
1

A Neighborhood Aware Caching and Interest
Dissemination Scheme for Content Centric

Networks
Amitangshu Pal and Krishna Kant

Computer and Information Sciences, Temple University, Philadelphia, PA 19122
E-mail:{amitangshu.pal,kkant}@temple.edu

Abstract—Content-Centric Networking (CCN) is a promising framework for the next generation Internet architecture, by exploiting
ubiquitous in-network caching to minimize content delivery latency and reducing the network traffic. In this paper, we introduce a
neighborhood aware mechanism for content caching, named Neighborhood Aware Caching and Interest Dissemination (NACID) that
accounts for the popularity of contents and how close the content copies are there in the neighborhood. We have adopted a Bloom
Filter based dissemination of caching information in the neighborhood so that its overhead remains small. Given the neighborhood
cached contents the proposed scheme decide when and how to handle the additional caching of content and its eviction. Simulation
results show that NACID provides an increase in upto ∼5 times of cache hits, and decrease in upto ∼30% the number of hops required
to get the contents than existing CCN caching policies. We also study different heterogeneous cache memory allocation strategies and
show that there is no real incentives for using such cache allocation strategies as opposed to identical cache assignment across the
content routers.

Index Terms—Content centric networks, Caching, Interest dissemination, Content popularity, Zipf distribution.

F

1 INTRODUCTION

The tremendous growth of Internet traffic in recent past pro-
pels the necessity of modifying the Internet architecture in
an efficient way. Based on Cisco’s VNI report [1], the Internet
traffic volume has increased eight time in the last five years.
The annual traffic volume is anticipated to increase by 29%.
Among the Internet traffic, the video traffic itself account for
86% of all the IP traffic in 2016 [1], which will continue to
grow due to the present growing demands for bandwidth-
intensive services such as high definition VoD or time-shift
TV services [2].

Most of these traffic are content retrieval applications.
This compels the Internet designers to shift from sender-
driven end-to-end communication paradigm to receiver-
driven content retrieval paradigm [3]. The emerging
information-centric networking (ICN) [4] architectures are
based on the observation that unlike the classical Internet
architecture that is based on the addresses of nodes and
routing between these addresses, the new Internet architec-
ture should instead focus on information availability and
demand. That is, a piece of information should be identified
by its own characteristics rather than where it resides,
and its spread in the network should be controlled by
information availability, demands, and delivery needs (e.g.,
hard real time, transactional, etc.). These ideas have been
investigated generally under the name content-centric net-
working (CCN) [5], [6], [7], and more specifically under the
NSF FIA project called Named data networking (NDN) [8].
Thus a key concern in ICN/CCN/NDN is where to host
the content most efficiently based on the demands that may
be changing dynamically. This is done by using a publish-

subscribe model to match the demand with availability and
a dynamic caching mechanism to move the hosting of the
content closer to the demand points.

In-network content caching is not new and has been
studied in other network domains such as Web service,
P2P, CDN [9], [10], [11]. However such mechanism is not
suitable for directly applied in CCN caching, due to the
lack of unique and universal content name. For example,
in Web caching if two copies of the same content are placed
in different servers of different content providers, different
URLs are used to identify and access the content [3]. This
makes the existing Web caching or CDN caching unsuitable
for CCN caching.

Caching of contents in CCN is also well studied [12],
[13], [14], [15]; however, all of the schemes that we are aware
of use the notion of path caching. That is, if the content is
located at an origin node x, and node y requests it, most
schemes cache it along the path, although the decisions
about which nodes cache it varies. For example, the content
may be cached at every node in the path, at the next node
down from the last caching place, etc. In contrast we pro-
pose a Neighborhood Aware Caching and Interest Dissemination
(NACID) scheme [16] where the caching decision is made
based on whether there is any copy of the content exist in
the neighborhood of the requesting node, and how far the
requester needs to go to fetch the content. We link this cost
to the predicted demand for the content and its obsolescence
rate. The simplest characterization of the neighborhood size
can be in terms of number of hops from the requesting
node; however, more sophisticated metrics such as the a
given delay limit can also be considered. Also in a CCN
different links have cost (capacities, traffic volumes, delay

This research was supported by the NSF grant CNS-1542839.

Fig. 1: An abstract model of PCDN. “R” denotes a retailer.

etc.), thus in NACID the nodes need to consider the routes
in between their neighborhood content stores along with
their route cost, before evicting the content.

The main contributions of this paper in enabling neigh-
borhood aware caching are as follows. First, we present an
efficient dissemination mechanism of caching information
in the neighborhood so that its overhead remains small. We
propose a Bloom Filter based light-weight cache dissemina-
tion approach for doing this. Given these, we next propose
a two-level caching architecture in NACID. In one level the
caching decisions are taken in a synchronous (i.e., driven by
the arrivals of the newer contents) manner, whereas asyn-
chronous (i.e., done periodically as a housekeeping activity)
policy is adopted for the other level. These two operations
need to be done carefully else they could result in thrashing,
bandwidth waste, and additional delays. We develop a two-
level (short-term and long-term) caching scheme to address
these issues. The paper quantifies the advantages of the
proposed approach via extensive simulation studies that
show that the NACID increases the cache-hit ratio upto
∼5 times, whereas the hop-reduction percentage goes down
upto ∼30%.

The outline of this paper is as follows. Section 3 proposes
the system model, content popularity distribution and net-
work architecture assumed in our scheme. Section 5 intro-
duces the proposed neighborhood aware caching scheme
and describes the operation and interaction of the two-
level caching mechanism. Section 6 shows the simulation
comparison of NACID against other well-known existing
schemes. Relevant literatures and discussions are summa-
rized in section 7. Finally, the paper is conclude in section 8.

2 MOTIVATION BEHIND NACID
Interestingly the key motivation behind this work stems
from our recent efforts for building an efficient Perishable
Commodity Distribution Networks (PCDN) [17], [18], [19],
[20]. We observe that a significant amount of synergies
exist between the PCDN logistics and the CCN architecture.
Fig. 1 shows a typical PCDN logistics architecture, which
also works as a producer-consumer model similar to CCN.
In PCDN the commodities move from “source” to “desti-
nation” endpoints, the former being farms and manufac-
turing/assembly plants, and the latter retailers and other
large customers (e.g., restaurants, hospitals), though there
is generally no transportation in the other direction. Com-
modities flow from source to destination via a number of in-
termediate points which include local, regional, and global
distribution centers as shown in Fig. 1. These nodes can
store full or empty containers, change container contents (by
removing, adding, or exchanging packages), load/unload
containers on carriers, handle damage/misdelivery, etc.

Perishability is a key QoS driver in PCDN. Products
often deteriorate in quality or in value/usefulness as a
function of flow time through the logistics system. The
deterioration as a function of time t can be described by a
non-decreasing function that we henceforth denote as ζ(t).
In general, ζ(t) is linear for fruits or vegetables and expo-
nential for fish/meat. In CCN too the value of information
declines steadily with the delay incurred. One significant
example of perishable content is the breaking news stories
that are typically updated periodically based on the new
developments. The older versions get progressively less
useful, and at some point worthless.

At the same time in PCDN the popular commodities are
stored and ordered in large quantity compared to the others,
which again is identical to the caching of more popular
contents against the rare ones. Thus proactively storing a
popular commodity in logistics is often beneficial compared
to the unpopular ones. In PCDN a sudden demand at
a retailer can be satisfied from some nearby distribution
points or retailers (instead of bringing all the way from the
“source”). This is technically known as lateral distribution
in logistics. CCN has the similar characteristics in that the
content can be fetched from some neighboring cache, rather
than bringing from the actual source server as in IP.

The above producer-consumer based PCDN model has
three key fundamentals concepts that we want to capture in
NACID. First is the perishability characteristics of Internet
contents which needs to be stitched into the network model
so that the users get up-to-date contents upon request.
Second is the notion of dynamic popularity of the contents,
and we use it to model a benefit function of caching (or
not) the contents in CCN routers. Third is to model the
lateral transfer from neighborhood caches, which results
in neighborhood aware caching in CCN context. We next
discuss these points in section 3 and section 5.

3 THE SYSTEM MODEL

3.1 Content Popularity Distribution
In CCN the content popularity is determined by how often
a piece of content is requested. Recent studies [21], [22]
show that the users are attracted by only few contents, while
others are accessed rarely. Infact a significant portion of the
contents are one-timers. Therefore, the content popularity
is commonly modeled with the Zipf distribution function,
which states that the size of the i-th largest occurrence of an
event is inversely proportional to its rank. In a Zipf distri-
bution, out of the population ofM contents, the frequency
of the i-th content is given by

f(i, α,M) =
1
iα∑M
j=1

1
jα

=
1
iα

HM,α
(1)

where α is the Zipf exponent and HM,α =
∑M
j=1

1
jα the

generalized harmonic number of order α. Formally in the
Zipf distribution, the relative probability of a request for the
i-th most popular content is proportional to 1

iα . In literature
the range of α is varied from 0.6 [23] to 2.5 [24].

By taking logarithmic values on both side in equation(2),
we obtain

logf(i, α,M) = log

(
1

HM,α

)
− αlogi (2)

2

(a) (b) (c)

Fig. 2: Frequency of content accesses versus content ranking for (a) Kosarak (α = 1.99) and (b) Retail (α = 1.55) traces [25]. (c)
Cumulative distribution of content demands vs content ranking for different traces.

which means the distribution function is a linear in a log-
arithmic scale. When α = 0, it corresponds to a uniform
distribution. When α > 1, the frequency of the less popular
contents tend to drop quickly.

To illustrate the effects of Zipf based popularity dis-
tribution, we use two real datasets, named Kosarak and
Retail, that have been widely used in the data-mining
literature and follow Zipf distribution. Kosarak is a click-
stream dataset of a Hungarian online news portal that
has been anonymized, and consists of transactions, each
of which is comprised of several integer items. Retail is
a retail market based data obtained from a Belgium store.
In our experiments, we consider every single item of these
traces in serial order. Fig. 4(a)-(b) show the number of times
a content has been accessed versus the ordering of the
content in the trace. In Fig. 4(a), the contents are sorted (or
ordered) based on their frequency in the trace file, where
order 1 is the most frequently accessed content. From this
figure we can observe that ignoring the far end of the tail,
the curve fits a straight line (in the log-log scale) reasonably
well, which implies that the content access frequency is
proportional to 1/iα as stated in equation (2).

3.2 Content Popularity vs Freshness
For Zipf distribution, the cumulative probability that one
of the most popular k contents are accessed is given by
φ(k) ≈

(
k
M
)1−α

[26], when 0 < α < 1. Thus for larger
α, more content requests are concentrated on few popular
contents, whereas less popular contents are accessed less
frequently. Fig. 4(c) shows the CDF of occurrences of the
top r% contents in four traces (Kosarak, Retail, Q148,
Nasa obtained from [25]). From this figure we can observe
that top 1% of the contents are accessed for about 80% of
the time in case of Q148 traces, whereas varies in between
30-60% for others. Whereas the top 10% of the contents
are accessed more than 60% of the time in all traces. Thus
identifying the hot contents in CCN, which varies both
spatially and temporally, are extremely important to take
effective caching decisions. We thus model some content
popularity prediction schemes in section 4, which are used
in content caching in section 5.

Content freshness is another important requirement of
any CCN architecture. Contents are updated occasionally
in today’s Internet, the frequency of which is dependent en-
tirely on the type of the contents. For example, news stories

Actual server

Repo

Fig. 3: The proposed CCN architecture.

become stale sooner compared to reality shows or movies
since they are constantly updated. Also, different types
of news have different update rates and useful life, e.g.,
those concerning a fast moving disaster vs. normal events.
Ensuring content freshness is crucial to serve the clients
with up to date information [27]. To incorporate content
freshness in NACID, we consider a few CCN nodes, defined
as Repositories (Repo in short) that are deployed in different
regions, with larger volume compared to the routers. Such
nodes act similar to the content delivery routers, and are
supported in NDN architecture [8]. These nodes work as
content servers in their neighborhood regions, as shown in
Fig. 3. Such an architecture is very similar to the PCDN
architecture shown in Fig. 1, where the local, regional and
global distribution centers correspond to the content routers,
Repos and actual server respectively. In such an architecture
Repo periodically/occasionally consults with the original
servers to check whether certain contents are stale and/or
expired. Whenever it finds a change in some contents, it
broadcasts it’s neighboring routers using a Bloom Filter
to purge those contents. Thus further requests for those
contents are directed towards the Repo, which sends fresh
and consistent contents. In this paper, we only consider
exploring caching and content interest dissemination mech-
anism for fetching the contents from a Repo to a number of
neighboring content routers, whereas the details of the mes-
sage passing in between the Repos and the actual servers
for maintaining fresh contents is beyond the scope of this
paper.

4 CONTENT POPULARITY PREDICTION MODEL

The popularity of a content varies from region to region. For
example, a regional news or sport may be popular within
a region but will be rarely accessed by the users in other

3

(a)

(b)

Fig. 4: Comparison of LRU and other popularity prediction
based content caching schemes with (a) cache size = 100, and
(b) cache size = 500 for Kosarak trace.

regions. Thus the popularities of programs with regional di-
alects or importance greatly varies spatially and temporally.
To predict this dynamic and regional popularity, we first
consider few well-known time-series prediction schemes as
mentioned below. These prediction models will run at each
CCN routers independently to capture the regional variation
of content popularities.

Simple moving average model (SMA): We first describe
a simple content demand prediction model using the simple
moving average model (SMA) [28]. SMA is used for predicting
time series, where the value of Y at time t + 1 is predicted
by taking the simple average of the most recent m values,
i.e. Ŷt+1 = (Yt + Yt−1 + . . .+ Yt−m+1) /m.

Exponentially weighted moving average model
(EWMA): EWMA is the most widely used time series pre-
diction model. It weights the past data in an exponentially
decreasing manner. Mathematically the value of Y at time
t+1 is computed by interpolating between the last observed
value (Yt) and the forecast that had been made for it (Ŷt), i.e.
Ŷt+1 = αYt + (1− α)Ŷt, where α is the smoothing constant

Fig. 5: An illustrative example for comparing LRU and popu-
larity prediction based caching.

in between 0 and 1.
Autoregressive (AR) model: An Autoregressive (AR)

model is one of the most popular methods for modeling
and predicting future values of a time series [29]. Given a
time series Y , an AR model of order p is defined as:

Yt =

p∑
i=1

αiYt−i + εt (3)

where α1, . . . , αp are the parameters of the model and ε is
a white noise error term. The error terms, εt, are generally
assumed to be Gaussian i.i.d. random variables with zero
mean and constant variance.

To evaluate the effectiveness of prediction based caching
against the least recently used (LRU) based caching, we use a
real dataset named Kosarak [25] that is widely used and
reported in the data mining literature. Fig. 4(b)-(c) show
the comparison of LRU, SMA, EWMA, and AR (ties due
to identical Ŷ are broken based on the content recency) with
cache size 100 and 500 respectively, where the contents are
assumed to arrive at one per second. For SMA we assume
m = 5 for Fig. 4. For AR model we assume p and q to be
3. From these figures we can observe that the above content
access prediction based schemes improves the cache hit by
∼10-12% in comparison to LRU.

Similar improvements are also observed with other well-
known trace files [25], [30]. Such improvement is explained
in Fig. 5, where A and B are two popular contents and
C is relatively less popular. Also assume that a cache can
store two contents at any time. In such situation we can
observe that the LRU strategy performs poorly as compared
to a prediction based scheme that can predict the popular
contents (i.e. A and B) and store them irrespective of their re-
cency. Thus the popularity prediction based caching scheme
experience 6 hits as opposed to just 2 hits in case of LRU. The
success of the scheme strictly depends on how accurately
and quickly it can distinguish the popular contents A and B
as opposed to C.

We can also observe from Fig. 4 that all the prediction
schemes perform almost similar. The reason is that all these
schemes may vary in terms of their prediction accuracy, but
can distinguish the popular contents as opposed to the less
popular contents almost identically. Because of this reason,
the hit ratio is similar for all these schemes. We thus use
the SMA based popularity prediction model for the rest
of the paper, for simplicity. Other complicated prediction
models (like EWMA or AR) can also be used, however, we
consider SMA mainly because it is simple, lightweight and
can be easily implemented in CCN routers. Such popularity
predictions are useful for taking effective caching decisions
as discussed in section 5.

4

Content Weight

Neighbor Cost Content

Neighbor Cost BF

Neighbor Base

Content Store

Content Weight

Incoming

BF

Update STC Update LTC Broadcast

BF

Cache Engine

Routing Engine

Forwarding Decision Forward

Interest

Incoming

Content

LTC update

timer fire

 In

CS?

Incoming

Interest

Yes

No

Periodic

weight

update

Periodic

cost update

Fig. 6: The overall NACID architecture.

5 NEIGHBORHOOD AWARE CACHING AND INTER-
EST DISSEMINATION IN IN (NACID)

We next introduce a neighborhood aware mechanism for
content caching and information dissemination scheme for
CCN. We assume that each CCN router is assigned a unique
ID with a flat or hierarchical structure [31]. We also assume
that the contents are divided into smaller chunks which are
identified by their unique names or IDs. Compared to the
previously studied schemes [12], [13], [14], [15] on path
caching, in NACID the caching decision is made based
on (a) where the content exists in the neighborhood of the
requesting node, and (b) its predicted content demand and
its obsolescence rate. The overall NACID architecture is
shown in Fig. 6. The entire scheme is summarized below,
by describing the two key modules, named Cache Engine
and Routing Engine that run at each router.

5.1 Cache Engine

The main challenge in enabling the neighborhood
aware caching is the advertisement of the cached
content-chunks, while keeping the overhead small.

Long-term cache

(Asynchronous

update)

Short-term cache

(Synchronous

update)

L

C

Fig. 7: Two level
caching.

To address this issue, we propose a
two-level caching scheme, as shown
in Fig. 7. We assume that the entire
cache/Content store (CS) of a node
is divided into two levels, the up-
per level is the long-term cache (LTC)
where the most useful content-chunks
are cached. The rest is used to reserve
the less useful chunks, and is known as
short-term cache (STC). The STC cache
is updated at each arrival of a chunk, to check whether
the chunk is going to be cached or not. Occasionally the
existing cache is reshuffled, where more useful chunks are
transferred to the LTC and others are placed in the STC.
This reshuffling can be done either periodically or when the
the STC is changed significantly. After such an update, the
information regarding the LTC chunks is broadcast up to a
certain number of hops, which is defined as broadcast range
B. As the number of contents is extremely large or infinite
(as new contents are continuously generated), we use Bloom
filter (BF) to encode the presence of a content in a router’s
LTC.

A Bloom filter is a hash-coding method used to represent
a large set and at the same time supports membership

queries on the set. The key difference between Bloom fil-
ters and traditional hash based representations of a set
of elements is that the space required for Bloom filters
is considerably reduced at the cost of permitting a small
fraction of errors. Each content (key) is hashed using k
different hash functions and the resulting “hash positions”
are updated to 1. When there is a membership query
for a key (or content), if all k hash positions of the key

Fig. 8: A typical Bloom Filter.

are set to 1,
then a positive
membership
query is returned.
While the
false negative
probability
is zero, the
false positive
probability
is a tunable
parameter, which depends on the size of the filter. BF offers
an efficient way to represent the set of cached chunks and
takes O(1) time to check whether a given chunk is within
the set. A typical example if Bloom filter is shown in Fig. 8
where two contents a1 and a2 are inserted in a bloom filter
by using three hash functions (h1, h2 and h3) by setting the
corresponding bit positions to 1. An illustration of a false
positive scenario is also shown in this figure where the
presence of content b is wrongly inferred as the three hash
functions map b to the bit positions that are set to represent
the presence of a1 and a2.

The LTC cache remains unchanged throughout the up-
date interval (i.e. the time in between two successive cache
reshuffles). By keeping the LTC chunks unchanged within
an interval, the BF broadcast is limited to one per interval.
In this manner, the nodes share their partial cached chunks
(only LTC chunks) information in their neighborhood, with
limited broadcast overhead. Given such a mechanism, it
is easy to reactively cache the incoming chunk if it is not
available in the close neighborhood.

Each CCN node runs a caching engine (see Fig. 6)
that maximizes the overall benefit of its cache, which we
define shortly. For STC the caching decision is to check
which chunks (if any) are to be replaced, upon arrival of
a new chunk. In contrast, the purpose of cache reshuffling
is to choose the most useful chunks to store in LTC and
broadcast. At any instant t, the benefit (wi) of a chunk is
proportional its cost-demand factor, which is the product of
the moving average of its access demand Ŷt and the cost ct
to get it from the nearest neighbor. The chunks with identical
cost-demand factor are differentiated based on their recency.
Thus wi = αctŶt + β

max(∆i,ε)

(
α� β

ε

)
, where ∆i is the

difference between the current time and the time when a
chunk was last encountered. The term ε ensures that the
second factor cannot be a dominating factor for very small
∆i. The intuition behind calculating wi is as follows: it is
beneficial to cache a chunk that has (a) high demand Ŷt, (b)
is cached in a router that is far away (i.e. high ct), and (c)
is recently encountered (i.e. low ∆i). With these, the general
caching problem is described as follows. Assume that yi is
the decision variable to check whether a chunk is going to

5

be cached or not, and si is the size of the i-th chunk. Then
the problem is to choose certain chunks from a set of M,
that can be accommodated in a cache size of C , which can
be formulated as follows:

Max
M∑
i=1

wi.yi subject to
M∑
i=1

yi.si ≤ C, xi ∈ {0, 1} (4)

The above problem is identical to the 0-1 Knapsack
problem [32] in combinatorial optimization, which is proven
to be NP-hard. We thus propose a greedy heuristic which
is similar to the greedy knapsack solution, as described in
Algorithm 1. The scheme first sorts the chunks in decreasing
order of wi

si
and then caches them sequentially until the

cache space is filled up.

Algorithm 1 Greedy caching
1: INPUT : Cache capacity C, benefits (wi) and sizes (si) of chunks i

= {1, 2, ...,M}.
2: OUTPUT : Vector yi ∈ {0, 1} ∀i ∈ {1, 2, ...,M}.
3: Sort the chunks in decreasing order of wi

si
, i.e. w1

s1
≥ w2

s2
≥ ... ≥

wM
sM

;

4: Define ` = min{ξ ∈ {1, ...,M} :
∑ξ
i=1 si > C};

5: yi = 1 corresponding to the chunks (1, 2, ..., `− 1) and 0 otherwise;

We note the following properties of our greedy algo-
rithm:

Observation 1: If the cache size is much larger than the
maximum chunk size, and max{wi} <<

∑M
i=1 wi, then

greedy algorithm approaches to the optimal solution.
Proof: The solution of Algorithm 1 and the continuous

(or LP-relax) version of the knapsack problem differs by
at most one element. The 0-1 knapsack problem is up-
per bounded by its LP-relaxation version, and Algorithm
1 differs from the LP-relaxation version by just one ele-
ment. Thus in the limiting case of large cache, Algorithm
1 approaches to the optimal result, provided max{wi} <<∑M
i=1 wi.
Observation 2: When all chunks are of same size, the

greedy algorithm converges to the optimal solution.
In our simulations, we assume that all contents-chunks

are of equal sizes, which is generally assumed in the lit-
erature [33]. The assumption can be justified as follows:
for heterogeneous content sizes, the contents are split into
chunks of identical sizes where each of them can be con-
sidered as individual contents. Such equal size chunks are
used in Dynamic Adaptive Streaming over HTTP (DASH)
protocol which usually splits each video content into several
equal-sized chunks, as reported in [33].

Algorithm 1 is used asynchronously at the time of cache
reshuffling, to keep the most useful chunks to LTC, whereas
others go to STC. The same algorithm is used to reactively
make the decision of caching (or not) the incoming chunks
in STC depending on their benefits.

Time complexity of maintaining the STC in case of
identical content sizes: The contents-chunks are placed in
a MIN-HEAP data structure (depending on their benefits)
for taking the caching decision efficiently. This ensures
that in case of identical content-chunk sizes, this reactive
mechanism just requires a benefit comparison between (a)
the newly arrival chunk and (b) the chunk with least benefit
in STC (i.e. at the root of the HEAP), and thus can be done at

the line speed of the routers. If the newly arrived chunk is
cached, the root of the HEAP is replaced by the new content.
Next the MIN-HEAPIFY (at the root) is called to maintain the
HEAP, which can be done in O (log n) time.

5.2 Routing Engine

Another component in Fig. 6 is the Routing Engine that
forwards the Interest packets. The existing CCN mecha-
nisms forward Interest packets towards the content server
through the shortest path since they are unaware of the
cached chunks in their neighborhood. Since our mechanism
is aware of the caching (only LTC chunks) in the neigh-
borhood via a Bloom Filter (BF) mechanism, the routing
engine forwards the Interest packets towards the nearest (or
least cost) cache instead. To calculate the cost among their
neighbors, the nodes periodically exchange the updated link
costs information (bandwidth, traffic volume, congestion,
delay etc.) in their neighborhood. For simplicity we assume
hop-count as a cost-metric for our simulations. Each router
maintains this information along with the broadcasted BF
from its neighbors in its Neighbor table (or Neighbor base).
Upon arrival of a new BF from any neighbor, this table
is updated corresponding to that neighbor. This table is
referred by the routers to forward the Interest messages
towards the nearest cache. If no neighbor entry is available
corresponding to a chunk, it is forwarded towards the
repository.

5.3 Putting It Together

With these we next propose the overall procedure of
NACID. If a CCN router is interested in a content-chunk
that is not there in its cache, it first checks whether the
chunk is there in its neighborhood by consulting with the
Neighbor Base. If it is not found in the Neighbor Base, the
Interest is forwarded to the Repo. Otherwise the Interest
is forwarded to the neighboring router with least cost. The
Interest packet carries the ID of the neighboring router that
has the chunk. Along with the ID, the Interest packet also
carries a setAggregate flag which is set to true by default
(we describe the use of this flag shortly).

Each router receiving an interest should first check
whether the requested chunk is present in its local cache
by looking up the Content Store (CS) table. If there is a hit,
the router forwards a copy of the chunk to the requester
along the reverse path. Otherwise the router forwards the
Interest towards the router/Repo whose ID is mentioned in
the Interest packet.

The Pending Interest Table (PIT) is used to record the
ongoing requests. When a router generates an Interest, each
router in the path towards the destination adds an entry in
its PIT. When the response comes back, this table is used for
sending back the requested chunk through the reverse path
towards the sources of the Interests. While forwarding the
chunk back in the reverse path, the CacheEngine of the CCN
routers determine whether to replicate the chunk in the
STC based on the proposed caching strategy. Each Interest
has an associated lifetime; its PIT entry is removed when
the lifetime expires. When multiple Interest packets (with
setAggregate = true) for the same chunk arrive at a CCN

6

router, only the first Interest packet is forwarded whereas
others are suppressed for reducing the network traffic.

Notice that the effectiveness of the forwarding mech-
anism depends on the BF size as well as its false
positive probability. Due to the false positive probabil-
ity, an Interest packet can be forwarded to a router
i that does not have the desired chunk. In that case
router i detects it and forwards the Interest packet
to the Repo, with the setAggregate flag set to false.

Fig. 9: An illustrative
example.

When a router receives an Interest
with setAggregate = false, it for-
wards the packet towards the Repo
instead of suppressing it. For exam-
ple in Fig. 9 assume that R1 sends
an Interest packet with setAggre-
gate = true to R3 thinking that it
stores a particular chunk. This In-
terest packet is forwarded by R2,
any other Interest packets with se-
tAggregate = true that arrive at R2

are suppressed. When R3 receives
the Interest packet, it checks its CS
and realizes that the Interest is wrongly sent to it. It then for-
wards the Interest packet towards Repo with setAggregate
= false. Whenever routers like R2 receives such an Interest
packet with setAggregate = false, it forwards it towards
Repo instead of suppressing it.

5.4 A Special Case for Infinite Cache

For developing an analytical model we consider the case
where the cache has infinite amount of storage. Thus, all
the contents that are requested previously by a router is
stored in its cache. For simplicity we assume that time is
divided into slots, and a content request arrives at a slot. We
first want to determine the probability that a content will be
found in its local cache at time slot s. At any time slot the
i-th chunk is accessed with a probability of Pi = f(i, α,M).
Also at s-th time slot, the content i is present in the local
cache is given by

(
1− (1− Pi)s−1

)
. Thus the probability

that the request at time slot s will be a hit is given by

Hlocal
s =

M∑
i=1

Pi
(

1− (1− Pi)s−1
)

(5)

Now let us assume that there are n number of routers
(including itself) within the vicinity of one hop from the test
router. Thus at the time instance s, the requested content
is not found within the one hop neighborhood is equal to
the probability that content is not accessed by any of the n
routers in the previous (s − 1) slots. Thus the probability
that a request at time s is found within the one hop neigh-
borhood is

H1−hop
s =

M∑
i=1

Pi
(

1− (1− Pi)n(s−1)
)

(6)

With this we want to calculate how far a router needs to
go to fetch a content considering the best case scenario, where
the routers have sufficient amount of storage. We assume
that the Repo is (x+ 1) hop away from the test router. With

this assumption the expected number of hops after which a
test router can find a requested content is given by

L = H1−hop
s

(
1−Hlocal

s

)
+ 2H2−hop

s

(
1−H1−hop

s

)(
1−Hlocal

s

)
+ . . .+ xHx−hop

s

(
1−Hlocal

s

) x−1∏
i=1

(
1−Hi−hop

s

)
+ (x+ 1)

(
1−Hlocal

s

) x∏
i=1

(
1−Hi−hop

s

)
(7)

Fig. 10(a) shows the local hit ratio of a router with the
variation of s and α. The total number of contents M is
assumed to be 105. With high α, the hit rate quickly reaches
to ∼1. On the other hand with low α, the router takes
significant amount of time (or access requests) to ensure
a high hit ratio. This is because with low α, the content
popularities are less skewed and thus the improvement of
hit ratio is less gradual over time. The hit ratio also increases
with the increase in s as the requested contents are available
in the router’s cache with higher probability. The trend is
identical in case of H1−hop

s . Because of the same reason the
expected number of hops a router needs to travel to get a
content L is more with less α as shown in Fig. 10(b). With
higher s, the contents are available in the router’s cache with
a higher chance and thus the number of hops traversed L
reduces.

Note that in Fig. 10(b) at some s, H1−hop
s of α = 0.5 is

more than that of α = 1. The reason is that in an infinite
cache, a content is found in a cache if it is requested be-
forehead. If we define a time instance S as a saturation point
as the time when all the contents are requested atleast once,
then after S all the contents are found in a router’s cache. We
can show that S1.5 > S1 > S0.5, where the subscripts denote
different α values. This is because the access probability of
the least popular content (i.e. theM-th content) is less with
higher α, i.e. PM,1.5 < PM,1 < PM,0.5. Then the expected
number of slots to receive the first access request for the
M-th content is given by

S = P + 2P (1− P) + 3P (1− P)2 + . . . =
1

P
(8)

where the subscripts are removed for simplicity. As
PM,1.5 < PM,1 < PM,0.5, it follows that S1.5 > S1 > S0.5.
Thus the saturation point corresponding to α equal to 0.5 is
reached before that of 1 and 1.5.

6 SIMULATION RESULTS

We analyze our proposed CCN scheme using CCNSIM [34],
which is an application-level simulator for content centric
network based on OMNeT++. We assume a 10×10 grid
topology consisting of 100 nodes. The content store (Repo),
is at a corner of the grid. The content request of a requesting
node is assumed to be Poisson with an arrival rate of one
request/second. To keep the control overhead low, the up-
date interval is assumed to be periodic with a period of 200
seconds. We compare our proposed scheme NACID with the
following popular CCN schemes. The default replacement
policy of the following schemes are assumed to be Least
Recently Used (LRU).

LCE: Leave Copy Everywhere, i.e. cache all along the
path from content store to the node with registered interest.

7

(a) (b) (c)

Fig. 10: Comparison of (a) Hlocal
s , (b) H1−hop

s , and (c) L with different s.

(a) (b) (c)

Fig. 11: Comparison of cache hit ratios for different caching schemes, with (a) α = 0.5, (b) α = 0.8, (c) α = 1.

(a) (b) (c)

Fig. 12: Comparison of normalized hop-counts for different caching schemes, with (a) α = 0.5, (b) α = 0.8, (c) α = 1.

LCD: Leave Copy Down, i.e., bring the content down
one step closer to interest [35].

ProbCache: Cache along the path from Interest to server
probabilistically to accommodate multiple flows using this
path [14].

FixCache: Cache along the path from Interest to server
probabilistically with probability 0.1.

We assume that the popularity distribution of the con-
tents is Zipf with decay parameter α. Note that α = 0
implies a uniform distribution, and a larger α implies a
distribution with shorter tail. The entire cache space is
divided among the STC and LTC, with a ratio of 1:3. We
assume a total content pool of 5000 with identical content-
chunks. As we have assumed identical content-chunks, the
cache sizes are defined by the number of chunks that the
cache can accommodate. We use α =0.5, 0.8, and 1.0 for the
results.

6.1 Performance comparison with other schemes
For our simulations, the size of the bloom filter is deter-
mined as follows. In a BF, the presence of collision regions
generate positive matches for a membership check of a
content that is actually not present inside the set. Higher is
the number of bits in the BF lower false positive effects arise
due to such collisions. AssumeM is the cardinality of the set
that needs to be represented using a BF, which is assumed
to be the number of contents in the content pool. The false
positive probability p is minimized if the length of the BF
is optimally chosen to be m = (−M ln p) /(ln 2)2 [36]. The
corresponding optimal number of hash functions to be used
is equal to k = (m ln 2) /M . Using these the values of m
and k are chosen to be 5120 bytes and 6 respectively to keep
p approximately 0.01. Our current implementation of Bloom
filter is borrowed from [37], which uses CRC32-128 bit hash
to generate the hash values.

We compare the Cache Hit Percentage and the Normalized
Hop-Count (NHC) for the above schemes. The former rep-

8

(a) (b)

Fig. 13: Comparison of (a) cache hit ratios and (b) normalized
hop-counts with broadcast range.

resents the probability that an Interest message finds the
chunk in a cache, and the latter gives the percentage of the
network diameter the Interest must walk before getting to
the chunk.

Performance of cache hit percentage: Fig. 11 shows the cache
hit percentage of NACID in comparison to other schemes,
with the variation of cache sizes. From Fig. 11(a) we can
observe that with α = 0.5, NACID improves the cache hit
probability upto ∼5 times compared to the other schemes.
With higher α (i.e. α = 1), the improvement reduces to∼8%-
15% compared to others. This is because for large α, most of
the popular contents are stored in the cache and at the same
time accessed more frequently, which makes other schemes
perform close to NACID. This shows the effect of caching
the chunks based on their overall benefit, rather than some
implicit information or some probabilistic inference.

We can also observe that the hit probability increases
by ∼10-14%, when the cache size increases from 100 to
300 based on different α. This is obvious because more
cache size accommodates more chunks, which improves the
number of hits. We can also observe that the hit probability
almost doubles when the α increases from 0.5 to 1. This is
because with the increase in α, more popular chunks are
fetched more often, which overall improves the cache hit
probability.

Performance of normalized hop-counts: Fig. 12 shows the
comparison of the normalized hop-counts of NACID against
other proposals. With α = 0.5, NACID reduces the number
of hop traversed by ∼30% compared to others. Similar
improvements are also evident with higher α. This clearly
shows the improvement of NACID due its neighborhood
awareness. We can also observe that the NHC goes down
by ∼6%-8% when the cache size is varied from 100 to 300.
This is obvious because of the fact that higher cache size
increases the number of cache hits and effectively improves
the number of hops traversed. With the increase in α from
0.5 to 1, the NHC reduces by ∼10-20%. The reason is
because with higher α more popular chunks are fetched
more frequently, so the cache hit increases and at the same
time the number of hops traversed decreases.

The results show that the NACID algorithm improves the
cache hit ratio upto 5 times over all other algorithms, and it does so
while also simultaneously reducing the NHC by upto 30%. This
establishes the superiority of our algorithm over previous
CCN caching algorithms, with only a small increase in the
complexity. Among the other schemes, LCE performs worse
than others because it always cache the contents along the
path from the content store to the source of the interest.

(a) (b)

Fig. 14: Comparison of (a) cache hit ratios and (b) normalized
hop-counts with different bloom filter sizes.

6.2 Performance of NACID with different tuning param-
eters
6.2.1 Comparison with different broadcast range
Fig. 13 shows the variation of cache hit ratio and normalized
hop-traversal with different broadcast ranges, when α is
assumed to be 1. From Fig. 13 we can observe that the cache
hit ratio improves by ∼5-15%, and the NHC reduces by ∼5-
7% when B increases from 2 to 12. This is because with
more broadcast range, the content routers become more in-
formed about the LTC contents around their neighborhood,
which improves the network performance. However, this
improvement comes at the cost of more control overhead.
Notice that the improvement becomes marginal beyond B
= 6 hops. Thus most of the contents are available within 6
hops around a router’s neighborhood.

6.2.2 Comparison with different BF size
The bloom filter size plays a significant role in NACID
performance due to its false positive effects. Fig. 14 shows
the effects of bloom filter size on the cache hit ratio and
NHC, where the α is assumed to be 1. From Fig. 14 we can
observe that the hit ratio increases by ∼7-10%, whereas the
NHC reduces by ∼5-10% when the filter size is increased
from 40 to 5120 bytes. This is due to the false positive effects
of the BF especially when the size is small. Due to the
false positive effects, some interest packets are forwarded
to wrong routers which leads to lower cache hit and higher
NHC. However, beyond 640-1280 bytes the improvement
starts saturating, as beyond that the false positive effects are
marginal.

6.3 Comparison with real datasets:
We next compare NACID with others using some real
datasets which follows power law distribution. These
datasets are publicly available and are widely used in data
mining literature. We use twelve datasets that have diverse
characteristics, which is reported in Fig. 15. Other than
the Kosarak and Retail datasets, we used several other
datasets which are described as follows:

Q148: This dataset if derived from KDD Cup 2000 data,
which is the compliments of Blue Martini.

Nasa: This dataset is derived from the “Field Magni-
tude” and “Field Modulus” attributes from the Voyager 2
spacecraft Hourly Average Interplanetary Magnetic Field
Data, which is the compliments of NASA and the Voyager
2 Triaxial Fluxgate Magnetometer principal investigator, Dr.
Norman F. Ness.

9

Kosarak Retail Q148 Nasa T10I4D100K T40I10D100K Chess Connect Mushroom Pumsb Pumsb star Accidents
Count 8019015 908576 234954 284170 1010228 3960507 118252 2904951 186852 3629404 2475947 11500870
Distinct
items

41270 16470 11824 2116 870 942 75 129 119 2113 2088 468

Min 1 0 0 0 0 0 1 1 1 0 0 1
Max 41270 16469 149464496 28474 999 999 75 129 119 7116 7116 468
α 1.9979 1.5533 1.1104 2.0735 0.9906 0.9751 1.0865 1.7260 1.6361 2.4399 2.3389 3.7787

Fig. 15: Statistical characteristics of the datasets used.

(a)

(b)

Fig. 16: Comparison of (a) cache hit ratios and (b) normalized hop-counts corresponding to different real datasets.

IBM Almaden dataset: The datasets T10I4D100K and
T40I10D100K are generated using the generator from the
IBM Almaden Quest research group.

UCI/PUMSB datasets: The datasets chess, connect,
mushroom, pumsb, pumsb_star are prepared by prepared
by Roberto Bayardo from the UCI datasets and PUMSB.
Chess and Connect are gathered from game state infor-
mation and are available from the UCI Machine Learning
Repository [25], [38]. Pumsb and Pumsb_star datasets
contain population and housing related census data.

Accidents: This dataset is donated by Karolien Geurts
and contains anonymized traffic accident data [25], [39].

We have divided the contents obtained from these
datasets among individual content routers, and considered
them as their content requests. We assume the cache size to
be 100. Fig. 16 shows the performance of NACID compared
to the other schemes. For Kosarak, Retail, T10I4D100K
and T40I10D100K datasets, NACID improves the cache hit

by ∼2-3 times, whereas the hop-count is reduced upto 2-
3 times. NACID also shows 5-10% improvement in terms
of cache hit and ∼5% improvement in NHC with Q148
dataset, compared to the other schemes. For Nasa dataset,
the improvement of cache hit and NHR are ∼10% and
∼5% respectively. The performances are similar for Chess,
Connect and Mishroom datasets. For the other datasets
(i.e. Pumsb, Pumsb_star and Accidents), NACID im-
proves the cache hit and NHC by ∼6-26% and ∼1.5 times
respectively.

The hit ratio of Chess, Connect and Mushroom are
much more compared to the other two datasets, because of
less number of distinct contents in these datasets. For similar
reason, the NHR is also less for these datasets. Among the
others, Pumsb_star and Accidents perform significantly
better, mainly because of lesser number of distinct contents
and/or higher α.

10

|V | |E|/|V | CoV D
Abilene 11 2.5455 0.2052 5
DTelecom 68 10.3824 1.2917 3
Geant 22 3.3636 0.4159 6
Level3 46 11.6522 0.8739 4
NDN Testbed 17 3.7647 0.4150 5
Tiger 22 3.6364 0.1809 5
Tree 127 1.9843 0.5039 12
Grid100 100 3.6 0.1579 18

Fig. 17: Statistical characteristics of the network topologies.

(a)

(b)

Fig. 18: Comparison of (a) cache hit ratios and (b) normalized
hop-counts corresponding to different network topologies.

6.4 Comparison with different network topologies

We next show the comparison of NACID with others for
different network topologies. To cover different types of
networks, we consider both sparse (Abilene, Geant, NDN
Testbed, Tiger, Tree) and dense (Dtelecom, Level3) network
topologies. Fig. 17 shows the key characteristics of each
graph, namely, the network size |V |, the average degree
|E|/|V |, the coefficient of variation of the node degree CoV ,
and the graph diameter D. The purpose of this study is to
depict the performance of NACID as opposed to others in
various CCN architectures.

From Fig. 18 we can observe that NACID improves the
hit ratios by ∼5-15% whereas decreases the NHC by upto
∼15% compared to the other schemes. We can observe that
the improvement is maximum in case of Dtelecom and
Level3 topologies because of their higher node degree (i.e.
|E|/|V |) compared to the other network topologies. This is
because a dense network provides NACID higher chances
of fetching a content from the neighborhood caches corre-
sponding to a particular router. Also in a dense network a
neighborhood aware caching strategy can intelligently place
the content-chunks among the neighborhood caches, so that
the chunks are mostly available in a router’s neighborhood
even if not in its local cache.

6.5 Homogeneous Caching vs Heterogeneous Caching

Next we show the effect of NACID in presence of heteroge-
neous cache size of the routers, where we assume that a total
amount of cache memory is distributed among the content
routers. We distributed the cache memory by analyzing the
level of centrality of the routers within a network. As the

central routers of a network serves more content requests,
they are assigned more cache spaces as explained later
on. We consider the following centrality metrics for this
purpose:

Degree centrality (D): Degree centrality of a router is
defined as the number of links incident on that router, or
the node degree of the routers.

Closeness centrality (C): Closeness centrality of a router
is calculated as the sum of the length of the shortest paths
between the router and all other routers in the network.
Thus the more central a router is, the closer it is to all other
routers. Thus closeness centrality of a router x is given by
c(x) = 1∑

y d(y,x) , where d(y, x) is the distance between x

and y.
Betweenness centrality (BC): Betweenness centrality of

a router is the fraction of all shortest paths in the network
that contain a given router. Routers with high values of
betweenness centrality participate in a large number of
shortest paths. Thus, betweenness centrality of a router x
is given by g(x) =

∑
s 6=x6=t

σst(x)
σst

, where σst is the total
number of shortest paths from s and t, and σst(x) is the
number of those paths that pass through x.

More cache close to Repo (MR): We also adopt a cache
deployment strategy where the cache sizes of the routers
that are closer to the Repo are more than that of the routers
that are farther away. The intuition is that the routers that
are closer to the Repo serves more requests, and thus putting
more cache sizes to them will be beneficial. We thus devise
a metric, named Repo-closeness of a router x which is given
by r(x) = 1/Dx where Dx is the shortest distance from
router x to the Repo.

We assume that the total cache size of the topology is
fixed and is assumed to be Ctot. In case of homogeneous
caching (or identical caching I), we divide the cache sizes
equally among the routers, i.e. Ci = Ctot

/
|V |. However, in

case of heterogeneous caching the cache space of router i is
given by

Ci =

⌈
Xi∑
j∈V Xj

Ctot

⌉
(9)

where Xi is the value of router i depending on which
caching strategy (D, C, BC, MR) is adopted.

Fig. 19 shows the performance of NACID with hetero-
geneous caching schemes. We assume α = 1 for this set of
figures, and Ctot is assumed to be 100×|V |. From this figure
we can observe that the performance of NACID does not
change significantly with heterogeneous cache distribution.
Only a modest performance gain of <2% (in cache hit) is
observed in case of Dtelecom and Level3 compared to its ho-
mogeneous counterpart. Similar findings are also observed
in [40]. This leads to the conclusion that there is no real
incentives of using heterogeneous caching as opposed to
homogeneous caching strategy in case of NACID.

6.6 Analytical Model for Homogeneous and Heteroge-
neous Caching
To validate the performance of homogeneous and heteroge-
neous caching in general, we develop an analytical model
on a linear topology consisting of N − 1 routers. Assume
that R1 is N hops away from the Repo. Clients are attached

11

(a)

(b)

Fig. 19: Comparison of (a) cache hit ratios and (b) normalized
hop-counts in case of heterogeneous caching.

Fig. 20: Illustration of a linear topology for modeling L̂.

directly to the individual routers. Also for simplicity let us
assume that the contents are independently cached in the
routers. Below we describe the analytical model of there
types of cache assignment strategies.

Homogeneous Caching: First let us assume that the
router-caches are of identical sizes. The probability of a
hit and miss are denoted by H and H respectively. Here
H =

HC,α

HM,α
, and C = Ctot

N−1 . Thus the number of hops an
Interest packet from a client of RN−i needs to traverse is
given by

LHOi = H + 2HH + 3H
2
H + . . .+ iH

i−1
H + (i+ 1)H

i

=
i∑
l=1

lH
l−1

H + (i+ 1)H
i

=
1−Hi+1

H

(10)

Thus the average number of hops traversed in case of
homogeneous caching is given by

L̂HO =

∑N−1
i=1 LHOi
N − 1

=
(N − 1)H −

(
1−HN−1

)
H

2

(N − 1)H2

(11)

Heterogeneous Caching: We next consider the scenario
where the routers that are closer to the Repo have higher
caches. Assume that RN−i which is i-hops away from the
Repo has a cache size of C(N−i) = (N − i)βCtot, where∑N−1
i=1 (N − i)β = 1, and its corresponding hit and miss

probabilities are given by H(N−i) and H(N−i) respectively.

Thus H(N−i) is given by
HC(N−i),α

HM,α
. In this case the number

Fig. 21: Comparison of different cache size assignment.

of hops traversed by an Interest packet of RN−i’s client is
given by

LHEi = H(N−i) + 2H(N−i)H(N−i+1) + 3H(N−i)H(N−i+1)H(N−i+2)

+ . . .+ (i+ 1)H(N−i)H(N−i+1) . . . H(N−1)

(12)

Black-White Caching: In Black-White (BW) caching, we
assume that the routers from RN−j to RN−1 has identical
cache sizes of Ctot

j , whereas others have no caches. In this
scenario, the number of hops an Interest packet of RN−i’s
client needs to travel is given by

LBWi = LHOi if i ≤ j
= (i− j) + LHOj if i > j

(13)

Thus the average number of hops for BW caching is given
by

L̂BW =

(N−j)(N−j+1)
2 − 1 + (N − j − 1)

(
1−Hj+1

H

)
+
∑j
i=1

1−Hi+1

H

N − 1
(14)

Fig. 21 shows the comparison of L̂ for different cache
size assignment. For this figure we assume that N =100,M
= 105 and Ctot = 104. From this figure we can observe that
the performance of homogeneous and heterogeneous cache
assignment is almost identical. With BW caching, average
number of hops traversed is higher especially for higher
α. This is because the Interests generated from the clients
attached to the routers with no caches, need to traverse
several hops before reaching some routers with caches. As
expected, with the increase of j the BW cache assignment
strategy coincides with the homogeneous caching strategy.

7 RELATED WORKS

Caching in General: Cooperative caching has been studied
extensively in different environments such as World wide
web, peer-to-peer system, as well as in network file system.
Cooperative web caching is explored including hierarchi-
cal, hash-based and directory-based caching schemes in
[9]. Cache management in peer-to-peer storage system has
been presented in [10], that replicates multiple copies of

12

a file to reduce access latencies. Coordinated caching of
multiple clients in a LAN is presented in [11] to improve
the performance of a network file system. However such
caching schemes run at the end peers and proxies over an
IP layer, whereas in CCN caching is targeted to be done in
every router. At the same time in CCN caching management
needs to be done at line-speed of the routers to make it
universal. On the other hand caching in content distribution
networks (CDN) are explored in [41], [42]. However CDN is
essentially an overlay infrastructure where caching is done
only at the content distribution routers, which is different
from CCN caching which is universal in nature.

Caching Decision Policy in CCN: Caching in CCN is also
well researched topic, however, in most of the proposed
scheme a content router does not need to know the cache
information in its neighborhood, thus the caching decisions
are taken autonomously by the routers. Leave copy down
(LCD) [35], Move copy down (MCD) [35], copy with some
probability [35] and Probabilistic cache [14] falls in this
category. In [12], the authors have argued that the chunks of
a file is correlated or fetched in a sequential manner. They
have proposed a scheme named WAVE, where the routers
exponentially increase in the number of chucks cached for a
file with the increase in the number of requests. In contrary
to these literature, in NACID the CCN routers occasion-
ally forward BF to share their cached contents, so that
the routers can (a) use this information while caching the
content-chunks, and also (b) forward their content interest
to their neighboring caches rather than always forwarding
it towards the content store.

Cache Replacement Policy in CCN: The most common
cache replacement policy is Least Recently Used (LRU)
policy where the least recently accessed content is replaced
with a newly arriving content when the cache is full. How-
ever LRU captures the freshness of a content, but not its
frequency of accesses. Some variants of LRU are LRU-K [43]
and 2Q [44]. Least Frequently Used (LFU) is an alternative of
LRU to capture the access frequency. ARC [45] captures both
the recency and frequency of a cache’s contents by keeping
track of two lists: one keeps track of the recently accessed
contents whereas other one records the frequently accessed
contents.

Content Polularity in CCN: Content popularity distribu-
tion is studied extensively in [21], [22]. The studies con-
cluded that the content popularity in CCN follows heavy-
tailed distributions, which can be modeled as a power-
law distribution. They have also observed that a significant
portion of the contents are just one-timers. The effect of
short-term and long-term content popularity is studied in
[46], [47]. The value of the scale-factor of the popularity
distributions varies in the literature from 0.6 [23] to 2.5 [24].

Bloom Filter: The bloom filter data structure has been first
introduced by Burton H. Bloom in 1970 [48]. Since then
bloom filter has been used in various domains including
Web caching [49], P2P networks [50], packet routing and
forwarding [51], RFID tag identification [52], differential file
access in DBMS systems [53] etc. There are different variants
of bloom filters that are proposed in the literature, such
as counting bloom filter [54], compressed bloom filter [55],
deletable bloom filter [56], hierarchical bloom filter [57] etc.
The use of bloom filter in CCN has been studied in [58], [59],

[60], [61].

8 CONCLUSIONS

In this paper, we investigated a neighborhood aware in-
network cache management and information dissemina-
tion scheme in order to minimize content fetch latency
in CCN. Three key features of NACID architecture are
(a) the use of repositories for maintaining the content re-
cency, (b) lightweight content information dissemination by
the use of Bloom filter, and (c) using them for develop-
ing a neighborhood-aware two-level caching and interest
forwarding scheme. The simulation results show that the
NACID, compared to the existing caching algorithms, effec-
tively increases hit ratio, and at the same time reduces the
number of hops for fetching contents. This performance im-
provement is consistent across different network topologies,
as well as for different frequently content mining datasets.

We also consider the effects of various heterogeneous
cache memory allocation strategies on NACID by using
different graph centrality metrics. However, a thorough
simulation comparison proves that heterogeneous caching
strategies can only affect the performance gain marginally
and thus is insignificant in practice.

REFERENCES

[1] Cisco, “Cisco visual networking index: forecast and
methodology, 2009-2014,” Cisco, Tech. Rep., 2010. [Online]. Avail-
able: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white\ paper\ c11-481360.pdf

[2] S. C.Borst et al., “Distributed caching algorithms for content distri-
bution networks,” in IEEE INFOCOM, 2010, pp. 1478–1486.

[3] G.Zhang et al., “Caching in information centric networking: A
survey,” Computer Networks, vol. 57, no. 16, pp. 3128–3141, 2013.

[4] G.Xylomenos et al., “A survey of information-centric networking
research,” IEEE Communications Surveys and Tutorials, vol. 16, no. 2,
pp. 1024–1049, 2014.

[5] B.Ahlgren et al., “A survey of information-centric networking,”
IEEE Communications Magazine, July 2012.

[6] M.Bari et al., “A survey of naming and routing in information-
centric networks,” IEEE Communications Magazine, Dec 2012.

[7] J.Choi et al., “A survey on content-oriented networking for ef-
ficient content delivery,” IEEE Communications Magazine, vol. 49,
no. 3, pp. 121–127, 2011.

[8] L.Zhang et al., “Named data networking,” Computer Communica-
tion Review, vol. 44, no. 3, pp. 66–73, 2014.

[9] A.Wolman et al., “On the scale and performance of cooperative
web proxy caching,” in ACM SOSP, 1999, pp. 16–31.

[10] A. I. T.Rowstron et al., “Storage management and caching in
past, A large-scale, persistent peer-to-peer storage utility,” in ACM
SOSP, 2001, pp. 188–201.

[11] M.Dahlin et al., “Cooperative caching: Using remote client mem-
ory to improve file system performance,” in USENIX (OSDI), 1994,
pp. 267–280.

[12] K.Cho et al., “Wave: Popularity-based and collaborative in-
network caching for content-oriented networks,” in INFOCOM
Workshops, 2012, pp. 316–321.

[13] Z.Ming et al., “Age-based cooperative caching in information-
centric networks.” in INFOCOM Workshops, 2012, pp. 268–273.

[14] I.Psaras et al., “Probabilistic in-network caching for information-
centric networks,” in ACM ICN, 2012, pp. 55–60.

[15] J. M.Wang et al., “Progressive caching in CCN,” in IEEE GLOBE-
COM, 2012, pp. 2727–2732.

[16] A.Pal et al., “NACID: A neighborhood aware caching and interest
dissemination in content centric networks,” in ICCCN, 2017, pp.
1–9.

[17] K.Kant et al., “Internet of perishable logistics,” IEEE Internet Com-
puting, vol. 21, no. 1, pp. 22–31, 2017.

13

[18] A.Pal et al., “Towards building a food transportation framework
in an efficient and worker-friendly fresh food physical internet,”
in submission.

[19] ——, “Networking in the real world: Unified modeling of infor-
mation and perishable commodity distribution networks,” in IPIC,
2016.

[20] ——, “F2π: A physical internet architecture for fresh food distri-
bution networks,” in IPIC, 2016.

[21] P.Gill et al., “Youtube traffic characterization: A view from the
edge,” in IMC, 2007, pp. 15–28.

[22] M.Zink et al., “Characteristics of youtube network traffic at a
campus network - measurements, models, and implications,”
Computer Networks, vol. 53, no. 4, pp. 501–514, 2009.

[23] K. V.Katsaros et al., “Multicache: An overlay architecture for
information-centric networking,” Computer Networks, vol. 55, no. 4,
pp. 936–947, 2011.

[24] L.Muscariello et al., “Bandwidth and storage sharing performance
in information centric networking,” in ACM ICN, 2011, pp. 26–31.

[25] “Frequent itemset mining dataset repository,”
http://fimi.ua.ac.be/data/.

[26] L.Breslau et al., “Web caching and zipf-like distributions: Evidence
and implications,” in IEEE INFOCOM, 1999, pp. 126–134.

[27] A. K.Pathan et al., “A taxonomy and survey of content delivery
networks.”

[28] R.Nau, “Forecasting with moving averages,”
https://people.duke.edu/ rnau/Notes on forecasting with moving averages–
Robert Nau.pdf.

[29] R.Aufrichtig et al., “Order estimation and model verification in
autoregressive modeling of eeg sleep recordings,” in Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society, 1992, pp. 2653–2654.

[30] “Frequent items in streaming data: An experimental evaluation of
the state-of-the-art,” http://disi.unitn.it/ themis/frequentitems/.

[31] J. J.Garcia-Luna-Aceves, “Name-based content routing in informa-
tion centric networks using distance information,” in ACM ICN,
2014, pp. 7–16.

[32] M. R.Garey et al., Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990.

[33] S.Li et al., “Popularity-driven content caching,” in IEEE INFO-
COM, 2016, pp. 1–9.

[34] R.Chiocchetti et al., “ccnsim: An highly scalable CCN simulator,”
in IEEE ICC, 2013, pp. 2309–2314.

[35] N.Laoutaris et al., “The LCD interconnection of LRU caches and
its analysis,” Perform. Eval., vol. 63, no. 7, pp. 609–634, 2006.

[36] S.Tarkoma et al., “Theory and practice of bloom filters for dis-
tributed systems,” IEEE Communications Surveys and Tutorials,
vol. 14, no. 1, pp. 131–155, 2012.

[37] www.csee.usf.edu/ christen/tools/bloom2.c.
[38] D.Burdick et al., “Mafia: A maximal frequent itemset algorithm,”

IEEE Transactions on Knowledge & Data Engineering, vol. 17, no. 11,
pp. 1490–1504, 2005.

[39] K.Geurts, “Traffic accidents data set,”
http://fimi.ua.ac.be/data/accidents.pdf.

[40] D.Rossi et al., “On sizing CCN content stores by exploiting topo-
logical information,” in IEEE INFOCOM, 2012, pp. 280–285.

[41] K.Park et al., “Scale and performance in the coblitz large-file
distribution service,” in NSDI, 2006.

[42] M. J.Freedman, “Experiences with coralcdn: A five-year opera-
tional view,” in NSDI, 2010, pp. 95–110.

[43] E. J.O’Neil et al., “The lru-k page replacement algorithm for
database disk buffering,” SIGMOD Rec., vol. 22, no. 2, pp. 297–
306, 1993.

[44] T.Johnson et al., “2q: A low overhead high performance buffer
management replacement algorithm,” in VLDB, 1994, pp. 439–450.

[45] N.Megiddo et al., “Arc: A self-tuning, low overhead replacement
cache,” in FAST, 2003, pp. 115–130.

[46] Y.Borghol et al., “Characterizing and modelling popularity of user-
generated videos,” Perform. Eval., vol. 68, no. 11, pp. 1037–1055,
2011.

[47] S.Mitra et al., “Characterizing web-based video sharing work-
loads,” ACM Trans. Web, vol. 5, no. 2, pp. 8:1–8:27, 2011.

[48] B. H.Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[49] L.Fan et al., “Summary cache: A scalable wide-area web cache
sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp. 281–
293, 2000.

[50] H.Cai et al., “Applications of bloom filters in peer-to-peer systems:
Issues and questions,” IEEE NAS, vol. 0, pp. 97–103, 2008.

[51] H.Song et al., “Fast hash table lookup using extended bloom filter:
An aid to network processing,” SIGCOMM Comput. Commun. Rev.,
vol. 35, no. 4, pp. 181–192, 2005.

[52] Y.Nohara et al., “A secure and scalable identification for hash-
based rfid systems using updatable pre-computation,” in ACM
WiSec, 2010, pp. 65–74.

[53] L. L.Gremillion, “Designing a bloom filter for differential file
access,” Commun. ACM, vol. 25, no. 9, pp. 600–604, 1982.

[54] K.-Y.Whang et al., “A linear-time probabilistic counting algorithm
for database applications,” ACM Trans. Database Syst., vol. 15,
no. 2, pp. 208–229, 1990.

[55] M.Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans.
Netw., vol. 10, no. 5, pp. 604–612, 2002.

[56] C. E.Rothenberg et al., “The deletable bloom filter: a new member
of the bloom family,” IEEE Communications Letters, vol. 14, no. 6,
pp. 557–559, 2010.

[57] K.Shanmugasundaram et al., “Payload attribution via hierarchical
bloom filters,” in ACM CCS, 2004, pp. 31–41.

[58] W.Quan et al., “Scalable name lookup with adaptive prefix bloom
filter for named data networking,” IEEE Communications Letters,
vol. 18, no. 1, pp. 102–105, 2014.

[59] ——, “TB2F: tree-bitmap and bloom-filter for a scalable and
efficient name lookup in content-centric networking,” in IFIP
Networking, 2014, pp. 1–9.

[60] C.Tsilopoulos et al., “Reducing forwarding state in content-centric
networks with semi-stateless forwarding,” in IEEE INFOCOM,
2014, pp. 2067–2075.

[61] Y.Wang et al., “Advertising cached contents in the control plane:
Necessity and feasibility,” in IEEE INFOCOM, 2012, pp. 286–291.

14

