclude
the idle power consumption when the machines are not run-
ning our scheme. It also excludes the power consumption of
the power adapter itself.

1) Energy Consumption Analysis of Video Traces from
Moving Camera: Fig. 11 shows the comparison of average
power vs. time-taken by our scheme vs YOLOv4. It can be
noted that our scheme in both the machines takes less than
∼50% the time taken by original YOLOv4. This reduction
is mainly due to intelligently avoiding unnecessary frame
processing. Yet, the identification accuracy remains over 95%
for all video traces, much better than the YOLOv4 accuracy.
The reason for the inaccuracy in YOLOv4 is that sending
redundant frames to the EC increase the chance of identifying
false positives in license plate recognition. As a result, there
is a reduction incorrectly identified license plates compared to
YLLO. On the other hand, YLLO keeps track of objects with
specific object IDs and does not send a frame if the object IDs
stay the same for two consecutive frames.

Fig. 12 shows the energy consumption (in Joules on the
left axis) and accuracy (as a percentage on the right axis) of
YLLO for 30 FPS over different video traces. The comparison
is shown for both Machine1 and Machine2. Also, while
Fig. 12(a) is for videos taken from car dashboard on busy
streets, Fig. 12(b) is for videos taken from static camera in a
residential street. It is seen that YLLO consumes only about
40% of the energy of YOLOv4, and yet can provide substan-
tially higher accuracy. The accuracies are 95% (YLLO) vs.
87.5% (YOLOv4) in Fig. 12(a) and increase somewhat (96%
YLLO vs. 89.5% YOLOv4) for both algorithms with statically

placed cameras in Fig. 12(b). This is attributed to objects (e.g.,
buildings, parked cars, trees, etc.) remain static from frame to
frame and are easily discounted in the processing.

A similar situation is seen in Fig. 13 where we eliminate
alternate frames and thereby run the videos at 15 FPS. Both
algorithms suffer accuracy loss in these cases, as expected.
However, YLLO still consumes only about 40% of the energy
of YOLOv4 and still manages to beat YOLOv4 in accuracy
by 5 percentage points (90% vs. about 85%). At both frame
rates, machine 1 has lower power consumption due to energy
efficient CPU and DRAM, and faster SSD (newer model).

Fig. 14: Percentage of frames
transmitted to EC.

The number of network calls
to EC (for license plate reading)
is another contributor to reduced
energy consumption in YLLO.
Fig. 14 shows the total network
calls by YLLO (to EC) is re-
duced by 75% because of selec-
tive frame transmission (as ex-
plained earlier). In contrast, the
number of network calls made in
YOLOv4 is proportional to the
number of frames recorded in the
video frames. This reduction in network calls directly trans-
lates into lower EC computing power requirements and a
decrease in network BW usage for communication between
ED and EC. That is, using our schemewill cut down the
bandwidth needs to about 1/4th of the original. This, in turn,
can reduce the energy consumption of the device’s radio,
although the details very much depend on the communications
technology used and energy saving aspects such as batching
of transmissions, use of low power modes for the transmitter
and receiver, etc.

Fig. 15: Mean and variance of per frame energy.

Fig. 16: Variation of energy consumption on different trained models.

2) Per-Frame Energy Consumption: To better understand
the energy results, we further analyzed the energy consumption
across various video streams and compared the per-frame
energy consumption between YOLOv4 and YLLO. Fig. 15
shows this behavior across the 10 dashboard videos, both with

9

(a) Camera1 (b) Camera2 (c) Camera3

Fig. 17: (a)-(c) Videos captured by 3 cameras with significant overlap in coverage area.

(a) Frac of frames (b) Accuracy vs. Video ID (c) Accuracy vs. Channel capacity

Fig. 18: (a) Fraction of frames transmitted by different cameras, (b) Accuracy and (c) channel capacities of BATS vs. simpler mechanisms.

30 FPS and 15 FPS (with the line in the middle separating
the 30 FPS case from 15 FPS). The graph shows the mean
energy in KJ and the vertical bars show the variation across
frames of each video. It is seen that the variation in the mean
energy across videos is rather limited, and the variation across
frames in a video is also quite small. Thus, it is meaningful to
speak of per-frame energy consumption in that the total energy
consumption for a video of this type can be obtained by simply
considering the total number of frames. We believe that this
also applies to the frame processing in the EC, although we
have not conducted detailed experiments directly.

3) Energy Consumption Analysis of Trained Models: To
understand the variation in energy consumption of YOLOv4
as a function of number of objects that it can recognize,
we retrained it to detect five types of objects, namely cars,
trucks, bicycles, busses and people. (The original YOLOv4
was trained on 80 categories of object classes [42].) We used
the pretrained weights of YOLOv4, built a new training dataset
along with required modifications in the configuration file.
The training was conducted on 2080 Ti GPU. We evaluated
the energy consumption with a few videos of both the static
camera and the dashboard cameras in both models. Fig. 16
shows the results. It can be seen that the average difference
in energy consumption is around 10-11%. While this is a
significant energy saving, it may not be worthwhile. Note that
many types of objects can occasionally appear on the road
(e.g., discarded boxes, animals, rocks, etc.). We do not want
to miss such unusual objects by training the algorithm on only
the everyday objects (e.g., cars, pedestrians, etc.)

D. Performance of Collaborative Frame Transmissions

We evaluate the performance in a multi-camera network
where there is a significant overlap of coverage areas between
the cameras. The purpose of this experiment is to examine
to what extent BATS can maintain the accuracy as wireless
capacity becomes scare, by exploiting the overlaps in between
the camera coverage.

Fig. 19: Object identification accuracy with different frame resolutions.

We recorded video traces from 3 cameras deployed in our
university, with a significant amount of coverage area overlap.
Fig. 17 shows the views of these 3 cameras showing significant
overlaps in their coverage areas. We consider camera-1 as
primary camera whose frames are essential for identifying
the vehicle nameplates. These cameras log video traces syn-
chronously for around an hour with ∼36,000 image frames.

We compare the accuracy of BATS with two approaches:
(a) a round-robin approach that cycles through all the cameras
within a cluster in a round-robin manner to upload the frames
and (b) a single-camera approach that arbitrarily selects a
single camera to upload the frames. The average frame size
from the cameras is around ∼2.5 MB. We are using the H.264
codec standard for compression which provides approximately
20× compression.

E. Impact of Frame Resolution on Detection Accuracy

Fig. 18(a) shows the fraction of frames transmitted by
different cameras, which confirms that the primary camera (i.e.
camera 1) transmits more than 95% of the frames as compared
to the secondary cameras. In Fig. 18(b),we assume that the
channel capacity to be equal to 300 kbps. Across all videos
(i.e video 1 to video 8) in Fig. 18(b) clearly shows the object
detection accuracy of BATS increases by ∼4× compared to the
single-camera and ∼2× compared to round-robin schemes.

Next, using different channel capacities (x-axis), we show
in Fig. 18(c) the average number-plate identification accuracy
(y-axis) of all the videos. These figures show the effectiveness
of the collaborative frame transmission policy of BATS as

10

(a) (b)

Fig. 20: (a) The experimental setup in an indoor environment with six cameras, and their (b) coverage areas.

(a) Camera1 (b) Camera2 (c) Camera3

(d) Camera4 (e) Camera5 (f) Camera6

(g) (h)

Fig. 21: (a)-(f) Videos captured from 6 cameras showing effect of coverage area overlaps. (g) Percentage of frames transmitted to EC. (h) Accuracy of our
schemeagainst simpler mechanisms.

opposed to the independent transmissions. In particular, the
accuracy improves significantly as the channel capacity creases
from 25 kbps to 300 kbps, but saturates after that.

We evaluate the object detection accuracy of our schemefor
different frame resolutions. In Fig. 19, we vary the frame
resolution from 1280 × 720 to 854 × 480, which results in
an accuracy degradation of 97% to 20%. This is because the
performance of the ALPR software degrades significantly with
lower resolution. In particular, it goes below 80% with a reso-
lution of less than 920 × 720. However, frame resolution can
be a tuning parameter that the EC can exploit in applications
where it only needs to monitor the number of objects passing,
rather than doing some deep analytics on the frames like the
number-plate identification.

F. Performance in Multi-Camera Environment

As suitable datasets in a multi-camera environment with
partial area overlaps are relatively sparse, we experimented
with toy cars setup in an indoor environment. To imitate the
scenario of partial area coverage, we place six cameras as

shown in Fig. 20(a) as if they are placed by the two sides of
a road. We printed the license plates and stick them on both
sides of these cars (putting license plates on front and rear end
is a requirement in 31 states in USA). This ensured that their
license plates could be read by cameras that can see the cars
from possible sides.

We divide the coverage areas into 9×4 grids, and record
the area of coverage by these cameras in Fig. 20(b). From
Fig. 20(b) we can determine (C1,C2,C5,C6) as primary cam-
eras and (C3,C4) as secondary cameras. Fig. 21(a)-(f) show the
snapshot of the videos captured by these six cameras at any
time instance, which clearly shows the effects of coverage area
overlaps that can be exploited for suppressing redundancy.

Fig. 21(g) shows the fraction of frames transmitted by
different cameras, where the channel capacity is assumed to be
200 kbps. It is evident that the primary cameras transmit ∼22%
of all the frames whereas the secondary ones on transmit a
tiny fraction of ∼5-6%. This confirms the ability of BATS in
redundancy suppression for better channel utilization.

Fig. 21(h) shows the accuracy of identifying the license-

11

plates of BATS as opposed to a single camera and round-robin
schemes, with varying channel capacities. BATS improves the
license-plate detection accuracy by ∼4 times as compared
to the single camera scenario. As compared to the round-
robin scenario, BATS enhance the accuracy by ∼65-67%. The
accuracy improves till the channel capacity is 300 kbps and
saturates beyond that.

This reduction in the number of frames can also provide
corresponding energy savings in the radio transmitters if
suitable power saving mechanisms are available and engaged.
For example, IEEE 802.11ah includes power saving mode
using the Target Wake Time (TWT) mechanism [43], [44] that
permits the transmitter to enter into a sleep state occasionally.
During their sleep state, the incoming packets can be buffered
and transmitted when the radios wake up. There is an energy-
latency tradeoff here which needs to be adjusted depending on
the application requirements.

VII. Conclusions
In this paper, we have developed a lightweight object

detection technique called YLLO for video streams that
significantly reduces the number of frame transmissions to
the edge controllers (ECs) while still maintaining the object
identification accuracy of more than 95%. In addition, our
BATS scheme can further reduce the frame rate by exploiting
coverage overlaps among multiple cameras under the control
of the same EC. Our notion of overlap between cameras
is rather simplistic and static; it is possible to have more
semantically significant notion by exploiting techniques like
homography transformation of overlapping camera views,
inter-camera feature correspondences, etc.

Acknowledgements
This research was support by NSF grant CNS-1527346. The

authors would like to acknowledge the help of Dr. Sanjeev
Sondur in doing energy consumption measurements.

References
[1] A. Jolfaei et al., “Data security in multiparty edge computing environ-

ments,” GOMACTECH, 2019.
[2] A. Bochkovskiy et al., “Yolov4: Optimal speed and accuracy of object

detection,” arXiv preprint arXiv:2004.10934, 2020.
[3] “Opensource Automatic License Plate Recognition,” http://www.

openalpr.com/cloud-api.html.
[4] A. Krizhevsky et al., “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[5] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional
object detectors,” in IEEE CVPR, 2017, pp. 7310–7311.

[6] K. Ha et al., “Towards wearable cognitive assistance,” in ACM Mobisys,
2014, pp. 68–81.

[7] S. Han et al., “Glimpsedata: Towards continuous vision-based personal
analytics,” in ACM WPA, 2014, pp. 31–36.

[8] T. Wang et al., “Walksafe: a pedestrian safety app for mobile phone
users who walk and talk while crossing roads,” in ACM HotMobile,
2012.

[9] C.-W. You et al., “Carsafe app: Alerting drowsy and distracted drivers
using dual cameras on smartphones,” in ACM Mobisys, 2013, pp. 13–26.

[10] G. Ananthanarayanan et al., “Real-time video analytics: The killer app
for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58–67, 2017.

[11] H. Zhang et al., “Live video analytics at scale with approximation and
delay-tolerance,” in USENIX NSDI, 2017, pp. 377–392.

[12] J. Jiang et al., “Chameleon: scalable adaptation of video analytics,” in
ACM SIGCOMM, 2018, pp. 253–266.

[13] C.-C. Hung et al., “Videoedge: Processing camera streams using hier-
archical clusters,” in IEEE/ACM SEC, 2018, pp. 115–131.

[14] T. Zhang et al., “The design and implementation of a wireless video
surveillance system,” in ACM MobiCom, 2015, pp. 426–438.

[15] S. Yi et al., “LAVEA: latency-aware video analytics on edge computing
platform,” in ACM/IEEE SEC, 2017, pp. 15:1–15:13.

[16] S. Jain et al., “Scaling video analytics systems to large camera deploy-
ments,” in HotMobile, 2019, pp. 9–14.

[17] A. Misra et al., “Dependable machine intelligence at the tactical edge,”
vol. 11006, pp. 64 – 77, 2019.

[18] S. Y. Nikouei et al., “Smart surveillance as an edge network service:
From harr-cascade, SVM to a lightweight CNN,” in IEEE CIC, 2018,
pp. 256–265.

[19] J. Wang et al., “Elastic urban video surveillance system using edge
computing,” in SmartIoT, 2017, pp. 7:1–7:6.

[20] H. Sun et al., “VU: video usefulness and its application in large-scale
video surveillance systems: an early experience,” in SmartIoT, 2017, pp.
6:1–6:6.

[21] J. Barthelemy et al., “Edge-computing video analytics for real-time
traffic monitoring in a smart city,” Sensors, vol. 19, no. 9, p. 2048,
2019.

[22] E. Salahat et al., “Recent advances in features extraction and description
algorithms: A comprehensive survey,” in IEEE ICIT, 2017, pp. 1059–
1063.

[23] E. Karami et al., “Image matching using sift, surf, brief and
orb: performance comparison for distorted images,” arXiv preprint
arXiv:1710.02726, 2017.

[24] A. B. Amjoud et al., “Convolutional neural networks backbones for
object detection,” in ICISP, 2020, pp. 282–289.

[25] J. Han et al., “Advanced deep-learning techniques for salient and
category-specific object detection: A survey,” IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 84–100, Jan 2018.

[26] L. Weng, “Object detection part 4: Fast detection models,”
https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-
4.html, Dec 2018.

[27] J. Redmon et al., “Yolo9000: better, faster, stronger,” in IEEE CVPR,
2017, pp. 7263–7271.

[28] J. Redmon et al., “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[29] Y. Cai et al., “Yolobile: Real-time object detection on mobile devices via
compression-compilation co-design,” arXiv preprint arXiv:2009.05697,
2020.

[30] W. Liu et al., “SSD: single shot multibox detector,” CoRR, vol.
abs/1512.02325, 2015.

[31] J. Redmon et al., “You only look once: Unified, real-time object
detection,” CoRR, vol. abs/1506.02640, 2015.

[32] A. Bewley et al., “Simple online and realtime tracking,” in IEEE ICIP,
2016, pp. 3464–3468.

[33] G.-H. Liu et al., “Content-based image retrieval using color difference
histogram,” Pattern recognition, vol. 46, no. 1, pp. 188–198, 2013.

[34] S. Paris et al., “Local laplacian filters: Edge-aware image processing
with a laplacian pyramid.” ACM Trans. Graph., vol. 30, no. 4, p. 68,
2011.

[35] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[36] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[37] L. Wen et al., “Ua-detrac: A new benchmark and protocol for multi-
object detection and tracking,” arXiv CoRR, vol. abs/1511.04136, 2015.

[38] F. Yu et al., “Bdd100k: A diverse driving video database with scalable
annotation tooling,” arXiv preprint arXiv:1805.04687, 2018.

[39] K. Bernardin et al., “Multiple object tracking performance metrics
and evaluation in a smart room environment,” in IEEE International
Workshop on Visual Surveillance, 2006.

[40] “Intel Neural Compute Stick2,” https://ark.intel.com/content/www/us/en/
ark/products/140109/intel-neural-compute-stick-2.html.

[41] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math.
Oper. Res., vol. 4, no. 3, pp. 233–235, 1979.

[42] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in ECCV,
2014, pp. 740–755.

[43] E. M. Khorov et al., “A tutorial on IEEE 802.11ax high efficiency
wlans,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 197–216,
2019.

[44] E. M. Khorov et al., “A survey on IEEE 802.11ah: An enabling
networking technology for smart cities,” Comput. Commun., vol. 58,
pp. 53–69, 2015.

12

