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ABSTRACT

Autonomy through real-time learning and OpenNARS for Applications

by

Patrick Hammer

This work includes an attempt to enhance the autonomy of intelligent agents via

real-time learning. In nature, the ability to learn at runtime gives species which can

do so key advantages over others. While most AI systems do not need to have this

ability but can be trained before deployment, it allows agents to adapt to changing

and generally unknown circumstances. To meet this goal, in this thesis a pragmatic

design (ONA) for a general-purpose reasoner incorporating Non-Axiomatic Reasoning

System (NARS) theory is explored. The design and implementation is presented in

detail, in addition to necessary theoretical constructs. Then, experiments related to

various system capabilities are carried out and summarized, together with application

projects where ONA is utilized. Also it is shown how reliable real-time learning

can help to increase autonomy of intelligent agents beyond the current state-of-the-

art. Here, theoretical and practical comparisons with established frameworks (such

as Reinforcement Learning) and specific techniques such as Q-Learning, and Belief-

Desire-Intention models are made. The capabilities are also demonstrated on real

robotic hardware, the experiments there show the potential of combining learning

knowledge at runtime with the utilization of only partly complete mission-related

background knowledge given by the designer.
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CHAPTER 1

Motivation

1.1 History and state-of-the-art of agent autonomy

As of April 28, 2021, there are no commonly available personal AI assistants

which can both remember and reason about arbitrary information in different con-

texts. Also, despite all the progress in machine learning there are no commonly used

autonomous agents which can generalise across domains without a human-in-the-loop

to maintain the dataset and retrain the model between rollouts.

If the goal of AI is to create an optimised function to solve a problem in a specific

domain, then we are making good progress. Optimization, in particular backpropa-

gation with deep neural networks (DL), has proven to be better than handcrafting

for many specific problems which were considered to be hard [1] [6] [11]. This turned

out to be true for computer vision, language translation, speech recognition, board

games, computer games, and many more. This has led to the rapid global adoption

of this approach.

What all of these problems have in common is that no learning is required after

model deployment. However, learning at runtime is an ability which gives intelligent

animals a key survival advantage. What has made machine learning so successful is

a narrower idea of learning. That is, solving an offline optimization problem which in

nature is carried out by evolution and not by the intelligence of individuals. Example:

find a genetic code such that the firefly will not only detect, with high accuracy, the

types of prey necessary for its survival, but also catch it successfully. Here, the firefly

itself does not need to learn at runtime. The same is true for autonomous cars which
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are expected to be able to drive right away, with pre-wired components for navigation,

localization, object detection etc. Some of these components are programmed and

others have model parameters resulting from offline-optimization.

The key challenge AI has not yet convincingly completed is to move from offline

optimization towards learning quickly and reliably at run time. This is not only

intelligence’s primary role in nature but is also the original goal of AI. AGI, like

an animal in the wild, is supposed to be able to deal, at runtime, with unforeseen

circumstances. An ability to adapt quickly and reliably will not only push forward

the next generation of robotic explorers and personal assistants, but can also be seen

as a key aspect of intelligence.

Intelligence is a term with many meanings. In volume 10 (2019) of the Journal

of Artificial General Intelligence (JAGI) the article [7], “On Defining Artificial In-

telligence” by Dr. Pei Wang, was published. This JAGI article is considered to be

one of the strongest attempts, since the beginning of the field, to address the long-

standing lack of consensus on how to define the field and topic of Artificial Intelligence

(AI). The review process invited 110 leading AI experts, including researchers from

DeepMind and Google Brain [8], and professors from many universities. The core

of the article is centered around the author’s definition of intelligence itself: “The

essence of intelligence is the principle of adapting to the environment while working

with insufficient knowledge and resources”. While his definition has been the most

agreed-upon in the related AGISI survey (with 567 participants), some responses ex-

pressed disagreements about the resource constraint and necessity to adapt in real

time. Some of these disagreements stem from the difference between artificial and

biological systems, the latter of which evolved to adapt under knowledge and resource

insufficiency [10], while many AI systems are not equipped with an ability to adapt

after deployment.

Several misconceptions about the nature of intelligence come about by leaving
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learning at runtime out of the picture. For instance, genetic algorithms (GA, [5])

are sometimes sold as an alternative to reinforcement learning (RL, [12]). With the

previous considerations taken into account, it is clear that GA is to RL, as evolution is

to intelligence. They are fundamentally different with an overlap only occurring when

learning happens in a multi-generation simulation, instantiated over an arbitrary

number of generations. This instantiation property is not the case for an autonomous

robot, or animal for that matter, both of which are expected to be able to adapt to

unforeseen circumstances as quickly as possible and within a single lifetime. Clearly,

they cannot continue learning once any fatal action is taken. These aspects are a

large part of the reason why the great successes in domains with perfect simulation

availability (such as [11]) have not translated into successes in real-world domains.

For this, offline optimization will always be limiting compared to a system capable of

adapting in real time.

From a machine learning perspective, this poses several challenges:

1. The agent needs to be able to deal with dynamic (non-stationary!) environ-

ments.

2. A proper decision theory has to be found, which for animals was achieved by

evolution. This one cannot be learned during a single agent’s lifetime. It needs

to be innate, while exhibited behavior will be a combination of nature and

nurture.

One decision theory which has had a lot of success is reinforcement learning (RL,

[12]). Whilst it struggles with non-stationary environments (learning rate decay can-

not be used if the agent should continue to be able to adapt!) it can at least be

used for real-time learning. It has some major conceptual limitations though, let’s

look at the most common form of RL, Behaviorism-based RL. It is about learning a

state-action response mapping (a policy) with the highest expected rewards, without

3



any modeling of other causal relationships encountered in the environment. Such an

agent has a reward-centric world view. This means that when the utility function

(which generates the rewards) changes, the agent has to relearn a proper policy. Its

knowledge won’t transfer to a new task, by design. Whilst a changing utility function

is not an issue in computer games with a single success criteria (lap time in racing

games, checkmate in chess, etc.), for biological systems, it’s an everyday reality. A

hungry animal behaves fundamentally differently from a thirsty one. One will search

for prey or delicious leaves, and the other one for sources of water. In this case the

behavior is not only dependent on external factors, but also internal needs. Causal

knowledge, picked up when certain needs are pursued, automatically transfers to later

when other needs will be active. This makes such an agent react instantly to changing

needs, by design. The solution is the decoupling of beliefs from goals. This allows the

agent to learn the consequences of its actions in different contexts (causal modeling),

which is agnostic to which consequences are currently in need of achievement. This

approach is pursued by many in the AGI field which pursues AI’s original goal, yet

is not commonly pursued in the AI subfields whose focus lies in successes in single

domains.

This brings us to the next issue: measurement. Measuring is key to determine

progress, but what we measure matters. If we measure agent performance for each

domain separately, and allow hyperparameters to be changed between domains, we

will obtain special-purpose scores for different agents. This is useful from an ap-

plication perspective but will tell us nothing about the generality of a single agent.

If on the other hand hyperparameter changes aren’t allowed between domains, the

measures will reveal scores across the domains the agent was tried on. This can be

summarized into a single general-purpose score. Currently, what you’ll find is that

the agent with the best general-purpose score often cannot compete with special-

purpose agents (the ones whose hyperparameters were allowed to be adjusted for a
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single intended domain). Agents with the best special-purpose scores will not reach

a high general-purpose score. Nature faced similar tradeoffs (see Fig. 1: ants have a

generic body well-adapted for a large variety of tasks, not so the bug which is opti-

mized to look like a plant, not to be seen by predators), generality makes adaptation

across exceptional environmental conditions easier, though for a specific stationary

environment, a special solution is often preferred.

Figure 1.1: Specialization and Generalization

In this thesis we will especially address adaptation at runtime, with an attempt

to measure general-purpose capability over a wide range of tasks without parameter

adjustment / human in the loop.

1.2 Research question

Current intelligent systems, including autonomous agents in robotics, work well

when equipped with the complete knowledge necessary to complete their mission.

However, many solutions struggle to complete their mission if critical knowledge is
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incomplete, or rendered invalid due to changing circumstances unforeseen by the

designer. A reasoner which preserves key capabilities such as to deduce and plan

ahead effectively using background knowledge, while adding learning at runtime into

the picture, can account for these shortcomings and significantly extend the autonomy

of intelligent agents.

This brings us to the key research question this thesis answers: whether and

how ONA (OpenNARS for Applications), due to its real-time learning ability, is

able to improve the autonomy of intelligent agents beyond the current state of the

art. ONA, which has been developed for this thesis and with this goal in mind,

is an implementation design of NARS (Non-Axiomatic Reasoning System) which in

contrast to OpenNARS Hammer et al. (2016) which primary focus is to try research

ideas, has practical application in mind. Its strength lies in combining stable aspects

of NARS theory with a focus on agency. This entails the ability to sense, reason and

act, in order to achieve desired outcomes, and an ability to learn from experience

underway. A corresponding multi-threaded implementation has been written in C99,

which was chosen to meet high-performance goals. The wanted capabilities of the

system include:

• Learn from event streams in real time, without interruption.

• Extract sensorimotor contingencies from exploration and observation.

• Use them to plan ahead to reach desired outcomes.

• Work with limited memory.

While goal-directed decision making is well-understood and has several solutions in

the literature, including Practical Reasoning approaches such as BDI models Bratman

et al. (1987) Georgeff et al. (1998) with planning algorithm utilization, Practical

Reasoners which can learn both incrementally and reliably in real-time have not been
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achieved yet. Part of the issue is that reasoners are usually only expected to carry out

deductive reasoning, while Induction is usually left to a separately invoked module

which can’t learn incrementally (Inductive Logic Programming Muggleton (1991)),

can learn incrementally but misses a Decision Theory (Rule Mining Hipp et al. (2000),

Nath (2012), Srinivasan et al. (2014)) or is restricted to offline-trained perception

modules (supervised ConvNet, Bochkovskiy et al. (2020)). What adds to the issue

is that most logics do either not include Inductive Reasoning (ignoring structure

learning), or the resource consumption is unmanagable to learn from incoming events

in real-time Srinivasan et al. (2014). ‘OpenNARS for Applications’, developed for this

thesis, is a system capable of Non-Axiomatic Reasoning Wang (2013a), and addresses

these concerns by design.
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CHAPTER 2

OpenNARS for Applications

2.1 Theoretical Foundation

Since my research is aim at a general-purpose AI system which supports high

degrees of autonomy, a proper foundation had to be chosen. Among the existing the-

ories, the one I’m mostly agreed with is the one behind the Non-Axiomatic Reasoning

System (NARS) model.

NARS builds on the core belief that intelligence is the principle of adapting to

the environment while working with Insufficient Knowledge and Resources (AIKR,

see Wang (2009)). This entails three key properties:

• Finite: Information-processing capacity is constant during the system’s life-

time, both in terms of processor speed and storage capacity.

• Real-Time: Learn from events as they occur at runtime. React to changing

goals and circumstances timely, often by dropping tasks when they have become

less important.

• Open: Allow to digest input data and tasks of any content, while allowing all

knowledge to be challenged by new evidence.

Since NARS is realized within a Reasoning System framework, it consists of three

major components, all of which have been designed to work under AIKR:

1. Logic A logic allows to derive new knowledge from existing information. Here,

NAL (Non-Axiomatic Logic) is utilized, a term logic with evidence-based truth
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value which is designed to allow for reasoning under uncertainty. In NAL, the

evidence for conclusions is calculated by the available evidence of the premises.

The system’s beliefs are a reflection of the best evidence the system has col-

lected so far about a certain statement given the limited resources it operates

under, which can be considered a form of bounded rationality. Also, different

than in Symbolic systems (such as expert systems, Lucas and Van Der Gaag

(1991)) where symbols refer to objects and relationships in the outside world

as described by some fixed mathematical model (Model-theoretic semantics), a

term’s meaning is determined by the experienced relationships it participates

in, leading to Experience-Grounded Semantics Wang (2005). Ambiguities in

meaning, and contradictions in truth value are both captured by Non-Axiomatic

Logic, while systems based on First-Order Predicate Logic break under these

conditions despite being unavoidable when learning from experience.

2. Memory The memory is responsible for storing the input and derived knowl-

edge of the reasoner in a way that is efficient to work with, and in a way that

AIKR is respected. NARS uses a memory model where knowledge is grouped

by term and linked to each other through component terms (subterm relation).

This serves the purpose that no search needs to be performed in inference, nei-

ther when evidence is summarized (finding an existing belief to update), nor

when a second premise has to be selected which matches to the first to derive

new knowledge from. To keep memory in bounds, “high-quality” items are

kept while “less-quality” ones are forgotten. What “quality” means is imple-

mentation design dependent, in this thesis we will see a simple yet effective

implementation design based on combining use count and last-used time, re-

flecting the idea of “useful is what is in use”. This sounds like a snake biting

its own tail on first look, but it’s not, due to the next point.
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3. Control The control mechanism is responsible for deciding which premises to

select for inference in each reasoning step. NARS uses a control mechanism

which allows for real-time reasoning under attentional control. Per time unit, a

constant amount of items is processed, where items of high priority are preferred

to be selected while others tend to be ignored or will even be evicted if they don’t

fit into the attention buffer. While this is true for all NARS despite the huge

design space for AIKR-compatible memory structures, how priority is measured

is again implementation design dependent. The implementation design in this

thesis decides conclusion priority based on the outcome truth/desire value and

priority of the premises which decays to also capture recency. Additionally it

penalizes high-complexity (terms which have many subterms) conclusions.

While I mostly agree with the objective of NARS and its logic, experiments on

multistep examples revealed that the memory and control mechanism of OpenNARS

is not suitable for practical application, which led to the creation of ONA. The details

of Memory and Control will be described in the section dedicated to the specific

architecture of ‘OpenNARS for Applications’. This is, because many details depend

on the implementation design, while the logic does not leave much room for variations

other than for decisions on which inference rules to include. Memory and Control in

intelligent reasoning systems in general, and NARS in particular, can be considered

ongoing research, and ONA is just one solution with a focus for being practical for

application purposes.

2.1.1 Non-Axiomatic Logic

Non-Axiomatic Logic (NAL, Wang (2013a)) is the term logic which allows NARS

to reason under uncertainty. One of its distinguishing properties is that each sentence

in this logic has a non-binary truth value. It is based on positive evidence w+ and

negative evidence w− which speaks for or against a statement / belief / hypothesis,
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and the total evidence w := w+ +w−, each of which is zero or greater. Based on these

evidence values, the NAL truth value is defined as the tuple (f, c) with frequency

f :=
w+

w
∈ [0, 1]

and confidence

c :=
w

w + 1
∈ [0, 1)

Please note the similarity between frequency and probability, with the difference being

that the limit limw→∞ f is not taken, as it cannot be obtained from any finite amount

of samples. Also, clearly, for w > 0, the mapping (w+, w−) 7→ (f, c) is bijective,

and statements with w = 0 don’t need to be handled as they don’t contribute any

evidence.

Additionally, truth expectation is defined as

exp(f, c) = (c ∗ (f − 1

2
) +

1

2
)

. This measure allows to summarize the two-valued truth value into a single value

with the extremes being 0 for c = 1, f = 0, and 1 for c = 1, f = 1, which both are

approachable but unreachable, since ∀w ∈ R : c < 1 while limw 7→∞ c = 1.

NAL is organized into 8 layers. To make it easier for the reader to interpret

the examples included in the thesis, we will use the formal language Narsese here to

introduce the logical copulas. Narsese serves both for I/O and internal representation

of the reasoner. The following logical copulas are introduced in each layer:

• NAL-1: About Inheritance. Inheritance < A→ B > indicates A to be a special

case B. For instance, that cats are animals can be encoded as an Inheritance

statement (cat→ animal).

• NAL-2: About Similarity, Instances and Properties. Similarity is a bi-directional
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version of Inheritance, < A↔ B >, additionally instance {instance} and prop-

erty terms [property] are introduced.

• NAL-3: Compound Terms. This includes extensional sets {a1, ..., an} and also

intensional sets [a1, ..., an], which can include multiple instances/properties at

once. Also extensional and intensional intersection, (a& b) and (a | b) are in-

troduced, together with extensional and intensional difference, (a ∼ b) and

(a − b).

• NAL-4: Relational terms. This includes products (a ∗ b) to express anony-

mous relationships, as well as extensional and intensional images, (R/1x) and

(R \1x) respectively. The index ”1“ allows to distinguish ”eating a pizza“

(eat /1 pizza) from ”eaten by pizza“ (eat /2 pizza), which clearly conveys a dif-

ferent meaning.

• NAL-5: Truth-relationships between statements. This includes negation (¬ a),

conjunction (a&& b), disjunction (a || b), implication < a ⇒ b > and equiva-

lence < a⇔ b >.

• NAL-6: Variables: Dependent and Independent Variables $name and #name

respectively which allow to make statements more abstract by allowing unifi-

cation, in inference and question answering to substitute a term as long as the

structure matches.

• NAL-7: Events: this layer introduces events which only have their truth value

close to their occurrence time as specified by Projection formula which weakens

their confidence with increasing distance to their occcurrence time c∗ 7→ c∗λ∆t.

To obtain a time-independent generalization of the event statement, eternal-

ization c∗ 7→ c
c+1

is used, a form of induction. To be able to compose events

from existing events, this layer includes temporal variants of NAL-5 copulas, in-
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cluding sequential conjunction (a&/ b), parallel conjunction, (a&| b), sequential

implication (a = / > b) and parallel implication (a = | > b). Here, sequential

implication is taken as a correlative rather than causal relation. As argued in

Wang and Hammer (2015b), besides causality not being a well-defined notion,

causality is not something an agent can ever know for certain. Correlation is

all there is to extract from experience, though some correlation involves events

the agent can invoke itself, which brings us to the next layer.

• NAL-8: Procedure: Includes operator terms ôp, and operations as inheritance

statements with an operator as predicate: (({SELF} ∗ args) → ôp) These

events the system can produce by itself to achieve what it desires. Desire is

associated to goal events, where like in Wang (2013a) the desire value of a goal

G! is formalized as the truth value of < G ⇒ D > where D stands for an

implicit / virtual ”desired state”. This way reasoning on goals is able to utilize

the belief-related inference rules without needing special treatment.

Since terms can be arbitrary nested compound terms of these types, the formal

language is highly expressive. NARS implementations have a parser implementation

which follows the grammar definition of the Narsese language. The formal grammar

definition can be found in the Wiki of the ONA repository, though it’s not as easily

readable and interpretable as the previous listing which is why the listing was preferred

here. Also the implementation is using an ASCII representation and not the pretty-

printed Latex representation, though the visual resemblance should be sufficient to

understand without ambiguities the ASCII examples part of this thesis.

We will now focus on temporal and procedural aspects, which corresponds to

NAL-7 and 8. These layers are the most crucial for procedure learning from event

streams.
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2.1.2 From statements to events, sequences and temporal credit assign-

ment

Since statements are just a partial description of experience the Markov property

is not an acceptable design assumption. And even though statements can in principle

encode complete state for some limited practical purposes, the system is designed

to work also in non-Markovian environments. To allow for this, the system can

temporally relate two or more events with each other by forming compound events

such as sequences. Additionally, Temporal Induction, an Induction rule, allows the

system to create predictive statements based on two events. The induction rule

basically states

{A(f1, c1), B(f2, c2)} ` (A 6⇒ B)(f1,
f2 ∗ c1 ∗ c2

f2 ∗ c1 ∗ c2 + 1
)

where event A happened before B. The result can then be revised on each occurrence

by summing up the positive and negative evidence, allowing stronger and stronger

hypotheses to form. Here, in the simplest case, A and B are events, where usually

both are Inheritance statements such as (weather → [rainy]) and (street → [wet])

(brackets denoting properties, see Wang (2013a)), but they could for example also

be sequences. Before the induction rule is applied, the first event is projected to the

latter, this lets confidence decrease with increasing temporal distance.

These temporal aspects of the logic provide a solution to what is known as the

“Temporal Credit Assignment Problem”. That is, for a given outcome event, what

was the contribution of the events which happened before it? Temporal projection

followed by induction and revision is key here. Another key is the ability to generate

negative evidence for the hypothesis whenever it fails to predict (this we call ”Antic-

ipation”), which is again followed by Revision to summarize the evidence. As projec-

tion discounts evidence of the induction result based on the temporal occurrence time
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distance between the premises, it plays a similar role for temporal credit assignment

(in this case the attribution of evidence) as Eligibility Trace decay in Reinforcement

Learning Sutton and Barto (2018) Differently to Reinforcement Learning, the Tem-

poral Credit Assignment Problem is solved for all incoming events and compositions

thereof, not just reward outcomes. This allows the system to learn from observation

even when reward is absent and allows it to take a past events into account when

predicting others, not just current ones.

Additionally, since operations are just a special case of events, the system can

form sequences such as (A,Op) and integrate them into induced hypotheses such as

(A,Op) ⇒ C where Op is an operator. This is similar to the schemas discussed

before, and allows to represent the idea, that if Op is executed when A happened, C

will likely follow, a key to goal-related procedure learning and procedure execution.

This modular representation is also similar in nature to schemas, we will refer to them

as “procedural hypotheses” and “procedural links”.

2.1.3 Memory and Control considerations

While the logic is extensively explored in Wang (2013a), there’s a central question

which details have not received as much focus: given that in a real-time reasoner

the time will often not allow to exhaustively process the conclusion space, how to

make sure that the right inferences will be drawn at the right time. Ideally only

the most contextually relevant and goal-related inferences should be made. It’s the

job of Attention Allocation to make this work. The architecture we will introduce

exploits recency of both used premises, truth expectation and Syntactic Complexity

of the derived conclusion to decide the priority of conclusions, which then again can

potentially become premises for the next inference step. Additionally, we will see

a memory structure which supports efficient goal-reasoning and decision making by

exploiting temporal structure (learned temporal and procedural hypotheses).
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Also, new information can constantly stream into the system. In this case with

data structures being finite, clearly most information will ultimately need to be for-

gotten to not exce. 31ed a fixed maximum capacity. This raises the second question,

that is, which data item should be retained, and which should be removed to make

place for a new one. For the attention buffer (a form of Short-Term Memory) the sys-

tem’s control mechanism selects from, it’s a ranking of Priority, where lowest-priority

items will be removed first. For the premises to be stored in the system for longer

(Long-Term Memory, which we will call ”Concept memory”), it will be a usefulness

metrics based on use count and last used time.

Keeping these considerations in mind helps to better understand the architecture

this thesis describes, which designates separate blocks to both memory types (a form

of Short Term Working Memory and Long Term Memory). But before going there, we

will dive deeper into the learning of temporal and procedural links and the associated

challenges.

2.1.4 Representing and learning procedure knowledge

Procedural knowledge is generally concerned with representing the preconditions

and consequences of actions. In traditional planning approaches Russell and Norvig

(2002), this knowledge is usually provided in advance, and the task is then to search

for the most concise and complete plan that leads to the achievement of a certain goal,

a desired end state. This approach can be modified to search for the plan that leads to

the end state with the highest probability. The drawback to this approach is that the

need to react to change of circumstance during the planning and execution process,

as well as forming the preconditions and transition probabilities from experience, is

not captured.

In Reinforcement Learning (RL) this problem is reduced to learning to act the

right way in the currently observed situation, where “act the right way” is usually
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taken as the selection of the action with the maximum expected utility value Sutton

and Barto (2018). Here, no explicit plan is generated, and no subgoal derivations

happen. Instead the decision-making is only considering the currently observed state,

whilst assuming it is a complete description of the current situation Sutton and Barto

(2018). While being sufficient in applications where the system’s behavior serves a

single purpose, this treatment becomes insufficient when novel goals spontaneously

appear or existing ones disappear Wang and Hammer (2015a). That’s clearly the case

in many robotics applications, Latombe (2012), and also, as many argue, in the human

mind Eagleman and Sejnowski (2000); Pitti et al. (2013). To improve the ability to

adapt to changing circumstances, a change of goals should not require re-learning the

related situation-action mappings. Instead an adaptive system should develop beliefs

of the consequences of its actions in such a way, that when goals change, the actions

that lead to the fulfillment of novel goals can be derived. This can be seen as an

understanding of the environment in terms of how different outcomes can be achieved

by the system, independently from what is currently “rewarded” or desired.

We will now combine the benefits of both traditional planning and RL, while

eliminating the mentioned drawbacks of both approaches. Since learning procedural

implications is about learning the preconditions and consequences of operations, the

system does not need to re-learn situation-action mappings when goals change, a ma-

jor advantage. With these modular representations, each piece of procedural knowl-

edge can be independently evaluated and suggests a certain operation in a certain

context to realize a certain subgoal: solving “global” problems, using “local” deci-

sions. So, different to traditional planning approaches, no complete plan is explicitly

searched for, instead the individually evaluated pieces can be learned, combined and

lead to a certain behavior, influenced by current goals and circumstances. We will

now see both the general problem formulation and a solution with these properties.
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2.1.5 Goal-directed Procedure Learning: the problem

We regard procedure learning as the process that forms procedural hypotheses,

based on temporal patterns of events and operations that appear in the system’s

experience. A temporal pattern can be represented as (A1, ..., An), which is a se-

quence of n consecutive events. or operations, each occurring at a certain discrete

time-step. Here, events do not encode an entire state, just certain parts of it, such

as temperature information coming from a sensory device, encoded by a composition

of terms/IDs, called “Compound Term” (see Wang (2013a)). Now, as shown before,

temporal patterns can become building blocks of hypotheses, which should capture

useful regularities in the experience of a system. A hypothesis can be an implication

A⇒ B, where a procedural hypothesis can be defined as (A,B)⇒ C where A is an

antecedent, B an operation and C a consequent. The antecedent can be considered

as a precondition that, when followed by an operation, is believed to lead to the

consequent. Additionally, with the inclusion of temporal constraints, hypotheses can

be considered as predictive, such as (A,B) /⇒ C, whereby they imply the occurrence

time of the consequent to be in the future. Here, the precondition and consequent

can be arbitrarily complex pattern compositions, while the behavior is an operation

which can be directly invoked. Additionally, the consequent often represents a goal

or subgoal to realize. Furthermore each such hypothesis has a degree of belief corre-

sponding to the likelihood that the prediction will be confirmed when its precondition

is fulfilled, which is measured by the truth expectation of its truth value.

Given a goal G!, which a system wants to make as true as possible, how does it

satisfy the goal? Wang (2013b)

There are two essential components: hypotheses formation through forward chain-

ing on beliefs, where helpful hypotheses are formed directly from pieces of knowledge,

with observed patterns as special cases, and backward chaining, where a subgoal is

derived from a goal and an existing belief Wang (2013b). For the latter, in case where
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a hypothesis for how to achieve G! in the current context already exists, usually a

single backward chaining step to derive the operation as a subgoal, which can be

directly executed, will be sufficient. Therefore, “executing a procedural hypothesis”,

means to perform a single backward inference leading to an operation, that can be

executed. Often however, the goal G! simply cannot be reached within a single step

from given circumstances, so preconditions under which G! can be reached need to

be derived as a subgoal first, some of these subgoals might then be reachable from

current circumstances or demand to produce subgoals by themselves.

Generally, problem-solving involves an inter-play between “reason” and “execute”.

That is, because when the system has no appropriate procedural hypothesis, that both

predicts G and also has its preconditions currently met, then usually both belief- and

goal-related multi-step reasoning will be necessary, to find a solution, leading to a

schema which can later be re-used Drescher (1989). The reasoning corresponds to

creative but evidence-driven exploration of possibilities to deal with novel situations.

This corresponds to re-interpretation of the situation and finding of solutions although

no algorithm is known, as discussed in Wang (2013b). The “execute” case on the

other hand relies on the memorycontrol structure’s ability to remember solutions to

goals in such a way that they will be easily accessible when similar goals are desired

and the system finds itself in similar circumstances. This allows for faster response

times to similar problems in the future and to make effective use of what has already

been learned.

We believe that most of the things we do, such as driving a car, that increas-

ingly begin to become more automatic, are due to a transition from the “reason”

to the “execute” case DeKeyser et al. (2007). A transition from the “novel” to the

“usual” is something a systems control mechanism can and should effectively support.

Furthermore, a control mechanism, will need to choose between multiple hypotheses

which can satisfy a goal, to a different degree, for the current context. Therefore the
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formation, selection and pruning of hypotheses are crucial and each of these aspects

will be described in detail below.

2.1.6 Goal-directed Procedure Learning: the solution

Proper timing estimation Additionally to the temporal reasoning capabilities

introduced before, when reasoning with time the notion of ’interval’ becomes im-

portant as it allows the system to estimate expected arrival of predicted or desired

conclusions. Temporal implications such as (E1, It) /⇒ E2 include intervals which

measure the time distance between E1 and E2. Intervals are always measured when

temporal implications are induced from events, though we will omit them in the

discussion whenever they don’t add any value. A key challenge is how to allow hy-

potheses with intervals of different duration to be revised. Imagine two hypotheses

(E1, It1) /⇒ E2 and (E1, It2) /⇒ E2. Both of them predict the same outcome based

on the same precondition, but they expect different interval durations, It1 and It2. To

allow these different intervals to be revised, a confidence decay (Projection)Hammer

et al. (2016) increasing with the time difference is applied after revision, where the

projection happens towards the confidence-weighted average of both intverals. This

enables the learning of the more, commonly experienced, interval durations over time.

Hypothesis Creation Hypothesis creation is the key to building relevant and

useful hypotheses. A crucial insight was to separate the incoming experience stream

into belief events which are operations and belief events which are not. With this

separation, the task of forming meaningful preconditions becomes an easier problem

to solve: operations simply become the context under which certain events cause

others to occur.

Over time the total evidence of re-occurring hypotheses will increase due to the

Revision rule Wang (2013a) being applied within the concept of the hypothesis. Now,

in a proper memory structure, revised procedural hypotheses ((A,Op) /⇒ B) are
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indexed by B, this allows term B to memorize ways of how goal events with its term

can be realized, and to learn the preconditions under which itself tends to occur after.

Hypothesis Selection Assuming an incoming or derived goal G!, the task of

hypothesis selection is to choose the highest truth-expectation and contextually ap-

plicable hypothesis (with a previously experienced event E as precondition) that can

satisfy G!. Also assuming that such a hypothesis already exists, the Detachment rule

Wang (2013a) can be applied twice to a matching hypothesis, which is of the form

(E,Opi) ⇒ G. The first detachment leads to (E,Opi)! and the second one to Opi!.

The Opi! with the highest truth expectation, or certainty, will most likely lead to

the greatest satisfaction of G!, and therefore should be derived. Opi! can then be

executed if the truth expectation if above a decision threshold Hammer et al. (2016).

When so hypothesis with Opi above decision threshold exists, E! can be deduced as

a subgoal.

Hypothesis Pruning Given the uncertain nature of input experience, it is not

possible, in advance, to identify what will be relevant and useful. This, unavoidable,

lack of foresight can lead to the formation of hypotheses that have little value to a sys-

tem. Additionally, given the limited computational resources, only a certain number

of hypotheses can be retained at any one time. This makes it even more important

to keep track of the success rate of hypotheses, as to keep the most competent ones

while removing the others.

The approach taken to allow for this is hypothesis pruning, to measure the success

of hypotheses so that these that do not predict correctly can be removed by lowering

their truth expectation. While finding positive evidence is achieved through temporal

induction rules as mentioned before, finding negative evidence is the job of Anticipa-

tion: given a predictive statement of the form: antecedent /⇒ consequent, we define

Anticipation as the expectation that the antecedent will lead to the consequent being

observed as predicted. With Anticipation a system is able to find negative evidence
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for previously learned predictive beliefs which generate wrong predictions. Hammer

and Lofthouse (2018); Nivel et al. (2013)

If the event happens, in the sense that a new input event with the same term as

the anticipated event is observed, the anticipation was successful (Confirmation), in

which case nothing special needs to be done, since the statement will be confirmed

via the normal process of temporal induction.

If the predicted event does not happen then the system needs to recognize this.

But when is the right time to do so?

The challenge is how to determine the timeout duration after which we decide

the prediction failed. While in previous publications Hammer and Lofthouse (2018)

we have attempted to estimate a deadline, the new treatment avoids a deadline alto-

gether: whenever a hypothesis is used, a small amount of negative evidence is added

to it, small enough that positive observation will overvote it. This way, the hypoth-

esis’s truth expectation will increase when the event happens as expected, while it

will decrease when it won’t. This has turned out to be the most effective solution

attempted so far.

The recognition of the Goal-Directed Procedure Learning problem, and its solution

has become a core strength of ONA, and is only partly solved by the prior works we

will now discuss.

2.2 Implementation design

2.2.1 Objective

The Non-Axiomatic Reasoning System has been implemented several times (Ivanović

et al. (2017), Lofthouse (2019), Hammer et al. (2016)). OpenNARS was used both as

a platform for new research topics and an implementation for applications Hammer

et al. (2020), though it was mainly intended as a research platform. Not all ideas in
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OpenNARS are fully developed, and application domains require the proven aspects

to work reliably. Whilst this has led to the systems capabilities being stretched to

the limits it has also given us a better understanding of the current limitations. The

new architecture, OpenNARS for Applications (ONA), has been developed to resolve

OpenNARS’s limitations by combining the best results from our research projects.

The logic and conceptual ideas of OpenNARS Hammer et al. (2016), the sensori-

motor capabilities of ANSNA Hammer (2019) and the control model from ALANN

Lofthouse (2019) are combined in a general purpose reasoner ready to be applied.

ONA is a NARS implementation following the NARS model of intelligent reason-

ing Wang (2013a). For a system to be classified as an instance of a NARS it needs

to work under the Assumption of Insufficient Knowledge and Resource (AIKR). This

means the system is always open to new tasks, works under finite resource constraints,

and works in real time. For the resource constraints to be respected, each inference

step (cycle) must take an approximately constant time O(1), and forgetting is nec-

essary to stay within memory limits. Here, relative forgetting describes the relative

ranking of items for priority based selection (a form of attention), while absolute for-

getting is a form of eviction of data items, to meet space constraints. Events, beliefs

and concepts compete for resource based on current importance, relevance and long

term usefulness.

What all NARS implementations have in common is the use of the Non-Axiomatic

Logic (NAL) Wang (2013a), a term logic with evidence based truth values, which al-

lows the systems to deal with uncertainty. Due to the compositional nature of NAL,

these systems usually have a concept centric memory structure, which exploits sub-

term relationships for control purposes. A concept centric memory structure ensures

premises in inference will be semantically related. This property, together with the

priority based selection, helps to avoid combinatorial explosion. An additional com-

monality between NARS implementations is the usage of the formal language Narsese,
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it allows the encoding and communication of NAL sentences with the system, as well

as between systems.

2.2.2 Data Structures

Figure 2.1: Data Structures utilized

Data structures (Fig. 2.1) can be grouped into two broad classes: Data and con-

tainers. The primary data elements are Events, Concepts, Implications and Terms;

whilst the containers are FIFO, PriorityQueue, ImplicationTable and HashTable.

HashTable is an optimisation and mentioned here for completeness but is not re-

quired for the functional description. It is used to efficiently retrieve a concept by its

term (hash key) without searching through memory.

Term: All knowledge within the reasoner is represented as a term. Term structure

is represented via a binary tree, where each node can either be a logical NAL copula

or atomic. For the encoding, heap order is used, meaning the first entry is the root,

and from there, a node at i’s left child is at position i ∗ 2 and the right child is at
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position i ∗ 2 + 1.

Event: Each Event consists of a term with a NAL Truth Value, a stamp (a set of

IDs representing, the evidential base of any derivations or a single ID for new input),

an Occurrence Time, and a priority value. The stamp is used to check for statistical

independence of the premises, derivations are only allowed when there is no overlap

between the stamps of the premises. Additionally, each event can either be a judgment

(an event/piece of information) or a goal (an event desired to be reproduced). For

input, also the question type is allowed, which is handled as memory lookup, simply

returning the answer of highest truth expectation among the concepts matching the

question.

Concept: Each concept has a term (its identifier), a priority value for attention

control purposes, a usage value, indicating when the concept was last used and how

often it was used since its creation. There is a table of pre-condition implications that

act as predictive links, specifying which concepts predict which other’s events. Here,

each operation has its own section in the table, this way gaining more knowledge

about one operators will not potentially flood out knowledge about other operators.

Additionally, there is an eternal belief which summarizes all event truths which have

the concept’s term through revision. This eternal belief allows the system to learn,

for instance, that ravens are black, from individual observations of black ravens at

different points in time. Last, there is a most recent event belief reflecting the most

recent event with the concept’s term that happened, and a predicted event belief with

the concept’s term.

Implication: These are the contents of the pre-condition implication tables in

the concepts. Usually its term has the form a ⇒ b which stands for “a predicts

b”. Sometimes they also include an operation, such as (a, op) ⇒ b, which is the

procedural form, and similar to schemas as in Drescher (1993), though their context

is never modified. They allow the reasoner to predict outcomes (forward) and to
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predict subgoals (backward). When the outcome b is predicted (with an operation

execution as side effect for the procedural form), negative evidence is added to the

prediction on failure, while on success positive evidence is added. The simplest way

to accomplish this is to add the negative evidence right away while ensuring that

the positive evidence added will outweigh the negative. In this way no anticipation

deadline needs to be assumed and the truth expectation of the implication will gain

truth expectation on success, and loose truth expectation on failure, anticipation

realized via Assumption of Failure.

PriorityQueue: This is used by: Cycling Events Queue and Concepts Mem-

ory. It is a ranked, bounded priority queue which, when at capacity, removes the

lowest ranked item when a new item is added. Events are ranked by priority, and

concepts by usefulness, a (lastUsed, useCount) which maps to raw usefulness via

usefulnessRaw = useCount
recency+1

, where recency = currentT ime−lastUsed. A normalised

value for usefulness is obtained with usefulness = usefulnessRaw
usefulnessRaw+1

. The datastructure

is realized as a max-heap, as this allows O(1) access of the highest-priority item, and

insertion in O(log(n)) time where n is the amount of items stored in the heap.

Implication Table and Revision: Implications are eternal beliefs of the form

a ⇒ b, which essentially becomes a predictive link for a, which is added into an

implication table (precondition implication table of b).

An implication table combines different implications, for instance a⇒ g and b⇒ g

to describe the different preconditions which lead to g, stored in the implication table

in concept g. Implication tables are ranked by the truth expectations of the beliefs.

This makes sure that only the hypotheses which predict most successfully are kept in

the table, while the memory bound is strictly respected.
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2.2.3 Efficiency considerations

These include all design decisions which were made to make the system perform

better, more easily adjustable, and so on.

• Array-encoded terms The binary tree corresponding to a Narsese sentence

can be encoded in an initially empty array, by putting the root node as entry of

position i = 1. And then, recursively, the left children is put at position i∗2 and

the right childen at position i∗ 2 + 1. This representation, due to locality of the

assigned memory region, is more efficient for CPU’s than a representation which

needs to follow pointers to traverse the tree. It needs more memory though,

but memory nowadays is cheap.

• Recursion-free unification Since the terms are layed out in an array, Vari-

able Unification can be implemented with a single traversal through the term

arrays to unify. A recursive formulation of unification is more expensive as it

depends on unnecessary stack manipulations for each recursive call and pointer

indirections when terms are not stored in contiguous memory. While traversing,

a hashmap of variable assignments is maintained, which lets the unification fail

if an inconsistent assignment is made.

• Pre-allocated memory Since every data structure is bounded, all memory

is allocated at process startup. This avoids expensive memory allocations and

releases at runtime.

• Contiguous memory allocation Concepts are stored as contiguous memory

blocks. This allows concept updates to utilize cache-locality effecively for higher

performance in processing.

• Max-heap based Priority Queue The Priority Queue is implemented as a

bounded Max-Heap structure. This datastructure allow for O(1) access of the
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highest-ranked element. Also insertion happens in O(log(n)) which allows for

theoretically optimal O(n∗ log(n)) re-sort, with n being the amount of elements

in the datastructure.

• Multi-threading Belief selection happens with a parallel OpenMP for-loop,

allowing the inference to happen in parallel by multiple threads, with only

memory updates being locked to store the results.

• Inference rule code generation Instead of interpreting inference rules at run-

time or hardcoding them with code difficult to maintain, the Narsese parser is

utilized to allow for the following inference rule format, established as C-macro:

(Premise1, P remise2, |−, Conclusion, TruthFunction). Inference rule code is

automatically generated from this description, including complete unrolling of

the unification. This allows modern compiler optimization to apply to make

the rule matching for multiple rules more efficient.

2.2.4 Architecture

A key driver of the architectural change is the nature of how concept, task and

belief are selected for inference. In OpenNARS the selection is based on a probabilistic

choice from a data structure (Bag) and is concept centric Rehling and Hofstadter

(1997). ONA takes a different approach: a task is popped from a bounded priority

queue. The task determines the concept to be selected, through a one-to-one mapping

between the term of the task, and concept terms. Then a subset of concepts which

share a common term with the task are selected based on their priority (determined

by a configuration parameter). This selection of concepts is the attentional focus as

these are the concepts that will be involved in the inference cycle. Whilst the number

of concepts to select is a fixed value (for a given configuration), the priority of concepts

is constantly changing. A self-regulating threshold is used to maintain the priority
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distribution within the necessary range to meet the selection criteria. This selection

of concepts is the first stage of the inference cycle. The selected concepts are now

tested for evidential overlap between the event and concept beliefs (evidence cannot

be overlapping Hammer et al. (2016)). Finally, there is an ‘inference pattern’ match

check, between the event and belief. If all the conditions are met the inference result

is generated, and added to memory to form new concepts or to revise any pre-existing

concept’s belief. Then the event, or the revised one if revision occurred, is returned

to the cycling events queue, with a reduced priority (if above minimum parameter

thresholds).

Figure 2.2: High-level architecture showing input sequencing and cycles for sensori-
motor and semantic inference

Sensory Channels: The reasoner allows for sensory input from multiple modali-

ties. Each sensory channel essentially converts sensory signals to Narsese. Dependent

on the nature of the modality, its internals may vary. As an example for application

purposes, a Vision Channel could consist of a Multi-Class Multi-Object Tracker for
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the detection and tracking of instances and their type, and an encoder which converts

the output into: the instances which were detected in the current moment, their type,

visual properties, and spatial relationships among the instances Hammer et al. (2020).

But also a simpler treatment is often sufficient, where only a detector is used and the

detected class and location input into NARS. In this case, no explit instance-based

distinction is made.

FIFO Sequencer: The Sequencer is responsible for multi-modal integration.

It creates spatio-temporal patterns (compound events) from the events generated

by the sensory channels. It achieves this by building both sequences and parallel

conjunctions, dependent on their temporal order and distance. These compositions

will then be usable by sensorimotor inference (after concepts for the sequence have

been added to concept memory and the compound event added as belief event within

the concept). As shown in figure 2.2, these compound events go through cycling events

first, ideally to compete for attention with derived events to be added to memory.

The resource allocation between input and derivations is a difficult balance, for now,

we let input events and the compound events (from FIFO sequencer) be passed to

memory before derivations. We acknowledge that this simple solution might not be

the final story.

Cycling Events queue: This is the global attention buffer of the reasoner. It

maintains a fixed capacity: items are ranked according to priority, and when a new

item enters, the lowest priority item is evicted. For selection, the highest-priority

items are retrieved, both for semantic and sensorimotor inference, the retrieved items

and the inference results then go back into the cycling events queue after the corre-

sponding inference block. The item’s priority decays on usage, but also decays in the

queue, both decay rates are global parameters.

Sensorimotor Inference: This is where temporal and procedural reasoning oc-

curs, using NAL layers 6-8. The responsibilities here include: Formation and strength-
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ening of implication links between concepts, driven both by input sequences and

derived events. Prediction of new events based on input and derived events, via im-

plication links. Efficient subgoaling via implication links and decision execution when

an operation subgoal exceeds decision threshold Hammer and Lofthouse (2018).

The truth functions, some of which are also used by semantic inference as sum-

marized in Table A.1 in the appendix, and so are the inference rules.

Semantic Inference: All declarative reasoning using NAL layers 1-6 occurs

here as described in Wang (2013a), meaning no temporal and procedural aspects are

processed here. As inheritance can be seen as a way to describe objects in a universe of

discourse Wang (2006), the related inference helps the reasoner to categorize events,

and to refine these categorizations with further experience. Ultimately this allows the

reasoner to learn and use arbitrary relations, to interpret situations in richer ways

and find crucial commonalities and differences between various knowledge. Also, due

to the descriptive power of NAL and its experience-grounded semantics, semi-natural

communication with the reasoner becomes possible, and high-level knowledge can be

directly communicated. This also works when the meaning of some terms is not yet

clear and needs to be enriched to become useful.

The truth functions which are only used by semantic inference rules are summa-

rized in Table A.2 in the appendix, and also the inference rules.

Concept Memory: The concept store of the reasoner. Similar to the cycling

events queue, it maintains a fixed capacity: but instead of being ranked by priority,

items are ranked according to usefulness, and when a new item enters, the lowest

useful item is evicted. Usefulness takes both the usage count and last usage time

into account, to both, capture the long term quality of the item, and to give new

items a chance. All events from the cycling events queue, both input and derived,

that weren’t evicted from the queue, arrive here. A concept node is created for each

event’s term, or activates it with the event priority if it already exists. Now revision
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of knowledge, of the contained beliefs, takes place. It also holds the implications

which were formed by the sensorimotor component, which manifest as implication

links between concepts. The activation of concepts allows the reasoner’s inference to

be contextual: only beliefs of the highest priority concepts, which share a common

term with the event selected from the Cycling Events queue (for Semantic Inference),

or are temporally related (through an implication link or in temporal proximity, for

Sensorimotor Inference), will be retrieved for inference.

2.2.5 Operating cycle

The operating cycle of the reasoner makes use of the following attentional control

functions for resource management, these are crucial to make sure the reasoner works

on contextually relevant information.

• Forget event: Forget an event using monotonic decay. This happens in the

cycling events queue, where the decay after selection can differ from the de-

cay applied over time, dependent on the corresponding event durability system

parameters. (multiplied with the priority to obtain the new one)

• Forget concept: Decay the priority of a concept monotonically over time, by

multiplying with a global concept durability parameter.

• Activate concept: Activate a concept when an event is matched to it in Concept

Memory, proportional to the priority of the event (currently simply setting con-

cept priority to the matched event’s when its priority exceeds the concept’s).

The idea here is that events can activate concepts while the concept’s priority

leaks over time, so that active concepts tend to be currently contextually rel-

evant ones (temporally and semantically). Additionally, the usage counter of

the concept gets increased, and the last used parameter set to the current time,

which increases the usefulness of the concept.
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• Derive event: The inference results produced (either in Semantic Inference or

Sensorimotor Inference), will be assigned a priority, the product of: belief con-

cept priority or truth expectation in case of an implication link (context), Truth

expectation of the conclusion (summarized evidence), Priority of the event

which triggered the inference, and 1
log2(1+c)

where c is the syntactic Complexity

of the result. (the amount of nodes of the binary tree which represents the

conclusion term)

The multiplication with the parent event priority causes the child event to have

a lower priority than its parent. Now from the the fact that event durability is

smaller than 1, it follows that the cycling events queue elements will converge

to 0 in priority over time when no new input is given. This, together with the

same kind of decay for concept priority, guarantees that the system will always

recover from its attentional states and be ready to work on new input effectively

after busy times.

• Input event: The priority of input events is simply set to 1, it will decay via

relative forgetting as described.

The following overview describes each component of the main operating cycle, in

which the attentional control functions are utilized:

1. Retrieve EVENT SELECTIONS events from cycling events priority queue (which

includes both input and derivations)

2. Process incoming belief events from FIFO, building implications utilizing input

sequences and selected events (from step 1)

3. Process incoming goal events from FIFO, propagating subgoals according to

implications, triggering decisions when above decision threshold
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4. Perform inference between selected events and semantically/temporally related,

high-priority concepts to derive and process new events

5. Apply relative forgetting for concepts according to CONCEPT DURABILITY

and events according to EVENT DURABILITY

6. Push selected events (from step 1) back to the queue as well, applying relative

forgetting based on EVENT DURABILITY ON USAGE

Semantic Inference: After an event has been taken out of cycling events queue,

high-priority concepts which either share a common subterm or hold a temporal

link from the selected event’s concept to itself will be chosen for inference. This is

controlled by adapting a dynamic threshold which tries to keep the amount of selected

belief concepts as close as possible to a system parameter. The selected event will then

be taken as the first premise, and the concept’s belief as the second premise. Here

the concept’s predicted or event belief is used when it’s within a specified temporal

window relative to the selected event, otherwise its eternal belief. The NAL inference

rules then derive new events to be added to cycling events queue, which will then be

passed on to concept memory to form new concepts and beliefs within concepts of

same term.

Implication Link formation (Sensorimotor inference): Sequences suggested

by the FIFO form concepts and implications. For instance event a followed by event b,

will create a sequence (a, b), but the sensorimotor inference block will also make sure

that an implication like a⇒ b will be created which will go into memory to form a link

between the corresponding concepts. In addition, a second link a⇒ b is derived, but

with all subterms which appear extensionally more than once (extensionally meaning

being the subject of an inheritance subterm) being replaced with a variable. And a

third candidate where the same happens intensionally (meaning being the predicate of

an inheritance subterm). This variable introduction strategy is quite general but also
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has its limits, as some implications cannot be induced this way. However, generating

all possible candidates is not a good solution either, controlling induction remains a

challenge.

In all cases, a itself can be a sequence coming from the FIFO sequencer, or a

derived event from the cycling events queue which can help to predict b in the future.

Also if a⇒ b exists as link and a was observed, assumption of failure will be applied

to the link for implicit anticipation: if the anticipation fails, the truth expectation of

the link will be reduced by the addition of negative evidence (via an implicit negative

b event), while the truth expectation will increase due to the positive evidence in

case of success. To solve the Temporal Credit Assignment problem such that delayed

rewards can be dealt with, Eligibility Traces have been introduced in Reinforcement

Learning (see Sutton (1988) and Sutton and Barto (2018)). The idea is to mark the

parameters associated with the event and action which was taken as eligible for being

changed, where the eligibility can accumulate and the eligibility decays over time.

Only eligable state-action pairs will undergo high changes in utility dependent on the

received reward. NARS realizes the same idea via projection and revision: when a

conclusion is derived from two events, the first event will be penalized in truth value

dependent on the temporal distance to the second event, via Projection. If both

events have the same term, they will revise with each other forming a stronger event

of same content, capturing the accumulation aspect of the eligibility trace. If they

are different, the implication a ⇒ b can be derived as mentioned before, and if this

implication already exists, it will now revise with the old one, adding the new evidence

to the existing evidence to form a conclusion of higher confidence. If b is a negative

event, the truth expectation will decrease (higher confidence but less frequency), while

a positive observation b will increase it. This is similar to the utility update in RL,

except with one major difference: the learning rate is not given by the designer, but

determined by the amount of evidence captured so far. In RL implementations this
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deficit is compensated by decreasing the learning rate over time with the right speed

(by trial and error carried out by the designer). However given amount of additional

time is not a guarantee that more evidence will be collected for a specific state-action

entry, its state might simply not have re-appeared within the time window, yet the

next time it’s encountered the learning rate for its adjustment will be lower, leading

to inexact credit assignment.

Subgoaling and Decision (Sensorimotor inference): When a goal event en-

ters memory, it triggers a form of sensorimotor inference: subgoaling and decision.

The method to decide between these two is: the event concept precondition implica-

tion links are checked. If the link is strong enough, and there is a recent event in the

precondition concept (Event a of its concept when (a, op) ⇒ g is the implication),

it will generate a high desire value for the reasoner to execute op. The truth expec-

tations of the incoming link desire values are compared, and the operation from the

link with the highest truth expectation will be executed if over a decision threshold.

If not, all the preconditions (such as a) of the incoming links will be derived as sub-

goals, competing for attention and processing in the cycling events queue. This can

be summarized as follows:
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Input: Goal g Result: Execution of Op with feedback, or subgoal derivation
i=j=0
Subgoals = {}
bestDesire = 0.0
bestOp = None
implications = concept(g).preconditionImplications
while i<implications.size do

(subject, copula, predicate) = implicationsi
seqOpGoal = Deduction(implicationi, g)
seqGoal = StructuralDeduction Arg1Detachment(seqOpGoal)
precondition = projected(concept(seqGoal).belief event, currentTime)
if precondition 6= NULL then

Subgoals = Subgoals ∪{seqGoal}
Op = Deduction Arg2Detachment(seqOpGoal, precondition)
if Op.truth.expectation > bestDesire then

bestDesire = Op.truth.expectation
bestOp = Op

end

end
i=i+1

end
(babbled, babbleOp) = Motorbabbling(implications)
if babbled then

Execute(babbleOp)
inputAsNewBeliefEvent(babbleOp)
return

end
if bestDesire > DECISION THRESHOLD then

Execute(bestOp)
inputAsNewBeliefEvent(bestOp)

else
while j < nSubgoals do

derive(Subgoalsj)
j+=1

end

end

Algorithm 1: Decision and subgoaling

Prediction Also, event a leads to the prediction of b via Deduction, assuming

a ⇒ b exists as implication in concept b. Here, it suffices for the event to be able to

unify with the precondition of the implication, it doesn’t have to be the same term.

Motor Babbling and Curiosity: The system is not only motivated by user
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goals and goals related to bodily/device function. During its operation, it is expected

to be able to explore its environment in such a way, that potentially useful knowledge

will be found. This way, whenever the knowledge the system possesses, is, or has

become, insufficient to complete some of its tasks, the system can still succeed. Clearly

in the beginnings this is necessary as nothing about the environment might yet be

known. But also later the search for better solutions demands the agent to learn more

about the environment. In the beginnings, to trigger executions when no procedure

knowledge yet exists, the reasoner periodically invokes random motor operations, a

process called Motor Babbling. Without these initial operations, the reasoner would

be unable to form correlations between action and consequence, effectively making

procedure learning from experience impossible Nivel et al. (2013), Hammer (2019) and

Hammer et al. (2016). Once a certain level of capability has been reached (sufficient

confidence of a procedural implication (a, op) ⇒ g), the motor babbling is disabled

for op in context a to allow for more competent behavior. Additionally, rather than

just sampling uniformly among the operations, a sampling which prefers operations

which consequences in current context have low confidence encourages the agent to

explore more systematically what it does not yet know. This can be seen as a form of

artificial curiosity which improves the exploration behavior of the system. They way

this is realized is to make the function Motorbabbling return a random operation,

with a higher chance to select a candidate attached to an implication which has

high precondition truth expectation (it contextually applies) and low confidence (it

is uncertain).
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2.3 Reaching desired capabilities via a pragmatic approach

2.3.1 The big picture

Here, we will discuss considerations about cognitive functioning of this system

which ultimately give raise to the ability to act autonomously and in real-time, for

agents and robots in particular. Usage in robots is especially a goal for this system,

as it’s obviously the only way for an AI-driven machine to directly operate in the real-

world. This is aligned with the author’s goal to show that NARS can be well-applied in

environments where practically unlimited task-related training data and/or a perfect

simulation isn’t available, such as in many real-world scenarios. As mentioned, such

circumstances are a large part of the reason why great recent AI successes in domains

with perfect simulation availability (such as Schrittwieser et al. (2020), Mnih et al.

(2013)) have not translated into successes in real-world domains where unexpected

situations occur more regularly than tolerable. But most importantly, environments

do change, and often do change fundamentally. In this case the assumption that

the system receives new data from the same data-generating process is not even a

reasonable assumption to make. Regular concept drift eliminates techniques which

cannot deal with non-stationary environments (these which can only adapt to a single,

static, probability distribution). Also it eliminates systems which need to update

a single model describing all relevant aspects of the environment, as they cannot

properly capture when only specific aspects of the environment change, while other

aspects might remain the same. To deal with this, compositional representations

are crucial, such as schemas which will be introduced in this chapter. Also crucial

however is the ability to deal with the flood of high-dimensional input rich visual,

auditory, ranging etc. sensors provide. In this thesis a practical approach is taken,

where objects are first detected using state-of-the-art Deep Learning models, and then

related spatially and temporally by the reasoning machinery we will introduce.
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2.3.2 Visual perception

While just a special case of many possible modalities, visual perception is often

crucial for certain tasks to be performed in real-world environments, especially for

robotic explorers, rescue robots, robotic housemaids etc. For biological systems this

is equally crucial, clearly most birds and mammals utilize sight to get around in their

environment, to hunt for prey, or find other sources of food or water, etc. This fact is

part of what drove research in artificial vision systems initially, and led to a task that

was not nearly as easy to solve as Marvin Minsky wanted it to be. It seems fair to claim

that it took many decades of progress in Machine Learning and hardware development

till Deep Convolutional Neural Networks were found and practical variants became

widespread in use.

Hence the approach taken here is combining vision, ranging, and tracking ap-

proaches, and the overall solution can be seen as a form of 3D perception. Such a 3D

visual perception system needs to be able to identify instances of specific object classes

in the world, relevant visual properties, and how these objects are spatially related

and move relative to each other in 3-dimensional space, and relative to the agent.

Additionally, the time required to identify objects in the scene needs to be within a

small constant time, to not get in the way of real-time operating ability of the overall

system. Here it’s essentially crucial to make sure it’s easy to utilize state-of-the-art

object detectors which are fast in execution time (such as Bochkovskiy et al. (2020)),

and real-time trackers which build on the detectors (such as Bewley et al. (2016) and

newer). For object detection, a Convolutional Neural Network (YOLOv4), together

with a ranging sensor to give distance information, was utilized for all applications

which demand 3D perception, and the related examples we will see in this thesis. The

YOLOv4 model represents the state-of-the-art of object detection as of April 2021,

and is widely used in industry.

Additionally, this pragmatic approach is still compatible with a form of crude but
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active vision: embedded in a robotic device, the system still decides what to see based

on motor output, can use attention control to focus on specific objects, and can use

visual cues to navigate and to gain information which is yet unknown. This allows

the agent to seek for new information which will potentially help it to fulfill a mission

goal, or to answer questions about objects which are not currently in sight, both will

be demonstrated.

However, this pragmatic approach to perception, to utilize the best available Deep

Learning models also comes with restrictions: it inherits the key limitation that it

cannot learn to detect new types of objects at runtime. However, despite Unsuper-

vised Learning and more recently Self-Supervised Learning having become popular

recently, to my knowledge there are no robust solutions which allow to showcase this

capability in real-world scenarios, so this property remains a wish also this thesis

has no solution for. Desired properties such an adaptive, active visual perception

system would ideally have have been summarized in Wang and Hammer (2018), but

how exactly to realize such a system in a practical form has yet to be seen. Until

then, relying on state-of-the-art Deep Learning solutions is arguably the most prac-

tical decision one can make, and is, as we will see, totally compatible with having an

adaptive general-purpose reasoner on top rather than just merely application-specific

hardcoding like seen in current non-adaptive autonomous driving solutions.

2.3.3 Adaptation

As just mentioned, ideally the system could learn to recognize new objects and

their properties at operating time (we will generally refer to “adaptation” as learning

at operating time in this thesis), but for now we have to take into account that this is

outside of what current technology can realistically deliver. But while the perception

system is not adaptive and the detected object types and properties are assumed to

be fixed for the purpose of this thesis, ONA, as we will be shown, can build cate-
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gories on top by combining and relating detected object properties with each other.

This form of learning operates on top of the detection of the individual objects which

are identified. Additionally, associative learning can happen by associating detected

objects and properties to other perceived events which are not necessarily events origi-

nating from the visual perception system, then the association becomes multi-modal.

Multi-modal patterns are not only crucial for Natural Language Understanding to

allow agents to relate words and phrases to ongoing events (such as seeing a person

approaching the fridge after hearing the word “hungry”), they are even more cru-

cial for autonomous robots with different sensor types attached to it: for instance

a rescue robot can adjust its search direction when hearing a person scream from a

certain side, where the connection between scream and person either happened from

past experience, or in this case most likely through background knowledge the rescue

robot was provided with, before it started its mission.

A different form of Adaptation falls under Operant Conditioning, Staddon and

Cerutti (2003) which is about the learning of behaviors which ideally lead the sys-

tem to get what it currently desires, an essential part of the ONA architecture is

concerned about solving this problem in particular. Interestingly, solutions which

address what Operant Conditioning describes are relatively rare, and so far mostly

unsuccessful: they are either proposed and not implemented, or implemented and not

effective. Methods in Reinforcement Learning Sutton and Barto (2018), the arguably

most overlapping paradigm in AI provides no difference here: most of it can’t deal

with multiple or contradicting objectives, or even handle the simple requirement of

changing objectives. The latter isn’t an issue in board games but an every-day reality

for biological systems which behavior depends heavily on current demands. Most

importantly, the most fascinating property of Operant Conditioning as observed in

various birds and mammals is data efficiency. Often a single key observation for an

animal is enough to learn the crucial knowledge which drive radical changes in the be-
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haviors they exhibit. It’s not unreasonable to suspect that some form of uncertainty

logic is what allows for this kind of capability, leading to logics such as Probabilistic

Logic Networks Goertzel et al. (2008) or Non-Axiomatic Logic (NAL, Wang (2013a))

which are more data efficient than approaches which don’t track the sample space

size and instead assume a sufficiently large sample space to work.

In ONA, all forms of adaptation are carried out via reasoning with NAL Wang

(2013a) introduced in the NARS chapter. This is different than in Inductive Logic

Programming, where facts are given prior to training, and induction is performed

on the basis of facts via various rule extraction techniques. (Muggleton (1991) and

Muggleton and De Raedt (1994)) Once a rule set is extracted, the output rules lack

the statistical information / the evidence which was inherent to build them, hence if

the fact basis changes, the entire algorithm has to run again.

Highly related are association rule miners which work on a data stream in real-

time, especially the ones which work with a sliding windows approach. While these

solutions usually don’t introduce variables (as the events usually don’t have internal

structure like being predicates with arguments) and lack inference facilities necessary

for prediction and decision making, they face a similar knowledge extraction problem

from input events as ONA addresses also with a sliding window approach, a FIFO

structure.

2.3.4 Planning

A large part of intelligent behavior depends on the ability to plan ahead to reach

desired outcomes, outcomes which sometimes might not have been experienced before

and might not be approached ever again exactly in the same manner. Planning relies

on the feasibility of finding a plan based on the chaining of believed-to-be causal

relationships. The outcome, the plan, is a series of steps which an agent needs to

perform in succession to get from the current situation to the desired one. Since time
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passes by during plan execution, and things might go wrong on the way, especially

agents operating in the real world (robots) usually depend on periodic re-planning to

allow the agent to take into account changes which are not under its control. If such

a system should allow for real-time response additionally, then the planning time

spent usually needs to be within a certain deadline. However, when the planning

space is too large, exhaustive processing of alternatives is no longer an option. In this

case certain paths need to have priority over others, leading to planning techniques

such as Monte Carlo Tree Search Chaslot et al. (2008) which allow to explore more

promising paths with higher probability, which can also be seen as a form of Attention

Allocation as it redirects the computational resources the system has available.

A related problem is that the results of planning processes would ideally be mem-

orized, so that next time a similar planning problem is encountered, large parts of

the solution will already be known, reducing planning time significantly. In cognitive

architectures such as Soar this is usually referred to as a form of “Chunking” (Laird

(2019) and Laird et al. (1986)). To support this, a plan cannot just be judged ac-

cording to its overall success, but individual pieces the plan is composed of need to

be judged by whether they were able to produce associated intermediate outcomes,

allowing for a form of temporal credit assignment. Additionally to the procedural im-

plications we have seen, we will now get to a similar kind of modular representations

which allow for such chunking to happen, Drescher’s Schemas.

2.4 Implementation usage

To download the software from Hammer (2020a), all that is required is Git, and

Clang or GCC. Any POSIX-compatible OS suffices.

To get started, download:

git clone https://github.com/opennars/OpenNARS-for-Applications
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cd OpenNARS-for-Applications

sh build.sh

Then to run the tests which confirm the system to work, execute:

./NAR (C Tests only)

python3 evaluation.py (all tests)

Finally, the Shell can be executed to interact with the system in an interactive

manner:

./NAR shell

The shell waits for input, which can either be a Narsese events such as

<world --> [round]>. :|:

<world --> [?what]>? :|:

or just inference steps, indicated by a number and enter, or only enter. The shell

also supports directly streaming example files in, and piping it to syntax highlighting

for prettier output is supported as well, as shown by Fig. 2.3. Hereby, green lines

show input, yellow are derivations (omitted for length reasons), red ones are answers

and operator executions, and pink ones are expected outputs for testing purposes

which have been calculated by hand.

Figure 2.3: Shell interaction with syntax highlighting
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Also several program examples are included:

1. Two versions of Pong: Reinforcement Learning-style behavior learning

2. Cartpole: Reinforcement Learning-style behavior learning

3. Space Invaders: Reinforcement Learning-style behavior learning

4. Test Chamber: demonstrates abilities to learn goal-dependent behaviors and to

utilize them for planning purposes

5. Robot: combines all the abilities, includes real-time multi-step decision making

6. Various Narsese example files which demonstrate different reasoning capabilities

7. Various English files for the included English-to-Narsese channel

and scripts for conveniences such as english to narsese.py which translate English

input to Narsese. This script is based on a pipeline of tokenization, Part-of-Speech-

tagging, Wordnet-based lemmatization, and relationship extraction with a prelimi-

nary implication-based grammar learning attempt. Then, there is vision to narsese.py

which uses YOLOv4 to stream in vision input (class ID and discretized X and Y loca-

tion) into ONA. Both are preliminary sensor channels implementations which make

it easier to utilize the system when vision and natural language input is required.

These can also be chained, and attached to the system via simple pipe in the shell

(including syntax highlighting output via colorize.py):

python3 english_to_narsese.py | python3 vision_to_narsese.py |

./NAR shell | python3 colorize.py

Last, there is a Python script available which makes it easy to use the system in

a Python application. It can be imported with

import NAR
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and input events can be fed like this:

NAR.AddInput("""<(<{switch1} --> [off]> &/

<({SELF} * {switch1}) --> ^activate>)

=/> <{switch1} --> [on]>>.""")

NAR.AddInput("<{switch0} --> [on]>. :|:")

NAR.AddInput("<{switch1} --> [off]>. :|:")

Questions are returned with the input question:

print(NAR.AddInput("<{switch0} --> [?1]>? :|:")["answers"])

The by ONA returned output is represented as a Python dictionary by the wrap-

per, which makes further processing for various application purposes easier:

[{’occurrenceTime’: ’2’, ’punctuation’: ’.’,

’term’: ’<{switch0} --> [on]>’,

’truth’: {’frequency’: ’1.000000,’, ’confidence’: ’0.900000’}}]

Similarly, operation executions are returned with the input goal (sometimes a few

calls later if the decision takes multiple inference steps):

print(NAR.AddInput("<{switch1} --> [on]>! :|:")["executions"])

which prints:

[{’operator’: ’^activate’, ’arguments’: ’{switch1}’}]

In addition to the Shell and Python API, there is also a way to invoke ONA

directly in a C/C++ project. This is outside of the scope of this chapter which is

only meant to give a brief introduction to the ONA software. More information can

be found in the project Wiki Hammer (2020a).
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CHAPTER 3

Comparison with prior work

3.1 Drescher’s schemas

One way to achieve this modularity are Jean Piaget’s schemas, which he described

as ”a cohesive, repeatable action sequence possessing component actions that are

tightly interconnected and governed by a core meaning“. Schemas, according to

Piaget, are the basic building block of intelligent behavior. They can be seen as a

way to organize procedure knowledge. Drescher, in his publication Drescher (1986)

and Drescher (1993), formalized schemas and visualized them as shown in Fig. 3.1:

Figure 3.1: Drescher schema

His formalization describes schemas as a transitition from context to result via

an action. Hereby, the transition probability is a tuple with the probability of the

result happening with the action being taken, and probability of the result happening

with the action not being taken. This allows to evaluate, how much the taking of

the action actually contributes to making the outcome happen. To illustrate, let’s

consider both probabilities to be the same. This means the outcome will happen in

the circumstance no matter if the action is taken or not, in which there is no merit in

taking it. If however, the chance to achieve the desired outcome is higher when the
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action is invoked, it should be taken. Among the competing schemas, the schemas

which most likely will lead to the desired outcome are chosen and their associated

actions executed, which also demands the schema’s context to be fulfilled.

However, to achieve an outcome, in most cases multiple steps are necessary to

get there. To address this, schemas can be chained, where chaining happens from a

currently satisfied context to a goal, which corresponds to a form of planning outcome,

again as visualized in Drescher (1986) by Fig. 3.2:

Figure 3.2: Schema chain

Differently than what we will see in NARS, schemas are not immutable and

bounded in size, but can be extended indefinitely. This can raise computational

demands, breaking real-time operating constraints if allowed to happen in an un-

bounded way. Fig. 3.3 illustrates the schema expansion process Drescher (1986):

Figure 3.3: Schema extension

The key criteria for extending the schema is to increase the ”predictive strength“

of the schema when the additional contextual cue is added. This usually happens

when the previous schema context was not specific enough to allow for similarly reli-

able prediction. To measure this reliability, Drescher explicitly introduced “reliance”

to replace probability, as he noticed that the probabilistic approach does not scale

well computationally, as whenever the probability of a schema is adjusted, all other

schemas need their probabilities to be adjusted as well to not violate probability space
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axioms (the sum of probabilities equals 1 requirement). Hence he defined reliance as

successes
sucesses+failures

, a measure which he proposed to be used instead of probability.

More importantly though, Drescher noticed a key issue with making the decisions

dependent on reliance or probability alone. If a schema wasn’t tested often enough

yet, usually meaning successes and failures are both still small, the probability es-

timate will not be proper and consequently decisions will not lead to the desired

outcomes. To fix this, he proposed successes + failures to be large enough for a

schema to be considered in decision making. However, whatever the threshold might

be, there will be cases where the choice will turn out to be suboptimal. From a

Machine Learning perspective it’s safe to make the choice larger if this becomes an

issue, as data efficiency / learning speed can often be ignored there. This is especially

true in large datasets and in simulations where arbitrary amounts of data can be

generated. From an autonomous system operating in the real world perspective how-

ever this is unacceptable and will hamper the solution to adapt timely to changing

circumstances. Drescher didn’t go deep enough to resolve this fundamental issue, and

we saw how NARS addresses this via a 2-valued truth value.

Their basic idea is however valid, and to demonstrate their feasibility, we will look

at the success stories of schemas as proposed so far, including data-hungry variants

with 1-valued reliability measures. In the ICML 2017 paper, Kansky et al. (2017),

schema networks were proposed, which essentially are entity-related schemas which

can span multiple frames (see 3.4) learned through a modern optimization technique,

Integer Linear Programming (see Schrijver (1998)).
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Figure 3.4: Schema extension

While their approach supports no stochasticity (their schemas need to be consis-

tent with the entire observation history of the agent!) and cannot learn in real time

as the resource effort raises with every observed frame (it’s an ever-growing Inte-

ger Linear Programming problem to solve), their approach nevertheless shows a core

strength of the schema representation: it has a capability to deal with previously un-

seen scene variations in a zero-shot way, due to the utilization of causal object-related

representations. For instance, as they show in their paper (as visualized by Fig. 3.5),

their agent is able to deal with a novel rock arrangement in the Breakout game imme-

diately, while the Asynchronous Actor-Critic Agents demands to be trained for this

specific spatial rock arrangement extensively and fails to generalize:
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Figure 3.5: Zeroshot learning

This shows that schema representation can be a key component to enhance in-

telligent decision making, one we re-encountered in NARS (procedural implications),

while overcoming the discussed limitations.

3.2 OpenNARS

ONA was built as a more practical system compared to OpenNARS as published

in Hammer et al. (2016). This chapter summarizes the most notable differences

between both implementation designs, which includes especially memory and control

considerations.

3.2.1 Priority Queue instead of Bag

Differently than Bag in (Wang (2013a), Wang (2006) and Hammer et al. (2016))

which selects items with a selection chance proportional to the priority of the item

(as in Parallel terraced scan, Rehling and Hofstadter (1997)), a priority queue selects

always the item of highest priority. This means, that in Bag the lowest-priority item

would have a chance to be selected too, while a priority queue would never choose

them (unless it’s the only item, obviously). Especially when items are re-inserted and

hence can get re-selected, the difference can be significant. In ONA however there

52



is no concept selection step and events are not re-inserted into the attention buffer.

After selection from Cycling events queue, the selected event can produce “offspring”

via reasoning, but is then removed permanently from this data structure, at least until

a event with same term is either input or derived again. This design decision also

makes the system behave in a more predictable manner, while for OpenNARS pseudo-

randomness plays an important role in selection. Also it makes ONA more reactive

than OpenNARS, in the sense that its reasoning is mostly (though not completely)

driven by input rather than internal activity.

3.2.2 Statement concepts and implication links

In OpenNARS each derived sentence, together with all its subterms forms a con-

cept node. This means the term of statement (A → B) itself names a concept, and

so does A and B. In ONA, only statements (including inheritance terms, similar-

ity, negation and sequences) form concept nodes, and their subterms are handled

implicitly via keys in a indexing structure (these are closer to NARS concepts than

the statement nodes which are called concepts in ONA). This was also necessary be-

cause in ONA memory is pre-allocated, and assigning a belief table etc. to A and B

would make the system way less space efficient. Another reason is that implications

(A =⇒ B) do not form concepts in ONA, instead this implication resides in the

implication table of concept B, which also only makes sense when the term of B

is a statement which can be the term of an event. The implication table allows to

compare candidates effectively, as to decide how to best achieve B. This, as we have

seen is crucial for subgoal derivation and decision making in ONA. This structure

has also turned out to be necessary in OpenNARS as our research has revealed, the

solutions in ONA are essentially a more sophisticated yet simpler form of the prin-

ciples in Hammer and Lofthouse (2018), using a FIFO structure with deterministic

selection for temporal compounding instead of an event bag with non-deterministic
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selection. Also, while the decision making rule decides whether a subgoal should be

derived or not dependent on whether the precondition is already fulfilled enough to

reach B, in OpenNARS the derivation of subgoals happens in any case when the goal

is selected, causing issues in coordination of behavior which an improved attention

control mechanism might or might not resolve. ONA’s memory structure is especially

designed for the learning and utilization of multi-step behaviors.

3.2.3 Concept usefulness

While OpenNARS has a 3-valued Budget Value (p, d, q) of which the third value,

Quality, represents long-term value of the concept to the system, ONA utilizes a

usefulness value calculated by (lastUsed, useCount). This is similar to a combination

of Least Frequently Used and Least recently used.

Quality on the other hand is a combination of:

• Average task priority within the concept

• Balance between intension and extension of the concept

• Effectiveness in goal achievement

• Rescale factor r where the priority of tasks does not fall below q ∗ r, indirectly

where q is the quality of the task. (indirectly via task priority)

• How truth maps into quality of tasks. (indirectly via task priority)

and many more. These are all relatively hard to tune and weight (which one

should have how much contribution to quality), and that task priority is produced

by a multitude of factors coming from complex link structures (see Hammer et al.

(2016)) doesn’t help either.
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Usefulness on the other hand doesn’t have these moving parts and leads to a

system which keeps items in a more predictable way, but it might miss potentially

relevant factors.

3.2.4 Limitations in ONA

While ONA addresses the biggest issues of OpenNARS for application purposes,

some limitations do exist: compared to OpenNARS Hammer et al. (2016) the atten-

tion span is more short-term (reasoning concentrated mainly at the current moment

rather than the past or future) and induction abilities (which hypotheses can be

formed). Some of them result from design decisions which were made to make the

system perform in a more predictable and reliable manner, so that its abilities can

be judged more easily and experiment outcomes are resistant to example variations

in cases where the outcome isn’t expected to be affected by slight changes in input

representation or order, though some timing dependence is inevitable.

In this chapter we will go through a list of current limitations, discussing how

they can be overcome:

Temporal induction As seen earlier, the formation of sequences is controlled by

the FIFO structure. Events in this datastructure are stored in the order they appear

in. The sequences currently however cannot skip an event. The amount of sequences

one could generate would go from polynomial O(n2) to 2n for a given FIFO state with

a FIFO of maximum size n. Clearly this is only managable for small FIFO’s. For

larger FIFO’s, ideally attentional control would be necessary to make skip events an

option (rather than just filtering generated candidates in the Cycling Events Queue).

Or one can restrict the amount of events the FIFO can skip in sequences, this way

the amount of sequences would stay polynomial-bounded. Since ONA, for simplicity,

treats the Cycling Events Queue as the only attentional control point in the system,

only the latter has been tried so far: an ONA branch SkipEventsFIFO with this
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capability is available. For instance, from a given event sequence a, b, c, d, this branch

can generate

<(a &/ c) =/> d>.

where b has been “skipped” in the sequence.

Variable introduction Often there are many ways variables could be introduced.

ONA uses the following strategy to introduce variables:

1. Only introduce variables for atomic terms which appear at least twice.

2. Only count on left/right side of inheritances, never mix them.

3. Always introduce all variables which can be introduced.

To exemplify this strategy, an example:

<({a} * {b}) --> equal>. :|:

<({b} * {a}) --> equal>. :|:

will lead to:

<<({a} * {b}) --> equal> =/> <({b} * {a}) --> equal>>.

<<({$1} * {$2}) --> equal> =/> <({$2} * {$1}) --> equal>>.

<<({a} * {b}) --> $1> =/> <({b} * {a}) --> $1>>.

The first candidate is the version without any variables introduced, and the second

one the one which introduces variables only on the left side of inheritances (extensional

side), and the third one only on the right side (intensional side).

The options missed are:

<<({$1} * {b}) --> equal> =/> <({b} * {$1}) --> equal>>.

<<({a} * {$1}) --> equal> =/> <({$1} * {a}) --> equal>>.

56



<<({a} * $1) --> equal> =/> <($1 * {a}) --> equal>>.

<<($1 * {b}) --> equal> =/> <({b} * $1) --> equal>>.

<<($1 * {$2}) --> equal> =/> <({$2} * $1) --> equal>>.

<<({$1} * $2) --> equal> =/> <($2 * {$1}) --> equal>>.

<<($1 * $2) --> equal> =/> <($2 * $1) --> equal>>.

<<({$1} * {$2}) --> $3> =/> <({$2} * {$1}) --> $3>>.

<<($1 * {$2}) --> $3> =/> <({$2} * $1) --> $3>>.

<<({$1} * $2) --> $3> =/> <($2 * {$1}) --> $3>>.

<<($1 * $2) --> $3> =/> <($2 * $1) --> $3>>.

of which at least the first seven could be useful. The others don’t include any

atomic term, hence the hypothesis is too abstract to be meaningful as they are not

contextually constrained in any way. While it is easy to filter out the latter, generating

all possible options is not necessary a good idea, especially as the resource effort will

heavily depend on the premises, jeopardizing real-time response ability. Ideally the

introduction of candidates with intermediate abstraction level should be guided by

hypotheses which have already been used extensively. This would demand usefulness

values to be also attached to implications though, a complicating I wanted to avoid

but points to an unexplored future direction.

3.3 Adaptive Neuro-Symbolic Network Agent

An alternative knowledge representation is based on Sparse Distributed Represen-

tations (SDR) Ahmad and Hawkins (2017), rather than based on Compound Terms

that are typical for NARS. Using SDR’s a system can build event sequences by tak-

ing into account the compositionality of bit vectors as proposed by Kanerva (2009).

Operations on SDR’s captures union and difference operations between bit vectors,

and ways to encode hierarchical structure within them.
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Making use of Non-Axiomatic Reasoning System theory, my earlier work Adap-

tive Neuro-Symbolic Network Agent (ANSNA) is able to learn directional correlative

links between concept activations that were caused by the appearing of observed and

derived event sequences. Like in ONA, which emerged from this research, these di-

rected correlations are encoded as predictive links between concepts, and the system

uses them for directed concept-driven activation spreading, prediction, anticipatory

control and decision-making.

3.3.1 Similar work and philosophical differences

Like ONA, ANSNA borrows most of its theory from the Non-Axiomatic Reasoning

System proposed by Pei Wang (see Wang (2013a)), while using the inference control

theory of ALANN Lofthouse (2019). What makes ANSNA really different from a

usual NARS is however the complete absence of Terms and explicit Inheritance re-

lationships, coming from a philosophically very different path: while NARS tries

to model a general-purpose thinking process with highly flexible ways to compare,

transform, and generally deal with any kind of information that can somehow be ex-

pressed in Narsese (NARS’s formal internal and I/O language), ANSNA concentrates

completely on sensorimotor.

For NARS, sensorimotor capability, which consists mainly of procedural and tem-

poral inference on sensor & motor events, is just a special case of the rich reason-

ing abilities Non-Axiomatic Logic (NAL) supports. NAL also includes declarative

reasoning abilities about sets, arbitrary relations, and inheritance-relationships that

are all there to support dealing with conceptual knowledge that doesn’t necessarily

have any grounding in actual sensorimotor experience. ANSNA takes the position

where knowledge that has no possible grounding in the system’s sensorimotor experi-

ence is not necessarily meaningless (as it can clearly relate to other knowledge), but

surely was so far useless to a goal-driven decision-maker, as it would indicate that
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the meaning of that knowledge is completely orthogonal to everything ANSNA has

ever experienced through its sensors so far, both external and internal. In NARS

this situation is by far not unusual, a user entering a new Inheritance relationship

(term123→ term242) consistent only of new terms, term123 and term242, leaves the

system’s memory with a floating pair of concepts that have so far no relation to any

other concepts whatsoever, meaning also no relation to sensorimotor concepts, and

how such a relation should be established through correlations is a difficult problem.

Such a problem does not exist in ANSNA, as it is assumed that all information is

consumed through external (vision, touch, sound, temperature, other modalities...)

and internal sensors (battery level, structural integrity, etc.).

According to ANSNA philosophy, relating new user-given abstract terms to sen-

sorimotor experience is not necessary, only building compositions of sensorimotor

patterns. In ANSNA every composition is automatically “grounded”, since every in-

formation, without exception, ultimately is forced to enter ANSNA through the sys-

tem’s sensors. Also in a NARS operating in a robot without Narsese-communication

channel, it is usually not happening, and not at all necessary, that new atomic terms

will be created, in such a case the set of atomic terms are pre-defined by the de-

signer, consisting of pre-defined sensor encodings and probably revisable background

knowledge that was loaded on the robot beforehand. In that sense, a semantic code

is inevitable, meaning the universe of mental discourse will be spanned by possible

compositions of events following pre-defined encodings of sensory data (plus combi-

nations with background knowledge, in NARS). Even though NARS itself does not

assume a fixed semantic code, in that case it is undeniably present. This is however

no contradiction with that such a system can acquire the meaning of observed events,

where the meaning of an event has both structural and empirical aspects.

Structural meaning is determined by the composition following the semantic code,

which encodes how the pattern is observed/composed from sensorimotor experience.
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For instance there is no way for the system to see the observation of a red ball as

structurally identical to an observed blue ball. However, it needs to be possible for

the system to learn that a blue ball carries overlapping meaning, not only by being

a similar structural composition / semantic code word, but also that nudging a blue

ball in similar circumstances, will have similar consequences like nudging a red ball

in similar contexts. And that can be done without having the user entering an ex-

plicit Inheritance relationship into the system, and without an explicit Inheritance

altogether, as whether experienced event a is a special case of another event b can

implicitly be represented by sensorimotor relations, that is, if a leads to the conse-

quences we expect from b, it is naturally a special case of the former even though it

may structurally differ.

Of course, the semantic code needs to be rich, not in quantity, but in quality.

Same as a set of lego technic pieces needs to be rich in variety and fit together

nicely to support the construction of a large variety of machines, the semantic code

needs to be rich in variety and fit together in such a way, that the agent is able to

conceptualize experienced aspects of its environment in an effective way. This can

happen through a large variety of perceptual attributes, such as, for example, Color,

PositionX, PositionY, Pitch, Frequency, Temperature, Pressure and Battery Level.

Color, PositionX and PositionY can encode information from a visual field, for in-

stance. Once a basic semantic code is in place, the encoders are present, everything

the system experiences will be seen in terms of the attributes these encoders present,

by ANSNA. The more comprehensive, the richer the context will be, and the better

will ANSNA be able to make sense of its environment through compositions of senso-

rimotor events. This leads to the last key difference to OpenNARS and ANSNA, the

usage of Sparse Distributed Representations (long, sparse bit vectors, SDR’s), and

usage of Pentti Kanerva’s Kanerva (2009) insights about how hierarchical structure

can be encoded in them. Clearly, differently than Sparse Distributed Memory (SDM)
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Kanerva (1992), ANSNA is not just a model of memory, and thus, as we will see, its

event-based design requirements make its memory architecture different than SDM,

while preserving some of SDM’s key properties. For instance, mapping events with

similar SDR’s to similar concepts, supporting content-addressable memory.

3.3.2 Data Structures

ANSNA’s memory consists of two priority queues, one contains concepts and the

other current events (Events Buffer).

Event: Each Event consists of a SDR with a NAL Truth Value, an Occurrence

Time, and a Attention Value that consists of the priority of the event and a durability

value that indicates the decay rate of the priority over time.

A SDR is a large bit-vector with most bits being zero, in ANSNA all SDR’s are

of equal length n.

SDR structure: With a,b being SDR’s we can now define the following func-

tions calculating a new SDR based on a existing one, using theory borrowed from

P. Kanerva Kanerva (2009): SDRSet(a, b) := a|b where | is the bitwise or operation.

SDRTuple(a, b) := ΠS(a) ⊕ ΠP (b) where ΠS and ΠP are two random permutations

selected when ANSNA starts up, they remain the same after that.

Additionally encoding functions E as proposed in Purdy (2016) are used to en-

code similar numbers to similar SDR’s, and terms are encoded into random SDR’s

deterministically. This way, arbitrary hierarchical compositions can be encoded into

ANSNA, and as we will see later, effectively compared with each other based on

a per-bit basis. For now it is sufficient to see that two input encodings, such as

SDRTuple(E(brightness), E(3.23)) and SDRTuple(E(brightness), E(3.5)) will lead

to similar SDR’s, meaning most 1-bits will overlap. We will omit E from now on,

and see that SDRSet(green, light) will have more 1-bits in common with light than

sound. Of course SDRTuple and SDRSet can be arbitrary nested with each other,

61



essentially forming a tree which leafs are for instance SDR-encoded terms or numbers,

and structurally similar trees will lead to similar SDR’s.

Concept: Concepts in ANSNA are summarized sensorimotor experience, they are

the components of ANSNA’s content-addressable memory system and are named by

interpolations of the events SDR’s that matched to it (described in more detail in the

next section). Processed events can match to different concepts with various degree,

but in a basic implementation a winner-takes-all approach can be taken, matching

the event only to the most specific matching case that was kept in memory, and

processing it as such.

Each concept has a SDR (its identifier), and Attention value consisting of a priority

and a durability value, a Usage value, indicating when the concept was last used

(meaning it won the match competition for an event, as we will see later) and how

often it was used since its existence. Also it has a table of pre- and post-condition

implications that are essentially predictive links, specifying which concepts activate

which others, and a FIFO for belief and goal events, and has multiple responsibilities:

To categorize incoming events by matching them to its SDR: to become good

representatives, concepts have to encode useful and stable aspects of a situation, con-

ceptual interpolation, explained in the next section, helps here; To support revision,

prediction and explanation for native events, events for which this concept wins the

matching competition; To maintain how relevant the concept is currently and how

useful it was in total so far; Learning and revising preconditons and consequences by

interacting with an for temporal inference incoming event.

Matching events to concepts: An event can match to multiple concepts with a

truth value “penalty” according to the match. Let S and P be a SDR. We want that S

can be said to be a special case of P , or can stand for P , denoted by S → P , if most of

the bits in P also occur in S, but not necessarily vice versa. So S =SDRSet(red,ball)

should be a special case of P =SDRSet(ball). It has most the features of ball, but
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also has the redness feature, meaning a red ball can effectively stand for, or be treated

as a ball too.

We will now formalize this idea using a NAL truth value, which is a frequency-

confidence tuple (f, c) = ( w+

w++w−
, w++w−
w++w−+1

) where w+ is positive evidence and w−

negative evidence. The truth value of S → P can be established as follows: Let’s

define each 1-bit in the SDR to be a NAL sentence (see Wang (2013a)), where each

of these 1-bits, at position i, in S, encode biti = 1.

One case of positive evidence for S → P , is a common property S and P both

share. Such as the fact that bit5 is a 1-bit. On the other hand, a case of negative

evidence would be a property possessed by P that S does not possess. Given that,

we can define the positive evidence as: w+ := |{i ∈ {1, ..., n}|Si = Pi = 1}| and the

negative evidence as w− := |{i ∈ {1, ..., n}|Si = 1 ∧ Pi = 0}|.

If the event E has truth value TE, to apply the penalty of ”treating it as concept

C”, the truth value becomes Truth Deduction(Tmatch, TE), which will then be used in

the inference rule within the concept for deriving further events.

That is motived by that if event E is a special case of the pattern it is encoded

by, SDRE, and SDRE is a special case of SDRC, as the match determined, then

we have E → SDRE with truth value TE and SDRE → SDRC with truth value

Tmatch := SDR Inheritance(S, P ). Using the deduction rule as specified in Wang

(2013a), we end up with E → SDRC, allowing to treat the event as if it would have

the SDR SDRC.

Please note there is also a symmetric match defined by Truth Intersection(

SDR Inheritance(a,b), SDR Inheritance(b,a)) as we will need later. For a tuple of

truth values ((f, c), (f2, c2)) Truth Intersection leads to (f∗f2, c∗c2) and Truth Deduction

to (f ∗ f2, f ∗ f2 ∗ c ∗ c2), for the other truth functions we will use, please see Wang

(2013a), they have all been described by Pei Wang in detail.
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3.3.3 Practical consideration: Voting Schema

Matching new SDR-events to concepts is more difficult than in a Compound Term

approach like OpenNARS where the concept can be uniquely determined by an event’s

term. It would be expensive to evaluate the SDRInheritance for every concept in the

system’s memory. So somehow we want to try only these that are guaranteed to

be a good match. Events can match to multiple concepts in ANSNA. The voting

schema allows for this, comparing only these SDR’s that have overlapping 1-bits,

and keeping track of the best result: Given concepts with the corresponding SDR

a = 00010 concept b = 01010 and concept c = 00101, from the creation of these

concepts in memory, the voting table got updated to: bit1 = {} bit2 = {b} bit3 = {c}

bit4 = {a, b} bit5 = {c} based on the procedure, that for every i, every concept with a

SDR with the i−th bit being 1 will be added into the set biti. Now when a new event,

say with SDR 01110 comes into the system (derived or input) we iterate through all

the bits, and keep track of the counts of the concepts that have a 1-bit at the same

position, in this case giving the following result: {(b, 2), (c, 1), (a, 1)} where b is the

best match: its 1-bits were matched by 2 of the 1-bits of the task, bit2, bit4. A detailed

runtime analysis is outside of the scope of this paper, but this method exploits the

sparsity of long bit vectors, and will be faster than matching an event to all concepts

in a brute-force way. when the vectors are long enough, and sparse enough.

Of course, the revision (which sums up the positive, and negative evidence of both

premises) can also happen in the belief event FIFO, this make sure that two conflicting

sensory signals that happen concurrently, will be merged, allowing to better deal with

contradicting sensory information. 1

Implication Table and Revision: In NARS terms, Implications in ANSNA are

eternal beliefs of the form a ⇒ b, which essentially becomes a predictive link for a

1A detail: As in Hammer et al. (2016), only revise if the evidental base does not overlap, and
only if the revised element when projected to the occurrence-time middle between both elements is
higher than the premises’s.
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and a retrospective link in b, each going to a separate implication table (preconditions

and postconditions).

An implication table combines different implications, for instance a⇒ b and a⇒ c

to describe the different consequences of a in the postcondition table of concept a.

Implication tables are ranked by the truth expectations of the beliefs, which for a

given truth value (f, c) is defined as (c ∗ (f − 1
2
) + 1

2
).

Different than in OpenNARS, where it is clear whether revision can happen depen-

dent on whether the terms are equal, two items in ANSNA can have different degree of

SDR overlap. To deal with this, both revision premises are penalized with symmetric

SDR match SDR Similarity, leading to Truth1 and Truth2 using Truth Intersection,

and revision will only occur if revision(Truth1,Truth2) has a higher confidence than

both Truth1 and Truth2. When a new item enters the table, it is both revised with

the closest SDR candidate (the revised result will be added to the table, if it was a

proper result), and also the original Implication will be added to the table.

Conceptual Interpolation: Conceptual interpolation, inspired by Kanerva (1992),

is the process by which concept’s SDR adapts to the SDR’s of the matched events,

in such a way that the SDR of the concept becomes the average case among the

matched event SDR’s. This allows the concepts to become useful ”prototypes” un-

der the presence of noise, useful in the sense that a newly seen noisy pattern can be

reconstructed.
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Figure 3.6: SDR interpolation as illustrated in Kanerva (1992)

A way to implement this is idea is to add a counter for each bit in the SDR. Each

1-bit of the matched event increases the corresponding counter by 1*u, and each 0-bit

decreases it by 1*u, where u =Truth Expectation(SDR Inheritance(e,c)), meaning an

event that better matches to the concept will have a stronger influence on it. If the

counter is 0 or smaller, the corresponding concept SDR’s bit will be 0, else 1. This

effectively means that iff there is more positive evidence for the bit in the matched

event SDR’s to be 1 than 0, it will be 1 in the concept SDR they were matched to

too.

Note: conceptual interpolation is highly related to, and a special case of centroid-

based clustering.
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3.3.4 ONA: why compound terms instead of SDR’s

SDR’s did not make it into ONA, however a prototype system was published

Hammer (2019) and developed which included improved procedure learning ideas

which were first described in Hammer and Lofthouse (2018), and later developed into

ONA. Let’s shed light on their pro and cons over a compound term representation:

Pros:

• Noise resistance by structural match, while compound terms demand similarity

reasoning to achieve the same.

• Inheritance and Similarity-related reasoning in particular demands many infer-

ence steps and revision steps to achieve the same as what 1 SDR match can do

efficiently.

Cons:

• Nesting structure encoded in SDR’s is not straightforward to work with, though

is crucial for higher-level cognitive functioning beyond association and recall /

recognition.

• As an important special case of the previous, compositionality of representations

is hard to capture with SDR’s. (such as to encode a face by describing its parts)

• Memory structure hard to make efficient despite the described voting structure,

better suited for hardware such as GPU’s where many SDR’s can be matched

in parallel.

• Similarity is mostly structural rather than being evidence-based, though the

centroids concept containers are associated with can be moved by using con-

ceptual interpolation of the concept SDR which is best matched by a processed

event’s SDR.
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• SDR’s need to be very long to profit from their properties and to make sure

there won’t be too many overlaps for union operation, like easily 8K bits and

more, while quite complex compound terms can fit into 1K bits even as it’s the

default in the ONA implementation.

Most of the benefits of SDR’s are in efficiency for low-level pattern matching,

which is why in ONA it was dropped. This is also because ONA comes with sensory

channels which includes the ability to connect state-of-the-art object detectors etc.,

hence the benefits of SDR’s.

3.4 Belief-Desire-Intention models

Belief-Desire-Intention models Bratman et al. (1987) Georgeff et al. (1998) are

a very widespread paradigm for autonomous systems, it consists of the following

notions:

1. Beliefs: encode current state of affairs as First-Order-Predicate-Logic (FOPL)

sentences, which includes both sensor inputs and mental states.

2. Desires: State of affairs the agent wants to realize. When selected to pursue,

they become goals.

3. Intentions: From commitment to a goal, linked to a plan which is meant to

realize it.

A key of BDI model’s success is its ability to apply goal-oriented (FOPL) reason-

ing / planning on task-related background knowledge (beliefs and plans). This also

includes the ability to plan ahead over many decision steps, and to reach various goals

in different contexts, for which learning state-action mappings / policies in Reinforce-

ment Learning fashion isn’t sufficient. These aspects are shared by NARS, however in

NARS, differently to BDI models, plans and intentions are both treated as beliefs and
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are not just either true or false: procedure knowledge is learnable and revisable by

NARS, and is of various certainty, instead of being provided as fact by the user. Just

selecting a plan according to desires / goals to become an intention, based on current

circumstances (beliefs), is a much simpler problem to solve, as it ignores the learning

aspect of behaviors and consideration of uncertainties which are both so critical to let

agents operate in largely unknown and/or changing environments. BDI model-based

agents are restricted in behavior to utilize what has been specified by the designer,

though the knowledge can be combined in flexible ways by the planning process.

As we will now see also for Reinforcement Learning (RL), NARS combines and

extends the key aspects of both BDI models and RL without inheriting some of

their biggest limitations. We will see experiments which map to both paradigms, also

including an experiment with robots for which BDI models are typically the preferred

choice.

3.5 Reinforcement Learning

3.5.1 Introduction

In this chapter we will see NARS being compared with a common Reinforcement

Learning technique (Q-Learning Watkins (1989), Sutton and Barto (2018)) in a set

of Reinforcement Learning problems. Reinforcement Learning is usually seen as or-

thogonal to Practical Reasoning (Wooldridge (1996), Shams et al. (2017)), as two

sub-areas of AI which serve different purposes. The former is expected to learn be-

haviors which maximize expected future reward, while the latter is expected to find

ways to reach goals based on already available knowledge which can be used for plan-

ning purposes. The outcome of the planning process is a sequence of steps which is

expected to lead to the desired goal state when starting from current circumstances.

In Reinforcement Learning usually the goal is fixed and represented as a utility func-
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tion which provides the agent with different reward values in different circumstances.

Also, the planning is implicit: when a certain action is taken it’s chosen exactly be-

cause it is expected to lead to the highest future reward, but this can still mean that

additional steps are required to get the reward, which demands dealing with Tem-

poral Credit Assignment, that is, to evaluate to what degree the taken actions were

responsible for the reward outcome Sutton (1988) . When this situation is common

(that only specific states provide reward feedback) we usually refer to this as rewards

being “sparse” Riedmiller et al. (2018). In Practical Reasoning terms this is usually

the default, as it just means that the only outcome of interest is the achievement of

the goal state, intermediate outcomes don’t provide good or bad value by themselves

other than making achieving the goal state easier or more difficult.

To allow for meaningful comparison, in this paper we will see ‘OpenNARS for

Applications’ (ONA, see Hammer and Lofthouse (2020)) which can reason under

uncertainty, competing with a table-based Q-Learner (see Watkins (1989), Sutton and

Barto (2018)) in domains with sparse rewards. This will show the key point this paper

is about to convey: that uncertainty reasoning can be used to learn behaviors typically

learned by Reinforcement Learners, and reach comparable results in certain domains

model-free Reinforcement Learning techniques are typically applied in. Additionally,

we will see how the reasoning approach performs better when the Markov property of

next state and reward only being dependent on previous state and previous action is

violated, and without relying on state merging heuristics to make the Markov property

for reward hold again such as in Gaon and Brafman (2020). Most importantly, this

work establishes uncertainty reasoning (based on Non-Axiomatic Logic in particular)

as an additional Machine Learning technique to deal with Reinforcement Learning

problems. In addition, a real-world robotics experiment will be presented, where

YOLOv4 Bochkovskiy et al. (2020), a Convolutional Neural Network Khan et al.

(2020) which represents the state-of-the-art at object detection (success or Redmon
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et al. (2016)), will be utilized. In this experiment we will see that the reasoner

inherits some of the strengths means-end reasoning solutions are known for, while

being able to deal with knowledge insufficiencies at runtime. Knowledge insufficiencies

Wang (2009) include incomplete knowledge, outdated knowledge, and various forms

of concept drift, all of which is addressed by supporting robust learning at runtime.

3.5.2 A reasoner which learns and makes decisions

Whilst Practical Reasoning Systems have multiple existing instantiations (such as

Ferrein et al. (2012), Purang et al. (1999), Wooldridge (1996), Shams et al. (2017),

Belief-Desire-Intention models Bratman et al. (1987) Georgeff et al. (1998) like Bordini

and Hübner (2005), etc.), most are not designed to allow knowledge to be uncertain

but rely on it to be sufficient for the task at hand. Multiple logics have been proposed

to support reasoning under uncertainty, such as: Markov Logic Networks ?, ProbLog

De Raedt et al. (2007), Fuzzy Logic: Zadeh (1988), Probabilistic Logic Networks:

Goertzel et al. (2008), Non-Axiomatic Logic: Wang (2013a). What all these have

in common is extending truth value of prepositions from boolean to a degree of

belief. This allows them to capture knowledge which is not either true or false, but

somewhere in-between. Of these logics, De Raedt et al. (2007), ? and Goertzel et al.

(2008) operate with probability values associated to the prepositions. To take into

account the size of the sample spaces, Goertzel et al. (2008) and Wang (2013a) use a

second value which intuitively speaking corresponds to the stability of the probability

in light of new evidence. This allows them to allocate a higher certainty to say a

50/50 over a 5/5 coin flip scenario, while still converging to the same truth value

in the limit of infinite samples. This makes these two logics extremely well-suited

for cases where “degree of belief” has to be estimated from samples and justifiable

conclusions should be drawn (or decisions being made) even when samples supporting

a relevant hypothesis are low in count. In this case the ratio of confirming cases over
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total cases is not necessarily yet representative and the amount of samples needs to

be considered in addition when comparing competing hypotheses.

For this purpose, NAL Wang (2013a) was chosen over PLN Goertzel et al. (2008)

since it incorporates goal reasoning and decision making, hence can be considered

a Practical Reasoner able to learn from experience. For this chapter, especially to

make it more self-contained, we will present again, but in a narrower style, the NAL

definitions necessary to replicate the experiments.

Truth Value Truth Value in NAL is based on positive evidence w+ and negative

evidence w− which speaks for or against a statement / belief / hypothesis, and the

total evidence w := w++w−, each of which is zero or greater. Based on these evidence

values, the NAL truth value is defined as the tuple (f, c) with frequency

f :=
w+

w
∈ [0, 1]

and confidence

c :=
w

w + 1
∈ [0, 1)

Please note the similarity between frequency and probability, with the difference being

that the limit limw→∞ f is not taken, as it cannot be obtained from any finite amount

of samples. Also, clearly for w > 0, the mapping (w+, w−) 7→ (f, c) is bijective,

and statements with w = 0 don’t need to be handled as they don’t contribute any

evidence.

Additionally, truth expectation is defined as

expectation(f, c) = (c ∗ (f − 1

2
) +

1

2
)

This measure allows to summarize the two-valued truth value into a single value with

the extremes being 0 for c = 1, f = 0, and 1 for c = 1, f = 1, which both are
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approachable but unreachable, since ∀w ∈ R : c < 1 while limw 7→∞ c = 1.

Implications For the sake of this paper we will restrict ourselves to temporal

implications (A ⇒ B) and procedural implications of the form ((A, op) ⇒ B). The

former denotes that B will happen after A, and the latter that B will happen when op

is executed right after A happened. To calculate the truth values of these correlative

implications Wang and Hammer (2015b), the evidences of w+ and w− are needed. If

events would have binary truth, (A⇒ B), w+ would the amount of cases in which A

happened and B happened after it, and w− would be the amount of cases where A

happened but B did not happen thereafter. Slightly more complex but following the

same idea, for ((A, op)⇒ B), w+ would be the amount of cases in which A happened,

op was executed and B happened after it. And w− would be the amount of cases

where A happened and op was executed but B did not happen thereafter. Differently

than the schemas in Kansky et al. (2017), implications can be supported to various

degree instead of having to match all the data the agent has seen so far.

Now, using w+ and w−, the truth value (f, c) of the implication statements would

be fully determined. While this captures the main idea, to make the temporal rea-

soning more robust in regards to timing variations, the following treatment is used

instead:

Event uncertainty Events are not “true” at only a specific moment in time

(with some unique identifier attached to them, which can be an integer, string, or

as we will see later, logical statements with internal structure), instead they have an

occurrence time and truth value attached to them. Hereby, the confidence decreases

with increasing time distance to the second premise (also called Projection in Wang

(2013a)). The way this is realized is that when two premises are used in inference,

the confidence of the second premise is discounted by the factor β|∆t| with ∆t =

time(B)− time(A), where β is the truth projection decay, a hyperparameter.

Now, the way implications are formed is via the Induction rule
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{A,B} ` (A⇒ B)

with ∆t stored as metadata and the truth of the conclusion being (as described

in more detail in Wang (2013a)):

truth((A⇒ B)) = find((f1, c1), (f2, c2)) = (f1,
f2 ∗ c2 ∗ c1

f2 ∗ c2 ∗ c1 + 1
)

Now, when the same implication is derived multiple times, their truth values

are revised, by simply adding up the evidences of the premises: w+ = w+1 + w+2 ,

w− = w−1 +w−2 . This makes sure that the implication receives increasing amounts of

evidence when the events which support it (the antecedent and consequent) do occur,

exactly as we intended. But with the addition that evidence is discounted based on

temporal distance, which is what makes the temporal credit assignment succeed. On

this matter, Projection plays the same role as Eligibility Traces do for Reinforcement

Learners Sutton (1988).

As last detail, the ∆t is also updated in revision, by taking a weighted average

between the time deltas of the premises, weighted by the confidence of the premises.

We will need this soon to decide the occurrence time of derived events.

Learning To form the temporal and procedural implications from input events

(to calculate their evidence), a sliding-window approach is taken, where the sliding

window (a first-in-first-out buffer) only holds the latest k events. This way evidence

for implication (A ⇒ B) is only attributed (based on the Induction rule we just

described) when both the antecedent A and consequent B of the implication exist

within the sliding window. Please note that A can as well be a sequence here, like

(X,Op), encoding that X happened and then operation event Op happened. In prin-

ciple sequences don’t need to contain operation events and can contain more than

just two elements, this allows ONA to learn temporal patterns which span a larger
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time distance (up to the sliding window size). This helps especially in environments

where the Markov property does not hold, but since we compare with Q-Learning

which assumes the Markov property to hold (next state and reward only being de-

pendent on current state plus current action), we will leave this out for now to make

the comparison fair.

Collecting negative evidence for an implication is slightly more tricky (Anticipa-

tion in NAL, see Wang (2013a)), as it is supposed to be added when the consequent

won’t happen, but how long to wait for the consequent? Ideally this wouldn’t de-

pend on the buffer size, and would be dependent on the averages of the experienced

timings and related variances. However timing estimations can go wrong if certain

distributional assumptions aren’t met, which is why we went for a simpler solution

for now which is at least not dependent on the size of the sliding window: to add a

small amount of negative evidence immediately when the antecedent arrives, small

enough that should be consequent arrive as predicted by the implication, the truth

expectation of the implication will still increase (the positive evidence over-votes the

negative), while else it would decrease due to the negative evidence which was added.

Overall, the accumulation of positive and negative evidence leads to frequency values

which encode the hypotheses (the implications) proficiency to predict successfully,

whereby truth expectation can be seen as the expected frequency, which as we will

now see is used in decision making (as it takes into account how many samples have

been seen about a certain implication, eliminating initially lucky hypotheses to be

preferred over consistently competently predicting ones).

Decision Making: Goal events G! are represented as temporal implication

(G ⇒ D) where D is implicitly present and stands for “desired state”, and their

desire value is the truth value of this implication. When processed, goals either trig-

ger decisions or lead to the derivations of subgoals. For this purpose, the existing

procedural implications are checked. If the implication ((A, op) ⇒ B) has a suf-
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ficiently high truth value, and event A recently happened, it will generate a high

desire value for the reasoner to execute op. The truth expectations of the implica-

tions with G as consequent are compared, and the operation from the candidate with

the highest expectation desire value will be executed if above decision threshold (a

hyperparameter). If not, all the preconditions (such as A) of the implications with

G as consequent will be derived as subgoals, competing for attention and processing

in a bounded priority queue ranked by truth expectation (this way only the most

desired goals are pursued). Hereby, the desire value of the subgoal is evaluated using

deduction between the implication and the goal Wang (2013a). And to determine

the operation’s desire value one additional deduction step to take the precondition

truth value into account is necessary. This corresponds to the inference rule

{(X ⇒ G), (G⇒ D)} ` (X ⇒ D) = {(X ⇒ G), G!} ` X!

where the conclusion goal’s occurrence time (the time at which X would have to

have occurred if G had to happen right now) is G’s occurrence time minus the ∆t

stored as metadata of the implication. And the following inference rule in case X is

of the form (Y, op):

{((Y,Op)⇒ D), Y } ` (op⇒ D) = {(Y,Op)!, Y } ` op!

which encodes that op is wanted to be executed if op is wanted to be executed

after Y happened and Y happened.

The conclusion goal desire values are:

desire(X) = fded(desire(G), truth(((X, op)⇒ G))

for the subgoal which corresponds to the antecedent of the implication, and
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desire(op) = fded(desire((X, op)), truth(X))

for the operation subgoal to potentially execute if X happened, with fded being (as

in Wang (2013a)):

fded((f1, c1), (f2, c2)) = (f1 ∗ f2, f1 ∗ f2 ∗ c1 ∗ c2)

Using this model, decision making is concerned with realizing a goal by executing

an operation which most likely, and sufficiently likely leads to its fulfillment. And

when no such candidate exists to get this done in a single step, subgoals are derived

from which a candidate will fulfill this requirement or again lead to further subgoaling.

This is like backward planning from a goal to current circumstances, but preferring to

process more attainable goals by taking uncertainties (of events and implications) into

account. Differently to Chaslot et al. (2008) Browne et al. (2012) Wang and Sebag

(2012), this process goals backwards and random rollouts (random action action till

the game finishes) are not assumed to be to be possible, which also allows for usage

in open-ended environments. This process can be summarized as follows:
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Input: Goal G Result: Execution of Op, or subgoaling
subgoals = {}, bestDesire = 0.0
forall ((X,Op)⇒ G), (X ⇒ G) ∈ memory do

Subgoals = Subgoals ∪{X}
if desire(Op) projected to current time > bestDesire then

bestDesire = desire(Op), bestOp = Op
end

end
if bestDesire > DECISION THRESHOLD then

execute(bestOp)
else

forall s ∈ subgoals do
derive s projected to current time

end

end

Algorithm 2: Decision and subgoaling

Also to make usage of implications effective in implementations, the procedural

implications should be indexed by their consequent, where only a constant amount

of implications is allowed for each consequent. This can be achieved by ranking

them according to their truth expectation, so that too weak and wrongly predicting

implications are removed while these which predict successfully are kept (similarly

as in Hammer and Lofthouse (2018)), which keeps the resource demands bounded

Wang (2009). Also, through the indexing, the competing hypothesis to lead to the

goal don’t need to be searched for, they only need to be iterated and compared in

the way Alg. 2 describes.

Exploration Additionally, sometimes the operation to execute is ignored and

a random one is executed instead, which can be considered a form of exploration

through motor babbling. This is also common for Reinforcement Learners, and for

the reasoner is necessary especially in the beginnings where no procedural implication

does exist thus far, hence no decision can be derived to lead to the desired outcome.

Yet sometimes an action should be tried so that the first implications will form and

“informed decision” can increasingly replace random trial (exploitation taking over
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exploration).

3.5.3 Distinguishing properties of ONA and Q-Learning

Reinforcement Learning such as in Sutton and Barto (2018) is the most common

approach used for behavior learning. While it works well for environments where

infinite data can be generated (simulations primarily, Schrittwieser et al. (2020),

Mnih et al. (2013)), it does not feature compositional representations that would

allow for data-efficient learning. There are additional distinctions which this chapter

summarizes, in addition we will later see experimental comparisons.

Differences between the decision-making models Before we move on to

comparison on concrete experiments, there are some relevant differences in both de-

cision making models which we will need to address to allow for a fair comparison.

Since ONA is a NARS implementation design, many properties of the ones described

in Wang and Hammer (2015a) are inherited by it. Compared to Reinforcement

Learning formalizations some of the most significant differences are:

• Statements instead of states: ONA, as a NARS, does not assume states

which fully describe the current situation, instead events are usually partial de-

scriptions of the current situation as perceived by the agent, consistently with

this idea also the Markov property is not assumed to hold. To make the prac-

tical comparison possible, the events however will hold the same information

as the corresponding states the Q-Learner will receive in the simulated exper-

iments. However, in the last example, a robotics use case, we will see events

from different sources, coming from different modalities without blowing up the

state space as would be the case when simply combining their values into a

single state vector.

• Unobservable information Related to the previous point, there is a major

difference between unobservable states which aren’t known (not just their values
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being unknown), and known unobservable states which values can be estimated

from observable state due to known observation probabilities as commonly han-

dled by a POMDP Spaan (2012) in a model-based RL setting. While ONA

inherits some limited capability to address both via its uncertainty reasoning

machinery, partial observability is outside of the scope of this manuscript.

• Hierarchical abstraction Complex environments often demand a higher level

of abstraction of behaviors to allow for data-efficient learning of policies or hy-

potheses in general. This is by far not fully solved yet by any AI model, though

attempts like Nachum et al. (2018) and Zhou et al. (2019) which arrange Rein-

forcement Learners in a hierarchical way do exist. However also abstraction of

state matters, here, Deep Learning, especially Convolutional Neural Networks

Khan et al. (2020) allow to deal with high-dimensional image input, and mod-

els which work in real-time Shanahan and Dai (2019) have become an essential

technology in robotics and many real-world applications, including self-driving

cars Do et al. (2018) Nugraha et al. (2017) Farag (2018) Zhang et al. (2019). In

the last use case we will see YOLOv4 Bochkovskiy et al. (2020) being utilized for

object detection, additionally we will see further abstraction of behavior (ab-

stracting away from particular object types) happening via inductive reasoning.

• One action in each step ONA does not assume that in every step an action

has to be chosen. To make the techniques comparable, we will hence add an

additional n̂othing action for the Q-Learner in each example.

• Multiple objectives ONA can work on multiple goals simultaneously. A com-

mon approach to deal with multi objectives in Reinforcement Learning is to

combine together the individual objectives into a single reward function Sutton

and Barto (2018) Yang et al. (2019). This is most commonly done by formulat-

ing a scalarisation function Van Moffaert et al. (2013), measuring the utility of a
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linear combination of expected return values of the objectives. In Zintgraf et al.

(2015) however it is argued that the approach does not work if the parameters

of the scalarisation function are not known in advance, and that in such cases

a model that expresses the multiple objectives explicitly is required.

• Changing objectives Most Reinforcement Learning solutions are not designed

to allow dealing with changing objectives / changing utility function. For game-

playing this is fine, RL had a lot of success as the objective of a game usually

does not change while playing it Schrittwieser et al. (2020). However, in robotics

scenarios the situation is different, behavior of robots (such as household robots

and robotic explorers) is usually expected to satisfy dynamic user goals. In

this case planning methods (route planning, motion planning, etc.) remain to

be crucial in autonomous robotics and self-driving cars Karpas and Magazzeni

(2020) Badue et al. (2020) Aradi (2020), but can for example also be combined

with RL-based path tracking approaches You et al. (2019).

Reasoner and background The particular implementation we will use for com-

parison purposes and follows these principles is ‘OpenNARS for Applications‘ (ONA,

see Hammer and Lofthouse (2020)), an implementation of a Non-Axiomatic Rea-

soning System ? the author proposed previously. While ONA has been compared

with Actor Critic (AC) and Double-Deep Q (DDQ) on Cartpole-variants (by our col-

laborators, Professor Kris Thórisson’s team, especially Leonard Eberding, Eberding

et al. (2020)), the input representations were not the same between the compared

methods (mostly because ONA does not accept numeric inputs without preprocess-

ing), lowering the strength of the results. Additionally, more tasks are required to

make the case to establish ONA as an additional technique to address Reinforcement

Learning problems stronger. In this section we will compare ONA with a standard

table-based Q-Learner Watkins (1989) implementation with Eligibility Traces Sutton

(1988), while ensuring that both the Q-Learner and ONA receive the exact same
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input. For completeness, and to allow to relate the hyperparameter choices with the

Q-Learning model used for the experiments:

Q(st+1, at+1) = maxaQ(st+1, a)

δQt = r + γ ∗Q(st+1, at+1)−Q(st, at)

et(st, at)← et(st, at) + 1

∀s, a : [Q(s, a)← Q(s, a) + α ∗ δQt ∗ et(s, a)

et(s, a)← γλet(s, a)]

where α is the learning rate, γ controls how much to favour future rewards over

short-term reward, and λ controls the decay speed of egilibility traces. Additionally

ε which is not mentioned here, is the exploration rate. It encodes the chance to select

a random action as at+1 instead of the one with the highest expected reward.

Goal achievement as reward While ONA can deal with the goals in the de-

scribed way, the Q-Learner needs a reward signal. Hence if both should receive the

exact same input to make comparison more meaningful, there needs to be a mapping

from goal achievement to reward (or from reward to goal achievement). The way this

is achieved is the following way: when an event X is input it is interpreted by ONA

as event, and by the Q-Learner simply as current state. If X however corresponds

to the outcome to achieve, and the reward for the Q-Learner will be 1 (while ONA

receives event goodNar), and else 0. This of course assumes that the goal doesn’t

change, as else the Q-table entries would have to be re-learned, meaning the learned

behavior would often not apply anymore. For the purposes of this paper, and for a

fair comparison with Reinforcement Learning, the examples include a fixed objective.

82



CHAPTER 4

Experiments and Applications

4.1 ONA vs. Q-Learning

The experiments chosen for comparison are two typical Reinforcement Learning

examples, Space invaders and Pong, plus a grid world experiment where the agent

has to find food while maneuvering around obstacles underway. (Fig. 4.1) Both

techniques are run multiple times in each experiment, and the example-specific success

measure is kept track of for each time point across 10000 iterations, together with the

average summarized over all runs of the particular technique.

Figure 4.1: Space invaders, Pong and grid robot

Space invaders In this game (Fig. 4.1) the player controls a spaceship and is

supposed to shoot down aliens, whereby the success ratio we will use is the amount of

hits over the total shots. Both models receive the enemy location as either enemyleft,

enemyright, or enemyaligned when aligned with the player. Additionally the actions

the agent can take are l̂eft, r̂ight which move the agent to the left/right side by

some step size (set to be 5 percent of the game screen width, so 20 actions to get

from one side to the other), and shoot. Additionally the n̂othing action exists for
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fair comparison between both techniques, as the reasoner can decide to do nothing

according to NAL decision theory Wang (2013a). To hit the enemy, the shoot action

needs to be taken when aligned with the enemy. The hyperparameters for the Q-

Learner are α = 0.1, γ = 0.1, λ = 0.8, ε = 0.3. The ONA parameters are the default

config in ONA v0.8.7 Hammer and Lofthouse (2020), and use the same epsilon as

motor babbling rate. Each technique is run 10 times with different random seeds

each, meaning also variations in starting positions in addition to outcomes of when

to choose explorative actions.

Figure 4.2: Success ratio in Space invaders and Pong

The results as seen in Fig. 4.2 indicate that both techniques (Q-Learning and

ONA) converge to the same capability on average, and on average with approximately

the same learning speed. However, the learning behavior of ONA is more consistent,

while Q-Learning revealed both cases where it learns significantly quicker and slower

than all ONA runs.

Pong In Pong (Fig. 4.1), the location of the ball, which is able to reflect at the

walls, is encoded as relative ballLeft, ballRight, ballEqual in the same fashion as

in Space invaders. This time l̂eft and r̂ight initiate left/right movement of the bat,

and an additional operator ŝtop stops the movement. Like before n̂othing exists as

alternative action to make the comparison fair. The goal is for the ball to hit the bat
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repeatedly, and the success rate represents the hits over the hits plus misses. This

time the hyperparameters of the Q-Learner are α = 0.1, γ = 0.1, λ = 0.8, ε = 0.2,

meaning a slightly lower epsilon than before.

Surprisingly, while the Q-Learner learned the use of l̂eft and r̂ight, it consistently

failed to learn to use the stop operator and hence reached lower success ratios than

ONA (4.2) which only failed to do so in 3 runs.

When visualizing the reasoner’s knowledge in a behavior graph as in Fig. 4.3, we

can see why this can be tricky. In this graph, nodes are the event, and links encode

transitions via some operation. The operations are drawn at the outgoing side of the

edge. Additionally, the edge colors are of interest here, where red encodes positive

evidence and blue encodes negative evidence, hence violet is a mixture thereof:

Figure 4.3: ONA behavior graph after learning Pong

There is a violet rather than red connection from ballLeft to goodNar via l̂eft,

which indicates that this link has received an significant amount of negative evidence.

This makes sense, as moving left when the ball is left is often not by alone sufficient,

also the stop operator has to be invoked when reaching the ball location (same for the
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other direction). The edge from ballLeft to ballEqual via l̂eft on the other hand is

very successful (indicated by red color), and so is the edge from ballEqual to goodNar

via ŝtop. This makes the issue at heart clear: an operator that initiates movement

instead of performing a step of a certain size once breaks the Markov property of the

reward, that is, that the last state and action determines fully what state the agent

will observe next and the reward it will obtain. With action l̂eft being used lastly,

the bat continues to move left when n̂othing is invoked, hence the state transition and

also reward in this case can depend on a state-action combination which happened

prior to the last one. In this case also state merging heuristics like in Gaon and

Brafman (2020) cannot resolve the issue, as the side effect is caused by the action

and not part of an observable state.

To confirm that this is indeed the explanation for the worse performance, the same

experiment was tried without the ŝtop action, with everything else being the same.

In this case the Q-Learner turned out to indeed perform comparably well like ONA

on average (Fig. 4.4):

Figure 4.4: Success ratio in simplified Pong and Grid Robot

though in this case the problem regresses to learning to invoke only the actions

l̂eft and l̂eft, which is clearly a simpler problem to solve. Nevertheless, what this

suggests is that ONA can deliver the same learning performance as Q-Learning, while
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additionally delivering better results when the Markov property does not hold. The

sliding window approach to mine for patterns in input event stream, although local

in time, is less restricted than only considering the current and last state in Q-table

updates.

Robot This experiment (Fig. 4.1) features a robot in a grid with walls and food

objects to collect, whereby the amount of food objects collected we will directly use

as success measure. Perceived events are from the perspective of the robot, which can

turn around by using r̂otateLeft and r̂otateRight. Additionally it can move forward

by one grid cell by invoking m̂oveForward. The robot can see what is in front, left

and right to it within a 10 cells distance. It can either be, in this preference order,

foodCentered, foodLeft, foodRight, wallCentered, wallLeft, or wallRight. The

only outcome positive of interest is the agent colliding with food, but of course to

achieve this the agent also has to learn to avoid obstacles in order not to get stuck.

In this experiment, and with the same parameters as in Space Invaders, both tech-

niques performed comparably well, with a slight leap of ONA in collected items on

average, but overall similar values with the chosen hyper-parameters. This example

can easily be extended to multi-objective scenarios and scenarios with changing ob-

jectives, showing merits in these areas will be part of our future work. Overall, as

Table 4.1 suggests, except of the issue with the Markov property of states and rewards

being violated for Q-Learning which demanded a simplification of the Pong example

to get similar results, both techniques were comparable in performance on average.

Hence the reasoning-based approach provides a viable alternative for such problems,

while performing better whenever the Markov property is violated, since it does not

explicitly depend on this property.
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Table 4.1: End performance results of all experiments. (after 10000 iterations)

Success measure ONA Q-Learner Number of trials
Space invaders 0.86 0.85 20 (10 each)
Pong (non-Markovian) 0.80 0.61 20 (10 each)
Pong (simplified) 0.98 0.97 20 (10 each)
Grid robot 91 87 20 (10 each)

4.2 Tests in cognitive psychology

This chapter is especially concerned about testing higher-level cognitive function-

ing of the overall system in isolation. For this purpose, multiple tests have been

carried out, including:

1. Acquiring object permanence

2. Property association

3. Stanford Marshmallow test

4. Identity Matching

5. Active question answering

6. Disambiguation of nouns

7. Story understanding

8. Knowledge transferability

For all tests, motorbabbling has been disabled to ensure that the actions output by

the system are made according to its best available evidence and hence representative

of the system’s functionality.
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4.2.1 Acquiring object permanence

Object permanence is only barely handled by today’s robotic solutions. For static

objects the task is relatively easy as it can be done by marking objects in a map

resulting from Simultaneous Localization and Mapping, for instance based on feature

detection in visual input Taketomi et al. (2017). Dynamic objects however don’t just

stay in one place, and once out of sight, re-appear based on various different criteria.

A person going to the restroom usually does not re-appear in less than a minute, an

animal hiding behind a bush might only appear when a shot is fired, and so on. Of

course it also depends on whether the object was observed going into the hideout in

the first place, the past. Hence, to handle object permanence correctly, the context

under which objects appear after hiding needs to be learned, it cannot be handled by

a module unable to learn arbitrary contexts under which other events do appear. For

ONA however, this capability is part of its basic temporal reasoning ability.

We will illustrate this with an example where a toy which can either be to the left

or right, gets then hidden by a cup. The p̂ick operation is able to remove the cup to

make it visible again. The four cases are:

//left toy gets hidden by left cup then revealed by picking the left cup

<toy --> [left]>. :|:

<cup --> [left]>. :|:

<({SELF} * left) --> ^pick>. :|:

<toy --> [left]>. :|:

//right toy gets hidden by right cup then revealed by picking the right cup

<toy --> [right]>. :|:

<cup --> [right]>. :|:

<({SELF} * right) --> ^pick>. :|:

<toy --> [right]>. :|:
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There is a cup on the right but nothing beneath it, so nothing happens after pick:

(repeated 13 times)

<cup --> [right]>. :|:

<({SELF} * right) --> ^pick>. :|:

There is a cup on the left but nothing beneath it, so nothing happens after pick:

(repeated 13 times)

<cup --> [left]>. :|:

<({SELF} * left) --> ^pick>. :|:

The competing hypothesis in this case are:

<(<cup --> [left]> &/ <({SELF} * left) --> ^pick>)

=/> <toy --> [left]>>.

Truth: frequency=0.863665, confidence=0.269194

<(<cup --> [right]> &/ <({SELF} * right) --> ^pick>)

=/> <toy --> [right]>>.

Truth: frequency=0.863665, confidence=0.269194

<(<cup --> [$1]> &/ <({SELF} * $1) --> ^pick>)

=/> <toy --> [$1]>>.

Truth: frequency=0.863665, confidence=0.424196

<((<toy --> [left]> &/ <cup --> [left]>) &/ <({SELF} * left) --> ^pick>)

=/> <toy --> [left]>>.

Truth: frequency=1.000000, confidence=0.200929

<((<toy --> [right]> &/ <cup --> [right]>) &/ <({SELF} * right) --> ^pick>)

=/> <toy --> [right]>>.

Truth: frequency=1.000000, confidence=0.200929

<((<toy --> [$1]> &/ <cup --> [$1]>) &/ <({SELF} * $1) --> ^pick>)

=/> <toy --> [$1]>>.

Truth: frequency=0.994886, confidence=0.335766
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whereby the last, most general hypothesis which works for any location, and also

takes the past cue of where the toy was seen last into account, has gained the highest

truth expectation. Hence the system has not only generalized the hypotheses across

the locations the objects was hidden at, but also identified the last visible location as

crucial.

4.2.2 Property association

In this task the system is supposed to form categories from labelled example

instances of ducks and swans. Example of duck which isn’t a swan:

<{instA} --> [yellow quacks]>.

<{instA} --> duck>.

<{instA} --> swan>. {0.0 0.9}

<{instA} --> bird>.

Example of a swan which isn’t a duck:

<{instB} --> [white quacks]>.

<{instB} --> swan>.

<{instB} --> duck>. {0.0 0.9}

<{instB} --> bird>.

Four such instances were given to the system to induce the hypotheses:

<swan --> [white quacks]>.

<duck --> [yellow quacks]>.

<swan --> bird>.

From there on, 12 instances of swans and ducks were given to the system with

overlapping properties. Whenever the instance was white and quacked, it was cor-

rectly associated with swan with highest truth expectation, even when it possessed
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additional properties. Also, whenever the instance was yellow and quacked (plus other

properties), it was correctly associated with duck. Also, in both cases, the instance

was inferred to be a bird.

To show the robustness of this ability, 40 events unrelated events were input in

the system between the training and test examples. The concept usefulness output

led to:

{i=33} <duck --> bird>:

{ "usefulness": 0.336000, "useCount": 84, "lastUsed": 18536 }

{i=164} <duck --> [yellow quacks]>:

{ "usefulness": 0.223810, "useCount": 47, "lastUsed": 18539 }

{i=195} <swan --> [white]>:

{ "usefulness": 0.110619, "useCount": 25, "lastUsed": 18501

{i=172} <duck --> [yellow]>:

{ ""usefulness": 0.208738, "useCount": 43, "lastUsed": 18539

{i=281} <swan --> [white quacks]>:

{ "usefulness": 0.065116, "useCount": 14, "lastUsed": 18501 }

{i=1184} <swan --> bird>:

{ "usefulness": 0.000575, "useCount": 9, "lastUsed": 3062 }

meaning all relevant knowledge was among the ten percent of most useful concepts

(16K concepts in total).

4.2.3 Stanford Marshmallow test

This test is about delaying gratification, which is often seen as a strong sign of

self-control ability. We will use atomic terms here, since this experiment was also tried

successfully with our Q-Learning implementation which accepts this input format:

//Training example1:

//System getting immediate repletion from eating the marshmallow
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marshmallow1. :|:

^eat. :|:

replete. :|: {0.6 0.9}

//Training example2: The system getting another marshmallow after leaving it be,

//then getting a lot of repletion from eating

marshmallow1. :|:

^leave. :|:

marshmallow2. :|:

^eat. :|:

replete. :|: {0.9 0.9}

//Test example: System should have learned to leave the first marshmallow alone:

marshmallow1. :|:

replete! :|:

//expected: ^leave executed with args

4.2.4 Arbitrarily Applicable Relational Responding

Arbitrarily Applicable Relational Responding is a notion in Relational Frame the-

ory, for a cognitive system to be able react to react to arbitrary relations present

between the simuli it is presented with. Experiment in this topic have been tried

partly in collaboration with Professor Robert Johansson, some of which he summa-

rized in Johansson (2019). He tested several capabilities, but Identity Matching on

which we collaborated on has not been described there. Identity Matching allows

an agent to learn to choose between left and right side, dependent on whether the

example presented on either side shares a characteristic common property with the

example presented in the middle. In this case, mere pattern similarity between the

examples is not sufficient, and neither is it sufficient to just learn the case for a par-
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ticular set of properties. Many mammals, such as sea lions Kastak and Schusterman

(1994), are equipped with this capability. In ONA, this was encoded in the following

way:

<{right} --> [prop2]>. :|:

<{left} --> [prop1]>. :|:

<{middle} --> [prop1]>. :|:

^left. :|:

success. :|:

And a second example where the right side shares a property:

<{left} --> [prop20]>. :|:

<{right} --> [prop10]>. :|:

<{middle} --> [prop10]>. :|:

^right. :|:

success. :|:

From this experience it was able to derive both relevant hypothesis where the

property was abstracted away, which drive its behaviors when examples with new

properties are presented to the system:

<((<{right} --> [#1]> &/ <{middle} --> [#1]>) &/ ^right) =/> success>.

Priority=0.148340 Truth: frequency=1.000000, confidence=0.282230

<((<{left} --> [#1]> &/ <{middle} --> [#1]>) &/ ^left) =/> success>.

Priority=0.148340 Truth: frequency=1.000000, confidence=0.282230

4.2.5 Active question answering

In reasoning systems, questions are usually treated passively, that is: they trigger

inference which is meant to answer the question, but do not cause any decisions to be

made by the system. Active questions however often demand the system to perform
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actions to find an answer. In simplest case, this might be a a robot which needs

to turn around to see something which is not currently in sight, which often also

demands the ability to handle object permanence to work properly. However, central

here is the ability to handle goals with variables, so that any variant of the event

which has the variable instantiated can fulfill the goal event. This makes sure the

system is not trying to replicate a specific goal event (e.g. trying to put the cat into

the living room when asked about where the cat is), but is merely trying to find the

answer and is satisfied after observing it.

<corridor --> in>. :|:

<({SELF} * kitchen) --> ^go>. :|:

<({cat} * kitchen) --> in>. :|:

120

<corridor --> in>. :|:

<({SELF} * bedroom) --> ^go>. :|:

<({cat} * bedroom) --> in>. :|:

120

<corridor --> in>. :|:

<({SELF} * livingroom) --> ^go>. :|:

//no cat this time, it doesn’t like the livingroom :)

120

<corridor --> in>. :|:

<({SELF} * bedroom) --> ^go>. :|:

<({cat} * bedroom) --> in>. :|:

120

//Ok you are in corridor now

<corridor --> in>. :|:

//NARS, where is the cat?

//Passive question <({cat} * ?where) --> in>? :|: wouldn’t trigger a decision
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//Active question however does:

<(<({cat} * #where) --> in> &/ <({SELF} * #where) --> ^say>) =/> G>.

G! :|:

120

//expected: ^go executed with args ({SELF} * bedroom)

//ok, feedback of NARS going to the bedroom, the cat is there!

<({cat} * bedroom) --> in>. :|:

G! :|:

10

//expected: ^say executed with args ({SELF} * bedroom)

4.2.6 Disambiguation of nouns

The same words often mean very different things in different contexts. This ex-

periment shows how ONA is able to disambiguate the meaning of concepts based on

other recently mentioned concepts that were part of the conversation. Existing tools

such as ? make use of a knowledge base in the background, and demand the input to

be fully specified before disambiguation can be performed properly. ONA however is

able to resolve ambiguities in an ongoing conversation.

To showcase this, we will utilize the English-to-Narsese translator and will use

the german word “bank” which carries the meaning of the English word “bank” but

additionally can mean “bench”.

At first, we introduce to the system the german variant of ”bank”, as a furniture

people sit on:

people sit on a bank

a bank is a furniture

and tell it that people sit on a wooden bench:
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people sit on a wooden bench

Now, of course, the system should be able to answer that a wooden bench, which

is abduced to be a special case of a bank, is hence also a furniture:

a wooden bench is a furniture?

//Answer: <([wooden] & bench) --> furniture>. :|:

Truth: frequency=0.990960, confidence=0.253355

Additionally, we will now give the English interpretation of “bank”, as a financial

institute people withdraw money in:

people withdraw money in banks

a bank is a financial institute

Last, we will give “Volksbank” (an Austrian bank), as an example of something

people withdraw money from:

people withdraw money in volksbank

When now asked about whether Volksbank is a financial institute, it’s the first

answer ONA generates:

volksbank is a furniture?

volksbank is a financial institute?

//Answer: <volksbank --> ([financial] & institute)>. :|:

Truth: frequency=0.990960, confidence=0.253355

This is because last time in this conversation we talked about banks as a fi-

nancial institute, which made the corresponding concept < bank → ([financial] &

institute) > gain more priority than concept < bank → furniture >.
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4.2.7 Story understanding

Story understanding demands to understand the meaning of the involved sen-

tences:

*volume=0

A mouse is an animal.

It is dead if the cat eats it.

The cat is eating a mouse in the garden.

70

What is in the garden?

//expected: Answer: <(cat * garden) --> in>. :|:

occurrenceTime=4 Truth: frequency=1.000000, confidence=0.900000

The cat is in the garden?

//expected: Answer: <(cat * garden) --> in>. :|:

occurrenceTime=4 Truth: frequency=1.000000, confidence=0.900000

The mouse is dead?

//expected: Answer: <mouse --> [dead]>. :|:

occurrenceTime=3 Truth: frequency=0.995047, confidence=0.425313

The cat is eating an animal?

//expected: Answer: <(cat * animal) --> eat>. :|:

occurrenceTime=3 Truth: frequency=1.000000, confidence=0.286319

but also demands a system to understand the flow of events as described by a

story, to such a degree that even hypothetical cases about possible extensions of the

story could be answered:

*volume=0

the pizza is in the oven

the person takes the pizza

who took the pizza?
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//expected: Answer: <(person * pizza) --> take>. :|:

occurrenceTime=2 Truth: frequency=1.000000, confidence=0.900000

the person eats the pizza

the person is satisfied

100

the burger is in the oven

the person takes what?

//expected: Answer: <(person * burger) --> take>. :|:

occurrenceTime=106 Truth: frequency=1.000000, confidence=0.228606

In this case the utilized hypothesis is:

it is in the oven leads to the person takes it

This is just a simple example which builds on the extracted hypothesis

//When something is in the oven, the person will take it out.

<<($1 * oven) --> in> =/> <(person * $1) --> take>>.

but with additional background knowledge, either extracted from similar stories,

or given by a human, story understanding can go beyond that.

4.2.8 Knowledge transfer

In default configuration ONA uses up to 16384 concepts. What if we only filter

the concepts of highest usefulness after processing some example? Expected is that

the output will reflect the most precious knowledge. When this is done for the simple

pong game , the 5 most useful concepts should include the procedure knowledge

to play the game encoded as procedural links between ”left, right, equal”. If this

knowledge is fed into a new ONA instance, the new instance should be able to play

immediately.
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First, let’s look at the graph after 5000 game iterations:

It was generated with the command

./NAR pong2 5000 InspectionOnExit |

python3 concept_usefulness_filter.py 4 > Best4Concepts

python3 concepts_to_graph.py NoTemporalLinks < Best4Concepts

Note how this graph encodes the right behavior, that is, to move left if the ball

is on the left to get it into the equal position (bat = ball position), to move right if

the ball is right to get it into the equal position, and to stop if it is already in the

equal position to achieve event good nar. Also the “chunked” shortcut links are in

the graph although with less truth expectation (violet), that is: if the ball is on the

left, move to the left to achieve good nar and if the ball is on the right, move to the

right to achieve good nar.

Hence when the best 4 concepts are put into a new instance, the new instance

immediately plays perfectly, which can be done with:

./NAR shell pong2 < Best4Concepts

The graph plotting can also deal with declarative knowledge, and can help to
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increase the explainability of decisions the systems makes, and to explore how existing

knowledge within the system is related to each other:

While it would be difficult to interpret the entire memory content, exploring the

most used concepts is an insightful endeavour also to understand the functioning of

ONA better. When for instance the letters of the alphabet are input in alphabetical

order with 10 inference steps between events, the following graph results:

It shows the temporal order of the events but also the sequences the system

composed of these input events, which are composed in a predictable manner by
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the FIFO of the system corresponding to a sliding window-based pattern mining

approach.

4.2.9 Other use cases

ONA can be used for to learn by observing other agents. This is important for

agents operating in environments where other agents with overlapping capabilities

are present. As an example, a ONA-controlled agent is supposed to be able to learn a

behavior exhibited by another agent. Differently than in Reinforcement Learning, the

other agents can pursue different goals yet their behavior can be modeled by ONA.

This is possible since the knowledge ONA can learn from observation is not directly

linked to a specific goal or reward outcome to achieve. We will now look at the key

technological aspects which make learning from observation possible:

1. Different agents can be conceptualized as separate instances.

2. Knowledge to predict events can be acquired under absence of rewards.

3. Using the knowledge, intentions of other agents can be predicted when a similar

behavior is exhibited in a similar context.

4. The logic allows to generalize a hypothesis about the action of another agent in

such a way that the agent can try the hypothesis by itself.

5. The agent can communicate hypotheses, allowing to inform other agents.

To make this succeed, encodings do however matter. Please consider the following

example:

//Agent1 is close to the fridge

<({agent1} * fridge) --> frontOf>. :|:

//Agent1 is opening the fridge
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<({agent1} * fridge) --> ^open>. :|:

//the fridge is open

<fridge --> [open]>. :|:

//Agent1 picks a drink

<({agent1} * drink) --> ^pick>. :|:

//Agent1 is satisfied

<{agent1} --> [satisfied]>. :|:

Some relations, like frontOf need to be built by the perception system, and in

such a way, that observations for the agent itself lead to the same encoding. Also,

the last event needs to come from the other agent through an innate form of com-

munication. If this is the case, this example succeeds and leads to the formation of

hypotheses such as:

<(<({agent1} * fridge) --> frontOf> &/ <({agent1} * fridge) --> ^open>)

=/> <fridge --> [open]>>.

<(<fridge --> [open]> &/ <({agent1} * drink) --> ^pick>)

=/> <{agent1} --> [satisfied]>>.

which can be generalised by ONA:

<(<({$1} * $2) --> frontOf> &/ <({$1} * $2) --> ^open>)

=/> <$2 --> [open]>>.

<(<fridge --> [open]> &/ <({$1} * drink) --> ^pick>) =/>

<{$1} --> [satisfied]>>.

4.3 Robotics experiments

4.3.1 Practical Reasoning and Learning

In this chapter we will see how ONA can be used to extend on the abilities of

typical Practical Reasoning approaches Ferrein et al. (2012) Bordini and Hübner
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(2005) by adding Learning at runtime to the picture and without relying on a sep-

arate learning technique or POMDP-based approach such as in Amiri et al. (2020).

The strength of practical means-end reasoning lies in the ability to effectively utilize

high-level (easily by human’s expressible and communicable) knowledge for planning

purposes. However, Practical Reasoning solutions such as Bordini and Hübner (2005)

and Ferrein et al. (2012) lack robust learning ability or learning machinery altogether.

Proper learning machinery would allow the agent to ideally deal with lack of knowl-

edge and changing circumstances (and various forms of concept drift Hu et al. (2020)).

We will see how ONA can both easily be fed with background knowledge while being

able to learn new knowledge from observations at runtime as also the previous exam-

ples demanded. Differently than in previous collaboration work Lanza et al. (2020)

with Professor Antonio Chella’s team (especially Francesco Lanza) where NARS was

combined with a BDI model implementationBordini and Hübner (2005), ONA is both

responsible for learning and decision making.

Encodings Before we continue, additional knowledge representation needs to be

introduced beyond events, operations, sequences of events and operations, and impli-

cations. Previously we assumed input events just have a string or integer identifier

attached to them. However, since ONA uses Non-Axiomatic Logic Wang (2013a),

events can have richer internal (compound) term structure, which we will make use of

for similar reasons predicates are common in First Order Predicate Logic-based Prac-

tical Reasoner applications and Logic Programming in general: they allow arbitrary

relationships to be easily expressed. The following logical copulas are most important

for this experiment. Please note that these can be arbitrarily nested, which makes

the formal language ONA utilizes for knowledge representation very expressive.

• Inheritance statements. Inheritance < A → B > indicates A to be a special

case B. For instance, that cats are animals can be encoded as an Inheritance

statement < cat→ animal >.
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• Terms referring to instances and properties, denoted by {instance} and [property]

respectively. For instance, Garfield being orange in color can be expressed with

< {garfield} → [orange] >.

• Relational terms. This includes products (a ∗ b) to express anonymous rela-

tionships, these allow to express arbitrary relationships like that cats eat mice,

< (cat ∗mouse)→ eat >. This is similar to predicates in predicate logic.

• Negation, expressed with (¬ a), where a can be an arbitrary statement.

• Variables: Dependent and Independent Variables $name and #name respec-

tively resembling all- and exists-quantified variables. These allow to make state-

ments more abstract by allowing for variable binding and unification in inference

to substitute a specific term as long as its structure matches and does not con-

flict with a previous assignment to the same variable.

Experiment setup In the experiment a NXT robot was used with the following

components and software as also illustrated in Fig. 4.5.

• Sensors: Ultrasonic sensor, camera of attached smartphone.

• Actuators: Three motors. Two are for turning left, right and moving forward,

while the third motor is responsible to pick up and drop objects.

• Software: A vision channel based on YOLOv4 Bochkovskiy et al. (2020) trained

on ImageNet via the Darknet implementation

• Parameters: As in ONA v0.8.7, but with exploration rate 0.1.
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Figure 4.5: Components diagram

Due to the utilization of YOLOv4 trained on ImageNet, the vision channel can

detect all object types in the dataset. The vision channel uses discretized relative

location (relative to the center) information together with the outpiut label to form

statements of the form:

< objectType→ [position] >

similar as in Hammer et al. (2020) but with relative location encoding where position

for the X-axis is either leftX, middleX or rightX, and for Y -axis is either topY ,

middleY or bottomY . This encoding makes ONA aware of the detected object types

and their position in the camera’s field of view, as also needed to grasp objects (which

is a common use for object detection Jia et al. (2018)). Additionally, the ultrasonic

value is encoded into a statement

< obstacle→ [observed] >

if an obstacle is detected below 15 centimetres and

(¬ < obstacle→ [observed] >)
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if above, which gives the robot a way to sense when in proximity to an obstacle.

Additionally, movement of the robot is reported with an event which lets it sense

whenever it moved forward successfully:

< {SELF} → [moved] >

And last, the gripper provides events regarding whether it’s open or closed:

< gripper → [open] >, (¬ < gripper → [open] >

.

Task 1: learning to maneuver around obstacles - The first task is about

learning to explore while avoiding obstacles such as shown in 4.6. No background

knowledge is given to the agent. There is only an innate goal to avoid low ultrasonic

sensor values (below 15cm) encoded as (¬ < obstacle→ [observed] >)! and a goal to

keep moving, encoded as < {SELF} → [moved] >!.

Figure 4.6: Robot in front of obstacles

In each run the robot was positioned at a different position inside of a closed
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room. but as expected this experiment task did not depend on any particular starting

position to succeed but simple on the occurrence of obstacles which the agent could

learn to avoid. Across 10 trials after 2 encountered obstacles, the obstacle avoidance

behavior was consistently learned, as directly checked by looking at the highest truth

expectation implications the system has learned. The resulting statements are:

• When an obstacle is in front, rotating left leads to the obstacle to vanish (in 4

runs it learned the same with r̂ight instead, which of course is also fine):

< (< obstacle→ [observed] >, l̂eft)⇒ (¬ < obstacle→ [observed] >) >

• Invoking the forward operation without an obstacle in front leads to successful

forward movement:

< ((¬ < obstacle→ [observed] >), f̂orward)⇒< {SELF} → [moved] >>

Then however, small objects the YOLOv4 model can detect, such as a red bot-

tle, were placed in the room. This led to induction of the following relationships

(via temporal induction as introduced earlier, but with variable induction based on

common subterm between both events, as in Wang (2013a)) when the objects were

encountered right or left to the robot and the corresponding operation was invoked:

• When an object is to the left, rotating to the left will make it appear in center,

and the same for the right side:
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< (< $1→ [left] >, l̂eft)⇒< $1→ [centered] >>

< (< $1→ [right] >, r̂ight)⇒< $1→ [centered] >>

Due the introduction of the variable at the place of the label term, these hy-

potheses are object-label-independent. They encode a spatial relationship which for

objects generally holds, and encode behaviors the system can use to focus on arbi-

trary perceived objects through motor action. However, learning these hypotheses is

more tricky than the more straightforward relationships for object avoidance behav-

ior. Here, it’s strongly dependent on the amount of detectable objects there are in

its environment, and knocking over small objects can change their appearance and

can sometimes make them undetectable. It took 6 object encounters on average (as

expected as it can continue in current direction or rotate the wrong way with two

thirds chance), 2 as minimum and 9 at most, across 10 attempted runs to learn both

relationships. However, these implications can also be directly fed to the reasoner,

bypassing the learning process. Most importantly, both representations represent

sensorimotor contingencies that are independent from a particular object category or

object instance even, so they gain evidence from encounters with all kind of detectable

objects. Also, as we will now make use of, this generic procedure knowledge is au-

tomatically combined with more specific knowledge through the subgoaling process

with variable binding.

Task 2: bottle collect mission - The second task shows the robot finding and

retrieving a bottle as illustrated in Fig. 4.7. To succeed it it is fed with the knowledge

learned from the previous task (move forward when no obstacle is observed, else rotate

left) plus additional minimal background knowledge about the mission. The mission
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knowledge only consists of picking a bottle if seen in front and dropping it if other

bottles are seen in front:

• When the gripper is open, and a bottle is seen in the middle, the p̂ick operator

should be invoked (to pick it up) in order to progress the mission, goal g:

< (< gripper → [open] >,< bottle→ [centered] >, p̂ick)⇒ g >

• When the gripper is not open, and a bottle is seen in the middle, the d̂rop

operator should be invoked (to drop the bottle to the other bottles), in order

to progress the mission (again, encoded as goal g):

< ((¬ < gripper → [open] >), < bottle→ [centered] >, d̂rop)⇒ g >

The experiment is designed to highlight three behaviors used in applicable cir-

cumstances: keep moving while avoiding obstacles, focus on and collect bottle if it

appears in view, focus on other bottle to drop the held bottle to when it appears in

view. This experiment has been repeated successfully 10 times with minor variations

in starting angle and location, the movement trajectories have been visualized in Fig.

4.7. However, in more complex rooms more sophisticated exploration behavior is de-

sired, in this case reliable long-term map memory, such as is usually captured with

Visual Simultaneous Localization and Mapping (VSLAM) Taketomi et al. (2017) is

beneficial. This would allow the agent to traverse the map in a more systematic way

without visiting places multiple times if not necessary. Also, more recently neural

map mechanisms such as Parisotto and Salakhutdinov (2017)) have been proposed,

but have not yet reached the maturity needed for robotic application. While the pur-

pose of this experiment is to show the ability to combine learned and given knowledge,

our future work will also include VSLAM. A learned map would allow such tasks to
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be performed more efficiently in more complex environments.

Figure 4.7: Bottle collect mission

In the current solution, the key mechanisms which allows to combine the learned

and given knowledge is a common knowledge representation for both, and subgoal

derivation. The latter allows to derive < bottle → [centered] >! as a subgoal to

realize, which can then be used with the generic hypotheses described before (which

is not restricted to bottles, it’s a case of Transfer Learning Zhuang et al. (2020)) to

focus on the bottle via right/left movement dependent on whether the bottle is left

or right to the agent. Then, when the bottle is in the center, it’s finally applying

the mission knowledge to pick it up. Finally, it will unload it after the other bottles
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have been found (via the movement and obstacle avoidance behavior) and brought

to the center. Hence, the successful carrying out of the mission is a combination of

learned and given knowledge. Also the ability to acquire lacking information (like

how to avoid obstacles), or revise existing knowledge, at runtime, in a cumulative

way Thórisson et al. (2019), is valuable. Through this, the agent has a chance to

succeed even with simpler, partly incomplete or outdated knowledge of the mission.

This concludes this experiment which is an attempt to show some initial merits of

combining Reasoning and Learning for enhanced robot autonomy. And while the

experiment is relatively simple, most autonomous robots do not possess real-time

learning abilities to the demonstrated degree.

4.3.2 ONA-ROS Interface

Many available robotic platforms are running ROS (Robot Operating System),

an unified platform which allows to develop code in a relatively hardware-agnostic

manner and for multiple robots and robotic hardware. Having ONA available to run

in ROS has become an important goal as it makes it easier for our collaborators and

other robotics teams to utilize our technology.

Many modules are available for ROS, including modules for sensors and actu-

ators, different AI algorithms for Planning, Machine Learning models, Computer

Vision, Simultaneous Localization and Mapping, Multi-Agent Communication and

so son. ONA can especially be used as a replacement for BDI models and Practical

Reasoning modules, which are often used as the central decision making modules

in autonomous robotic solutions. Since ONA can acquire and update knowledge at

runtime, experiments like the previous become possible, providing a key advantage

when autonomy is concerned.

In ROS, Module I/O follows a Publish-Subscriber model. For ONA this is straight-

forward to utilize:
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• Input: Narsese encodings

• Output: Operator executions

The ONA ROS module has been designed accordingly. Additionally, ROS modules

for the vision channel consisting of the YOLOv4 darknet-ros module, and a YOLO-

output-to-Narsese encoder module, has been created. This essentially wraps the

vision channel which was also used in the SpongeBot experiments into a ROS module

compatible with the ONA ROS module. In addition, an Narsese encoder for the

visp auto tracker OCR code reader ROS module has been added, to allow for task-

specific landmarks to be printed and identified as often done in robotics.

The module interaction structure is as follows (output via RosGui, Fig. 4.8):

Figure 4.8: How the ROS modules are connected

Finally, RosGui was used for real-time monitoring to see if the modules are cor-

rectly working together and exchange messages properly as shown by Fig. 4.9:

Figure 4.9: Running modules visualized by RosGui
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Our ROS modules working properly entails that experiments with more sophisti-

cated ROS-based robots are now possible as well. Experiments featuring such robots

will be carried out in the future.

4.4 SmartCity Application

4.4.1 Introduction

Supervised Deep Learning has generated a lot of success in image classification,

object detection and tracking. Integrating principles from neural networks and logical

reasoning, opens up new possibilities for anomaly prediction and detection. In this

collaboration project between Temple University and Cisco Systems in which I was

involved, NARS is utilized, and receives tracklets provided by a Multi-Class Multi-

Object Tracking (MC-MOT) system in real-time. The system infers spatial and

temporal relations between events, describing their relative position and predicted

path.

The multi-class and multi-object tracker was developed by Cisco Systems Inc, and

the reasoning-learning component utilized is the OpenNARS implementation Hammer

et al. (2016), and alternatively ONA. We tested our approach on a publicly available

dataset, ‘Street Scene’, which is a typical scene in the Smart City domain, and later

deployed it on real hardware in Australia. The dataset is video data obtained by a

street cam mounted on a building. We have shown the system learning to classify

scene regions, such as street or sidewalk, from the typical ‘behaviour’ of the tracked

objects belonging to three classes, such as car, pedestrian, and bike. The system is

shown to autonomously satisfy a range of goals to detect and inform the user of certain

anomaly types. An anomaly ontology supports various anomaly classes; location

based, relational based, velocity based, or vector based. From this anomaly ontology

a range of specific anomalies can be detected; jaywalking, pedestrian in danger, cyclist
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in danger, traffic entity too fast, traffic stopped, pedestrian loitering, vehicle against

flow of traffic, etc. The current implementation supports the detection of ‘street’ and

‘sidewalk’ regions along with pedestrian in danger and jaywalking anomalies. The

system learns in real-time and is capable of detecting anomalies after a cold start

of few seconds of operation with no prior training. As well as the autonomous goal

satisfying the system can also respond to user questions in real-time.

The effectiveness of learning mappings for question-answering has been demon-

strated by Mao et al. (2019), at least for simple domains. However, their approach

requires (image, question, answer) triples, essentially requiring questions to be pro-

vided at training time. This is not feasible in cases where novel questions are input

by an operator at any time and require a real-time response. Also their model has no

time-dependence and no way to make use of background knowledge, while the system

we introduce has a notion of time and has the ability to use background knowledge,

allowing it to identify user-relevant situations, and to make predictions about pos-

sible future situations. The prediction capability also potentially allows the system

to identify anomalies before they occur rather than detecting them after the event

occurs, though our anomaly detection so far concentrates on recent input, on the

current situation.

4.4.2 Architecture

Generally, our solution is closer to what is described as the first possibility in

Alirezaie et al. (2018), namely the output of a sub-symbolic system (an object tracker

in our case) is used as input to the reasoning component (NARS in our case). This

differs from the second case proposed in Alirezaie et al. (2018) and followed in Garcez

et al. (2019), to integrate the reasoning ability in the sub-symbolic architecture, such

as within the hidden layers of a Convolutional Neural Network. We found the former

approach easier to realize, as it allowed us to decouple the different requirements
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between both components. Following this overall idea, the components are the fol-

lowing:

Multi-Class Multi-object Tracker is a main component of the distributed

asynchronous real-time architecture, and allowed us to produce scalable applications.

The overall system is made up of highly decoupled, single-purpose event processing

components that asynchronously receive and process events. In particular, a video

streamer based on GStreamer pipelines that receives video flows from multi-source

streaming protocols (HLS, DASH, RTSP, etc.) and distributes video frames in com-

pressed or raw formats, a multi-object Deep Neural network (DNN) detector based on

YOLOv3 Redmon and Farhadi (2018), and a multi-class multi-objects tracker (MC-

MOT) Jo et al. (2017). The outputs of the MC-MOT together with the input video

frames are merged and sent in sync to the OpenNARS-based visual reasoner for fur-

ther processing. Interprocess communication and data exchange within the different

components is done using Redis, an in-memory data structure store configured as

LRU cache for reliable online operations.

The tracking problem is about how to recognize individual objects in such a way,

that they keep their ID while moving continuously in time. We used a tracking-by-

detection approach for multi-objects (MOT) that has become increasingly popular

in recent years, driven by the progress in object detection and Convolutional Neu-

ral Networks (CNN). The system performs predictions with a Kalman filter, and

linear data association using the Hungarian algorithm, linking multiple object de-

tections coming from state-of-the-art DNN detectors (e.g. YOLOv3) for the same

class in a video sequence. The multi-class multi-object tracker extends this concept

to tracking for objects belonging to multiple classes (MC-MOT) by forking a MOT

for each class of interest. In this project we limit our solution to three classes: per-

son, bike, and car. The CNN multi-object detector publishes the bounding boxes

and object detection positions for the bounding box center (x, y), width and height
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(w, h) respectively. The three MOTs subscribe to a specific object class and receive

the corresponding object’s detection. The output of each MOT is represented by a

tracklet i.e., the fragment of trajectory followed by the moving objects. Each tracklet

has a class ID, an instance ID, and a sequence of the previous five bounding box

detections (t1, x1, y1, w1, h1), ..., (t5, x5, y5, w5, h5), where ti is the timestamp of the

detection, xi, yi the location in pixel units on the X-axis and Y-axis, and wi, hi the

width and height of the bounding box. The detection mAP is on average 80%, while

it takes 30ms for objects detection on an NVIDIA Tesla P100 board, and 15ms for

tracking. The object detection is based on Yolo v3 with network image size 768x768

for easy detection of small objects. It is worth noting that the model was re-trained on

the Street Scene dataset (see Ramachandra and Jones (2020)) but then also tested on

similar scenarios, using available webcams (like the ones our solution is deployed on),

to ensure wider generalization abilities. These performances are acceptable for typical

real-time smart city applications, since we can reliably send tracklets and frames at

15fps to the OpenNARS reasoner. Actually, detection and tracking performances can

be controlled by the reasoner for a better street scene understanding, thanks to the

richer symbolic description of objects behavior and their relationships described by

the ontology. As an example, broken tracklets caused by occlusions or misdetections

were merged by the reasoner and re-identified.

Tracklets to Narsese To map tracklets to NARS events, the numeric information

encoded in each tracklet is discretized. This can happen in many ways. We used a

fixed-sized grid that maps every detection tuple to the rectangle it belongs to, as

shown in Fig. 4.10:
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Figure 4.10: Spatial discretization by a grid

Additionally the class and instance ID is provided, which (currently) can be Car,

Bike or Pedestrian. Now using the above, the following events can be built:

• Indicating the class of an instance:

{InstanceID} → Class

Currently Class can either be Car, Pedestrian or Bike, and for regions street,

sidewalk, crosswalk or bikelane.

• Indicating the direction of an instance:

({InstanceID} × {Angle})→ directed

• Indicating the position of an instance:

({InstanceID} × {RectangleID})→ positioned

• To reduce the amount of input events, also combinations are possible:

({InstanceID} × {RectangleID} × {Angle} × {Class})→ Tracklet

• The system learns to assign street, sidewalk, bikelane and crosswalk labels to

the scene, based on the car and pedestrian activity. This is achieved through

the use of implication statements:

(({#1} → Car); (({#1} × {$2})→ positioned)) /⇒ ({$2} → street).
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(({#1} → Pedestrian); (({#1} × {street}) → parallel); (({#1} × {$2}) →

positioned)) /⇒ ({$2} → sidewalk).

(({#1} → Pedestrian); (({#1} × {street})→ orthogonal); (({#1} × {$2})→

positioned)) /⇒ ({$2} → crosswalk).

where the additional orthogonal and parallel relation indicates whether the

entity is orthogonal to the closest region labelled street, which the reasoner

tracks by revising the directions of entities that appear on the related location,

choosing the direction that has the highest truth expectation to decide the truth

of the relationship.

Whenever the consequence is derived, it will be revised by summarizing the pos-

itive and negative evidence respectively, and then the label of highest truth ex-

pectation (either street or sidewalk) to answer the question {specificPosition} →

?X will be chosen.

• In addition, relative location relations R are provided by the system, including

leftOf , rightOf , topOf , belowOf and closeTo. These are encoded by

({InstanceID1} × {InstanceID2})→ R

Please note that the closeTo relation is only input when the distance is smaller

than some threshold defined by the system operator.

4.4.3 Results

Street Scene (see Ramachandra and Jones (2020)) is a dataset for anomaly

detection in video data. It is data collected from a camera mounted on a building,

watching a street. The dataset includes unusual cases that should be detected, such

as jaywalking pedestrians, cars driving on the sidewalk, or other atypical situations.

The tracker applied to the video dataset, outputs tracklets as introduced previously,

which are then encoded into Narsese as described. NARS then can use the input
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information to make predictions, satisfy goals, or to answer queries in real time. Also

NARS can detect anomalies and classify them with a background ontology.

Reasoning-based annotation In the Street Scene dataset, our system is able to

label a location (discretized according to the lattice) as street based on the tracklet ac-

tivity of pedestrians and cars. This is done by the reasoner, which utilizes the related

background knowledge expressed by the implication statements we have seen. The

labelling usually happens in an one-shot way, but will be overridden or strengthened

by further evidence, using Revision (see Wang (2013a)).

Question Answering Also in Street Scene, we tested the system’s ability to

answer questions about the current situation, in real time, demonstrating situational

awareness about the current state of the street. Questions included

(({?1} → Class); ({?1}×{LocationLabel})→ located)? where ?1 is a variable queried

for, essentially asking for an instance of a specific class at a specific location such as

lane1, which the system returns immediately when perceived, allowing a user, for

instance, to ask for jaywalking pedestrians.

Anomaly Detection Often a system should not operate passively (answer queries),

but automatically inform the user when specific cases occur. Our approach allows the

usage of background knowledge to classify unusual situations, and to send the user a

message, if desired.

For instance, consider the case of a moving car getting too close to a pedestrian,

putting the person in danger. This can easily be expressed in Narsese, using the

previously mentioned relative spatial relations the system receives. Furthermore, it

can be linked to a goal, such that the system will inform the user whenever it happens:

((({#1} → Car); ({#1} → [fast]); ({#2} → Pedestrian); (({#1} × {#2}) →

closeTo)), say(#2, is in danger)) /⇒ ({SELF} → [informative]). which will let the

system inform the user assuming the goal ({SELF} → [informative])! was given to

the system. An example can be seen in Fig. 4.11:
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Figure 4.11: A pedestrian in danger due to close proximity to a quickly moving car

Also jaywalking pedestrians can be specified similarly, using

((({#1} → Pedestrian); (({#1} × {street})→ at)), say(#2, is jaywalking))

/⇒ ({SELF} → [informative]). An example can be seen in Fig. 4.12. As before,

the anomaly is reported by the system through the invocation of the say operator

with the instance name given as argument:

Figure 4.12: An example of Jaywalking
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In our tests, the system reported 97 percent and 94 percent of the jaywalking

and danger anomaly cases present in the Street Scene dataset after an initial runtime

of 5 minutes to map the streets based on car tracklet behavior. The misdetections

reported in Table 4.2 are mostly from grid resolution artifacts and corner cases where

the ground-truth is questionable.

Table 4.2: Performance in Street Scene

Initial learning time 5 minutes
Detected jaywalking anomalies percentage 97%
Detected danger anomalies percentage 94%

4.5 TruePAL Application

4.5.1 Introduction

Trusted and explainable Artificial Intelligence for Saving Lives (TruePAL) is a col-

laboration project with NASA Jet Propulsion Laboratory, funded by the department

of transportation, and part of the Next Generation First Responder (NGFR) Apex

Program. The purpose is to assist and warn first responders by providing contextually

relevant information when it is critical to do so. Hereby, information overload should

be avoided, and warnings have to be explainable by the AI system. Hardware-wise,

the First Responder (FR) vehicle is equipped with a large set of sensors, including

camera, Radar, vehicle-to-vehicle communication, database access, and so on, which

demands data fusion from many sensor sources to work properly. TruePAL faces sim-

ilar challenges as autonomous driving solutions, though driving assistance is only a

small part of the project, it’s also able to assist with the mission and to give guidance

regarding different types of incidents (such as electric vehicles). Besides that, it also

works for first responders outside of vehicles, operating on their smartphones, and

needs to connect the information from different first responders.

122



One tricky aspect about the project is that reasoning needs to happen in real-

time, with sensor information constantly streaming in from multiple sensors. NARS,

which was designed as a real-time system from the very beginning, and hence also

the ONA implementation, work well under these working conditions. Additionally,

the system’s ability to learn in real-time can enhance the warning behavior of the

system, which will be useful to reduce the generation of warnings which conditions

they are triggered under need to be adjusted, as we will see. Please also note that the

system can not only generate warnings but also explain why they were given, which

is crucial for explainability.

4.5.2 Architecture

System diagram As visualized by the highly simplified diagram Fig. 4.13 NARS

and related components of TruePAL consist of object detection, real-time object

tracking, a database for vehicle-to-vehicle communication and querying of historic

incident information, and ONA Hammer and Lofthouse (2020).

Figure 4.13: TruePAL Architecture

Like in the SmartCity project, YOLOv4 is used for object detection. The detec-

tions then enter the object tracker which estimates speed, movement velocity and

angle of objects, and to assign an instance ID which remains stable across time /

across multiple frames. Compared to the SmartCity project, the camera is mounted

on the first responder vehicle, hence also the speed of the FR vehicle (to distinguish
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own movement from object movement), and the distance (as estimated by Radar) is

taken into account by the object tracker to reach higher accuracies. This tracking

approach can be considered a direct extension of Bewley et al. (2016), using a Kalman

filter for tracking, but with a linear dynamics model which also takes first respon-

der vehicle speed and depth values (obtained by Radar and LIDAR) into account

in addition to the bounding box coordinates. Here, matches with a depth difference

above a threshold are rejected, which significantly improves the accuracy over a purely

screen-space tracking approach.

Narsese encodings The inputs to NARS (“reason” block) result in the following

event encodings, each of which are related to the instance which is paired with its

class ID (car, pedestrian, first responder vehicle etc.).

• A property indicating if a certain instance is approaching the first responder

vehicle or not.

<(ClassID * InstanceID) --> [ApproachingOrLeaving]>.

• A property indicating the direction the instance is located at.

<(ClassID * InstanceID) --> [Direction]>.

• A property which indicates the instance speed exceeds a certain number of

interest.

<(ClassID * InstanceID) --> [aboveNumberMPH]>

• Whether the instance drives within or outside of the lane. (where the FR vehicle

is parked)

<(ClassID * InstanceID) --> [InOrOutOfLane]>
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• A property which indicates that the first responder is approaching an intersec-

tion with a certain trafficlight color.

<(intersection * color) --> [approaching]>

• A property which indicates that the first responder is approaching an intersec-

tion a different first responder is also expected to cross now.

<(intersection * color) --> [expectedFR]>

• General risk assessment of the intersection by the reasoner, based on historic

accidents and reasoning which utilizes learned temporal relationships.

<(intersection * color) --> [risky]>

Background knowledge The background knowledge consists of critical situa-

tions under which a warning should be triggered:

• Generate a warning in case of a risky intersection to avoid collision:

<(<(intersection * #1) --> [risky]> &/ ^warning)

=/> (! <{SELF} --> [collided]>)>.

• Generate a warning if another first responder is expected to cross the same

intersection

<((<(intersection * #1) --> [approaching]> &/

<(intersection * #1) --> [expectedFR]>) &/ ^warning)

=/> (! <{SELF} --> [collided]>)>.

• Generate a warning if an entity is approaching us centered:
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<(<(#entity * #id) --> [approaching centered]> &/ ^warning)

=/> (! <{SELF} --> [collided]>)>.

• Roadside parking risk warning, from a vehicle which quickly approaches the

first responder vehicle in the lane it is parked in:

<(<(car * #nr) --> [fast inLane]> &/ ^warning)

=/> (! <{SELF} --> [collided]>)>.

If we are above KMPH approaching a red light intersection, a warning will lead the

officer to go below KMPH:

<((<{SELF} --> [aboveKMPH]> &/

<(intersection * red) --> [approaching]>) &/ ^warning)

=/> <{SELF} --> [belowKMPH]>>.

4.5.3 Results

The latter hypothesis which we also gave is background knowledge with a reason-

able initial value, is also learnable. This is, because the warning will be ignored by

the first responder if the speed limit is given for a too low speed. So the implications

with too low speed limit receives negative evidence from predictions which won’t be

confirmed (the first responder will still drive with above K miles per hour for a given

K when the warning was given but ignored by the first responder), hence it won’t

be used after a few occasions. Also the previous implications are of course learnable

and can be supplemented with additional observed relationships, though so far only

the adaptation of the speeding warning behavior has been demonstrated. In this case

multiple events such as

//the FR vehicle moves above 35MPH

<{SELF} --> [above35MPH]>. :|:

//We are approaching a red intersection

126



<(intersection * red) --> [approaching]>. :|:

//Generation of warning

^warning. :|:

enter the system in succession, in which case the system is expected to update the

truth value of the hypothesis

<((<{SELF} --> [above35MPH]> &/

<(intersection * red) --> [approaching]>) &/ ^warning)

=/> <{SELF} --> [below35MPH]>>.

since the event to be below 35 MPH, is usually not observed when the warning

is ignored, providing negative evidence, while when observed it provides positive

evidence to the hypothesis.

Also other observations, many corresponding to common-sense knowledge are eas-

ily learnable by the system from observation, which includes knowledge such as

<(<(intersection * red) --> [approaching]> &/

<(<($type * $id) --> [approaching left]>))

=/> <($type * $id) --> [leaving right]>>.

which encodes that entities (such as cars and trucks) can pass from the left to

the right when we encounter a red light intersection. (since for them, the traffic

light is green) This capability is especially useful for QA, as the system can be asked

about the behavior of specific vehicles, which adds to the explainability of the system:

the ability to list warning-relevant conditions when they are observed with sufficient

certainty.

Other than investigating use cases for learning, such as to adapt to the behaviors

of the first responders and other vehicles, the main focus so far was to reliably detect

in real-time the following risky situations which are already detected by TruePAL:
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1. Ability to predict collision in intersections. This demands the detection and

tracking of the instances based on visual input (via YOLOv4) and Radar input.

Figure 4.14: TruePAL collision detection

2. Ability to warn when other first responders approach the same intersection

based on vehicle-to-vehicle communication. For this to work, ONA is querying

a database where the telemetry of each first responder vehicle is streamed to in

real-time.
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Figure 4.15: TruePAL expected first responder

3. Ability to warn of risky streets based on a database of past accidents. Such

databases are widely available and are queried by the reasoner.

Figure 4.16: TruePAL risky street

4. Speeding warning when approaching a red-light intersection with too high speed.

The speed of the own vehicle is known directly from the speedometer and also
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from GPS coordinates.

Figure 4.17: TruePAL speed warning

5. Roadside safety, warning from speeding vehicles in same lane or outside of lane,

utilizing Radar and visual detection of lanes. If the vehicle switches to the inner

lane in time, no warning is generated. The detection of lanes currently happens

via canny edge detection and best-match fitting of two lines via OpenCV, which

will be supplemented with a semantic segmentation approach in the future.
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Figure 4.18: TruePAL roadside safety

TruePAL is an ongoing project for which, so far, only basic testing on constructed

CARLA Dosovitskiy et al. (2017) scenarios has been performed. In these five scenar-

ios, the above capabilities have been convincingly demonstrated, not missing warn-

ings except for the roadside safety and collision detection case which are more tricky.

There, the warning rates were however at least above 80 percent in the preliminary

tests, which seems promising, and the given explanations for the warning consistently

matched the situation. However, detailed performance metrics have yet to be devel-

oped and evaluated, which will be crucial once the project stabilizes and moves to real

hardware. So far, the shown use cases work reliably in the constructed CARLA test

cases, though improvements of various components are underway. Most importantly,

the system can not only generate warnings but also explain why they were given,

which makes the system more trustable.
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CHAPTER 5

Discussion

5.1 Conclusion

In this thesis, an attempt to design an efficient real-time learning system for en-

hanced agent autonomy was made. To be effective, it has to solve the Temporal

Credit Assignment Problem for arbitrary outcomes comparably well like Reinforce-

ment Learning techniques do for a single reward signal, which a comparison on similar

examples reveal. This capability is the basis to allow goal-directed behavior learning

at runtime to happen, an ability which is especially beneficial for robot control which

traditionally, when a Practical Reasoning approach (BDI with planning, typically) is

taken, demand all relevant background knowledge to be given by the designer. These

real-time learning abilities are also beneficial to other practical applications, such as

driving assistance and traffic surveillance. Generally speaking they matter whenever

the system’s knowledge is insufficient, which can happen in novel or changing circum-

stances, and especially in complex environments such as the real world. These are

cases where the designer cannot prepare the system, in advance, for all situations it

will possibly encounter, hence adaptation at runtime is required.

To achieve these goals, the ONA system has been created, utilizing Non-Axiomatic

Reasoning System theory and system design considerations which have been the re-

sult of years of research on NARS and experimentation with OpenNARS. ONA’s

biggest strength and for reasoners rare ability is to learn in real-time (differently

than Muggleton (1991) and Muggleton and De Raedt (1994)), while using for reason-

ers common principles like goal derivation and planning based on goal-independent
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representations.

It has been shown that on the particular set of tasks (Pong, Space Invaders, and

grid robot), ‘OpenNARS for Applications’ Hammer and Lofthouse (2020), on aver-

age, performs comparably well like Q-Learning with Eligibility traces Sutton (1988)

Sutton and Barto (2018), while also working when the Markov property for states

and rewards is violated. This suggests the utilization of uncertainty reasoning (Non-

Axiomatic Reasoning Wang (2013a) in particular) to be an alternative approach, and

sometimes an improvement, to deal with various Reinforcement Learning problems.

Most importantly it addresses some of the inherent limitations in common Reinforce-

ment Learning techniques. For instance the Markov property of states and rewards,

as we saw, can be easily violated even in relatively simple environments. This also

makes it slightly easier to apply the technique, as the designer doesn’t need to worry

as much about the details of the environment and interface to the agent. Then, we

have shown, and backed up with a real-world robotics use case which utilizes a state-

of-the-art object detection model Bochkovskiy et al. (2020), that the reasoning-based

approach naturally allows for the flexibility means-end Reasoning (Practical Rea-

soning Bratman et al. (1987) Georgeff et al. (1998)) approaches are typically known

and valued for. This includes the ability to change behaviors immediately when goals

change, to be able to plan to reach outcomes which have not necessarily been observed

before in the same manner, to pursue multiple goals, and to take easily by human

understandable and communicable background knowledge into account effectively.

Additionally, we have seen potential of the system to be used as driving assistance for

First Responders, and traffic surveillance using reasoning-based anomaly detection.

In the broader picture, and within the history of AI, it was long believed that

reasoning is the pinnacle of natural intelligence, yet the entirely deduction-based

symbolic systems have fundamentally failed to explain or replicate the adaptation

abilities and ultimately autonomy of animals with high levels of cognition and real-
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time learning abilities. I hope I have convinced the reader that a broader notion of

reasoning which includes Induction and Abduction, namely Non-Axiomatic Reason-

ing, can be a viable direction towards this goal when crucial design challenges are

addressed, like it was attempted in ONA. Hereby, also the combination with state-

of-the-art techniques in Deep Learning, especially for sensor processing (vision in

particular), has turned out to be fruitful.

5.2 Future works

Overall, this technology can be used to more effectively build systems which reach

higher degrees of autonomy through robust, evidence-driven, reasoning and learning

at runtime. May this technology open the doors for the next generation of autonomous

systems, and allow to incrementally reach crucial to autonomy related goals:

• Allow the agent to explore its environment. (exploration)

• Allow it to learn from observations and interactions. (adaptation)

• Allow it to effectively remember places, objects, other agents and their proper-

ties as a special case. (modeling of the world)

• Allow it to physically manipulate objects with actuators. (play, tool usage)

• Demand it to be able to operate also without a human. (independence)

• Allow it to extract useful information out of human speech, to answer questions,

and to use language in other ways. (communication)

Making progress towards this goals will benefit many kinds of intelligent agents,

especially in the field of robotics: robotic explorers, robots as a housemaid, robots for

automated mobility, and other robots which need to interact with their environments

and sometimes with people. A reasoner which can deal with knowledge insufficiency
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and learn from experience can allow a robot to adapt not only to unknown environ-

ments but also to the specifics of the interactions with other agents (such as humans).

This includes an ability to adopt behavior exhibited by other agents, to predict their

intentions, to make corresponding suggestions, and to interpret user input as a mission

to complete.

This thesis has only scratched the surface of the quest towards greater autonomy

of intelligent agents via real-time learning, and more research work in this direction

is planned by the author for the future, together with more design and development

work to get rid of known limitations. I also hope this work gives inspirations towards

finding ways to combine the strengths of Machine Learning models and Reasoning

in the NARS sense, with the ultimate goal being that research on this will bring

into existence powerful techniques which have key features and core strengths of

both. Techniques which hopefully will be less brittle when operating in real-world

environments, especially in these in which data-efficient learning at runtime (as also

emphasized by Kunze et al. (2018)) is often crucial for an agent to succeed, or at least

helpful in exceptional circumstances.

Our experiments can be fully replicated with the code in the ONA open source

code repository Hammer (2020a), also detailed building instructions for the in the

experiment utilized robot do exist in a repository Hammer (2020b).
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APPENDIX A

Grid

A.1 ONA: Sensorimotor inference rules

Table A.1: Truth functions used for sensorimotor reasoning

Truth w2c(w) w / (w + TRUTH EVIDENTAL HORIZON)
Truth c2w(c) TRUTH EVIDENTAL HORIZON * c / (1 - c)
Truth Expectation((f,c)) c * (f - 0.5) + 0.5

Truth Revision((f1,c1),(f2,c2))
(MIN(1.0, (w1 * f1 + w2 * f2) / w),
MIN(MAX CONFIDENCE,
MAX(MAX(Truth w2c(w), c1), c2)))

Truth Deduction((f1,c1),(f2,c2)) (f1 * f2, c1 * c2 * f1 * c2)
Truth Abduction((f1,c1),(f2,c2)) (f2, Truth w2c(f1 * c1 * c2))
Truth Induction((f1,c1),(f2,c2)) Truth Abduction((f2,c2),(f1,c1))
Truth Intersection((f1,c1),(f2,c2)) (f1 * f2, c1 * c2)
Truth Eternalize((f1,c1)) (f1,Truth w2c(c1))
Truth Projection((f1,c1),t1,t2) (f1, c1 * pow(DECAY,abs(t1 - t2)))

{Event a.} |- Event a. Truth_Projection (projecting to current time)

{Event a., Event b.} |- Event (a &/ b). Truth_Intersection (after projecting a to b)

{Event a., Event b.} |- Implication <a =/> b>. Truth_Eternalize(Truth_Induction) (after projecting a to b)

{Implication <a =/> b>., <a =/> b>.} |- Implication <a =/> b>. Truth_Revision

{Event b!, Implication <a =/> b>.} |- Event a! Truth_Deduction

{Event (a &/ b)!, Event a.} |- Event b! Truth_Deduction

{Event a!, Event a!} |- Event a! Truth_Revision or Choice (dependent on evidental overlap)

{Event a., Implication <a =/> b>.} |- Event b. Truth_Deduction
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Table A.2: Additional truth functions used for declarative reasoning

or(a,b) 1.0 - (1.0 - a) * (1.0 - b)
Truth Exemplification((f1,c1),(f2,c2)) (1.0, Truth w2c(f1 * f2 * c1 * c2))

Truth Comparison((f1,c1),(f2,c2))
((if (f0 == 0.0) then 0.0 else ((f1*f2) / f0)),
Truth w2c(f0 * c1 * c2))

Truth Analogy((f1,c1),(f2,c2)) (f1 * f2, c1 * c2 * f2)
Truth Resemblance((f1,c1),(f2,c2)) (f1 * f2, c1 * c2 * or(f1, f2))
Truth Union((f1,c1),(f2,c2)) (or(f1, f2), c1 * c2)
Truth Difference((f1,c1),(f2,c2)) (f1 * (1.0 - f2), c1 * c2)
Truth Conversion((f1,c1)) (1.0, Truth w2c(f1 * c1))
Truth Negation((f1,c1)) (1-f1, c1)
STRUCTURAL TRUTH (1.0, 0.9)
Truth StructuralDeduction((f1,c1)) Truth Deduction((f1,c1), STRUCTURAL TRUTH)
Truth StructuralDeductionNegated(v1) Truth Negation(Truth StructuralDeduction(v1))
Truth DecomposePNN((f1,c1), (f2,c2)) (1.0 - (f1 * (1.0 - f2)), (f1 * (1.0 - f2)) * c1 * c2)
Truth DecomposeNPP((f1,c1), (f2,c2)) (((1.0 - f1) * f2), ((1.0 - f1) * f2) * c1 * c2)
Truth DecomposePNP((f1,c1), (f2,c2)) ((f1 * (1.0 - f2)), (f1 * (1.0 - f2)) * c1 * c2)
Truth DecomposePPP(v1, v2) Truth DecomposeNPP(Truth Negation(v1, v2), v2)

Truth DecomposeNNN(v1, v2)
(1.0 - ((1.0 - f1) * (1.0 - f2)),
((1.0 - f1) * (1.0 - f2)) * c1 * c2)

A.2 ONA: Semantic inference rules

The following are all the semantic inference rules ONA uses:

• NAL-1: Inference rules regarding inheritance:

{ (S --> M), (M --> P) } |-, (S --> P), Truth_Deduction

{ (A --> B), (A --> C) } |-, (C --> B), Truth_Induction

{ (A --> C), (B --> C) } |-, (B --> A), Truth_Abduction

{ (A --> B), (B --> C) } |-, (C --> A), Truth_Exemplification

• NAL-2 Inference rules regarding similarity:

{ (S <-> P) } |- (P <-> S), Truth_StructuralDeduction

{ (S --> {P}) } |- (S <-> {P}), Truth_StructuralDeduction

{ ([S] --> P) } |- ([S] <-> P), Truth_StructuralDeduction

{ (P --> M), (S --> M) } |- (S <-> P), Truth_Comparison

{ (M --> P), (M --> S) } |- (S <-> P), Truth_Comparison

{ (M --> P), (S <-> M) } |- (S --> P), Truth_Analogy

{ (P --> M), (S <-> M) } |- (P --> S), Truth_Analogy

137



{ ({M} --> P), (S <-> M) } |- ({S} --> P), Truth_Analogy

{ (P --> [M]), (S <-> M) } |- (P --> [S]), Truth_Analogy

{ (M <-> P), (S <-> M) } |- (S <-> P), Truth_Resemblance

{ ({A} <-> {B}) } |- (A <-> B), Truth_StructuralDeduction

{ ([A] <-> [B]) } |- (A <-> B), Truth_StructuralDeduction

• NAL-3 Inference rules regarding extensional intersection, intensional intersec-

tion, extensional and intensional sets and differences:

{ ({A B} --> M) } |- <{A} --> M>, Truth_StructuralDeduction

{ ({A B} --> M) } |- <{B} --> M>, Truth_StructuralDeduction

{ (M --> [A B]) } |- <M --> [A]>, Truth_StructuralDeduction

{ (M --> [A B]) } |- <M --> [B]>, Truth_StructuralDeduction

{ ((S | P) --> M) } |- (S --> M), Truth_StructuralDeduction

{ (M --> (S & P)) } |- (M --> S), Truth_StructuralDeduction

{ ((S | P) --> M) } |- (P --> M), Truth_StructuralDeduction

{ (M --> (S & P)) } |- (M --> P), Truth_StructuralDeduction

{ ((A ~ S) --> M) } |- (A --> M), Truth_StructuralDeduction

{ (M --> (B - S)) } |- (M --> B), Truth_StructuralDeduction

{ ((A ~ S) --> M) } |- (S --> M), Truth_StructuralDeductionNegated

{ (M --> (B - S)) } |- (M --> S), Truth_StructuralDeductionNegated

{ (P --> M), (S --> M) } |- ((P | S) --> M), Truth_Intersection

{ (P --> M), (S --> M) } |- ((P & S) --> M), Truth_Union

{ (P --> M), (S --> M) } |- ((P ~ S) --> M), Truth_Difference

{ (M --> P), (M --> S) } |- (M --> (P & S)), Truth_Intersection

{ (M --> P), (M --> S) } |- (M --> (P | S)), Truth_Union

{ (M --> P), (M --> S) } |- (M --> (P - S)), Truth_Difference

{ (S --> M), ((S | P) --> M) } |- (P --> M), Truth_DecomposePNN

{ (P --> M), ((S | P) --> M) } |- (S --> M), Truth_DecomposePNN

{ (S --> M), ((S & P) --> M) } |- (P --> M), Truth_DecomposeNPP

{ (P --> M), ((S & P) --> M) } |- (S --> M), Truth_DecomposeNPP

{ (S --> M), ((S ~ P) --> M) } |- (P --> M), Truth_DecomposePNP

{ (S --> M), ((P ~ S) --> M) } |- (P --> M), Truth_DecomposeNNN

{ (M --> S), (M --> (S & P)) } |- (M --> P), Truth_DecomposePNN

{ (M --> P), (M --> (S & P)) } |- (M --> S), Truth_DecomposePNN

{ (M --> S), (M --> (S | P)) } |- (M --> P), Truth_DecomposeNPP

{ (M --> P), (M --> (S | P)) } |- (M --> S), Truth_DecomposeNPP

{ (M --> S), (M --> (S - P)) } |- (M --> P), Truth_DecomposePNP

{ (M --> S), (M --> (P - S)) } |- (M --> P), Truth_DecomposeNNN
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• NAL-4 Inference rules about transformations between relations and images

{ ((A * B) --> R) } -|- (A --> (R /1 B)), Truth_StructuralDeduction

{ ((A * B) --> R) } -|- (B --> (R /2 A)), Truth_StructuralDeduction

{ (R --> (A * B)) } -|- ((R \\1 B) --> A), Truth_StructuralDeduction

{ (R --> (A * B)) } -|- ((R \\2 A) --> B), Truth_StructuralDeduction

• only a few very basic NAL-5 rules

{ (! A) } |- A, Truth_Negation

{ (A && B) } |- A, Truth_StructuralDeduction

{ (A && B) } |- B, Truth_StructuralDeduction

and related term reductions (not complete):

//Extensional intersection, union, conjunction

(A & A) = A

(A | A) = A

(A && A) = A

//Extensional set

({A} | {B}) = {A B}

//Intensional set

([A] & [B]) = [A B]

which correspond to proven NAL theorems, see Wang (2013a).

ONA does not yet implement all existing inference rules and term reductions, but

more tend to be added with each release whenever they turn out to be necessary.
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Nivel, E., K. R. Thórisson, H. Dindo, G. Pezzulo, M. Rodriguez, et al. (2013), Auto-

catalytic endogenous reflective architecture.

Nugraha, B. T., S.-F. Su, et al. (2017), Towards self-driving car using convolutional

neural network and road lane detector, in 2017 2nd International Conference on

Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and In-

formation Technology (ICACOMIT), pp. 65–69, IEEE.

Parisotto, E., and R. Salakhutdinov (2017), Neural map: Structured memory for deep

reinforcement learning, arXiv preprint arXiv:1702.08360.
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