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Abstract

A program called the Animat Creator was developed that allows a user to evolve Hebbian neural
networks (“brains”) for the task of articulated robot locomotion. Rather than focusing on any one single
neuroevolution algorithm, the program was implemented to flexibly allow the “plug-and-play” of any
arbitrary neuroevolution algorithm. As such, various neuroevolution methods were implemented and
experimentally tested on simulated segmented hexapod and quadruped robots. The algorithms success-
fully produced brains that control the articulated robots to walk. In addition to the Animat Creator,
associated tools called the Genome Editor and the Brain Viewer were created that allow visualizing
brain genomes and brains respectively.

Keywords: Hebbian network, mobile robot, articulated robot, artificial animal, neuroevolution,
modularity, regularity, genetic encoding, genetic algorithm, simulation, artificial life, artificial intelligence

1



Contents

1 Introduction 3

2 Related Works 3

3 Framework 5
3.1 Animat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Brain (Hebbian network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Body (articulated robot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Animat Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 Incubator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Genome Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Brain Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Experiments 10
4.1 Cellular Encoding (CE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 SGOCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 NEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 HyperNEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 ES-HyperNEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 19
5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Code and Videos 20

2



1 Introduction

In preparation to set up an ecosystem of artificial animals (aka “animats”, as coined by [Wilson, 1986, p.2]),
the first requirement is to create a bare-minimum animat species with which to seed the world. “Bare-
minimum animat” means we would expect any given animat species to be autonomously capable of at least
3 non-trivial behaviors:

• locomotion (to move its sensors and motors around the environment)

• food-seeking (to sustain itself as it burns energy)

• reproduction (to perpetuate and guide evolution)

Note that locomotion is a pre-requisite for the food-seeking behavior, and also for the reproduction
behavior in the case of selective sexual reproduction, since those require close proximity. So, evolving
locomotion is fundamental. Towards this end, a program called the Animat Creator was created, which
gives users the ability to design and evolve the brains of articulated robots to locomote.

Within the Animat Creator, various methods of neuro-evolution were implemented and experimentally
tested to compare their results with respect to evolving robot locomotion. In order to test multiple neuro-
evolution frameworks, the Animat Creator uses a general “plug-and-play” mechanism which allows the
developer to easily plug in any arbitrary neuro-evolution algorithm/encoding of their choice, so long as the
end product brain conforms to a certain interface.

Multi-leg robot locomotion is a classic problem in neuroevolution. The goal of the task is to evolve a
neural network that controls a robot with legs so that the robot walks. The problem has been tackled with
various methods. It is a difficult problem because the brain must coordinate the control of multiple legs.

A major consideration when approaching the problem is to use a genetic encoding which allows/encourages
modularity and regularity. Both concepts are concerned with compressed representations of the neural net-
work. Modularity, in the context of multi-legged locomotion, means that the genetic algorithm does not
need to separately evolve the subnetwork of each individual leg. Instead, the algorithm only needs to evolve
one subnetwork to control a single leg; then, it can simply instantiate the subnetwork, as a module, for any
number of legs [Gruau, 1994, p.3]. Regularity means that symmetries and repetitions in the neural network
can be expressed using a more compact representation than explicitly describing the entire network [Clune
et al., 2011].

2 Related Works

Direct encodings of neural networks represent/evolve neural networks neuron-by-neuron and connection-by-
connection. Therefore, they are not well suited for regularity and modularity, since every part of the network
is explicitly and independently represented in the genome data structure. Indirect encodings, on the other
hand, do not explicitly represent the neural network, but rather provide information by which to generate the
neural network. For example, a neural network may be generated by a computer program, as in a sequence
of instructions. If a group of those instructions are re-used multiple times in generating the network, it is
like a function or module; since the same module is used in generating different parts of the network, those
parts may have similarities in their structure or function.

[Sims, 1994] is the classic work on evolving simulated 3D articulated robots, evolving both robotic mor-
phology (i.e., body) and neural network within a single genome. Remarkable results were achieved due to
the flexible (indirect) genetic encoding, which in this case used a graph/network data structure. Neural
networks for each body segment were stored in each node of the graph. Interestingly, the neurons used
were not traditional neurons (i.e., summing their inputs then performing a threshold or activation function);
instead, each neuron computes a mathematical function (e.g., absolute value, sine, sum), thus the number
of inputs to the neuron depends on the function, and cannot have arbitrarily evolved connectivity. The
resulting “virtual creatures” exhibited naturalistic locomotion behaviors like swimming, flying, and walking.
The genetic encoding for the body is used in Section 3.1.2.

[Gruau, 1995] used an indirect genetic encoding called Cellular Encoding (CE) to evolve a neural network
(both its static weights and topology) that controls the locomotion of a hexapod robot. The key advancement
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in CE compared to traditional neural encodings was to represent the neural network indirectly, using genetic
programs, rather than directly. CE is a developmental encoding in the sense that the network incrementally
develops over time starting from a single ancestor cell, according to the evolved cellular program (genome).
In CE, the genome is represented using a sequence of trees. The trees contain “cellular instructions” that are
executed sequentially, like a computer program, to generate the neural network. For the hexapod locomotion
problem, [Gruau, 1995, p.8] described hand-designing the modules within an initial genome, such that part
of the genome controls a single foot, part of the genome controls a single leg, part controls half of the body,
etc. This same method is used in Section 4.1.

A critical review of CE [Hussain, 1997, p.46] concluded by recommending to test an “axonal growth”
extension to CE by [Kodjabachian and Meyer, 1998] called Simple Geometry-Oriented Variation of Cellular
Encoding (SGOCE). SGOCE is like CE, except the developmental cells exist in a 2D discrete space/substrate
where they can move, and interact. The use of spatial representation allows for the cells to connect freely
using a “GROW axon” instruction, which is elegant and facilitates arbitrary connectivity. Furthermore, this
gives the opportunity for neurons to organize into topographic layouts. [Kodjabachian and Meyer, 1998]
used the SGOCE paradigm to evolve a neural network (both its static weights and topology) that controls
the locomotion of a hexapod robot.

Direct encodings usually only evolve the weights of a fixed-topology neural network. NeuroEvolution
of Augmenting Topologies (NEAT) [Stanley and Miikkulainen, 2002] is a direct encoding that improves on
prior direct encodings by evolving the topology of the neural network (i.e., the nodes and connectivity) in
addition to the connection weights. The neural networks are encoded elegantly and simply using two linear
genomes: one for neurons, one for connections.

HyperNEAT [Stanley et al., 2009] is an indirect encoding, built on NEAT, that takes an approach inter-
mediate between direct encodings and developmental encodings. A HyperNEAT genome is represented using
a compositional pattern producing network (CPPN), which is a network composed of simple geometric pat-
terns that combine to output a complex pattern. This complex pattern is akin to a morphological or spatial
pattern one might find after multicellular biological development, though bypassing the arduous develop-
mental process. In HyperNEAT, the CPPN is queried to generate the connectivity of a given neural network
substrate. Due to its geometric nature, the connectivities of neural networks generated by HyperNEAT tend
to exhibit regularities (e.g., symmetries, repetitions, etc.) [Clune et al., 2011] but not usually modularity
[Clune et al., 2010]. It is possible to encourage modularity by adding an extra Boolean output to the CPPN
called link-expression output (LEO) [Verbancsics and Stanley, 2011]. Furthermore, the substrate itself can
be evolved using the Evolvable-Substrate HyperNEAT (ES-HyperNEAT) extension [Risi and Stanley, 2012].

[Clune et al., 2009] used HyperNEAT to evolve the static weights of a neural network that controls the
locomotion a simulated 3D quadruped robot. The neural network was 3-layer feedforward. The quadruped
robot was shaped like a table, with a single square segment for the torso and 4 articulated legs (with 3
hinge-joints each). Each leg had a Boolean touch sensor indicating whether or not the leg is touching the
ground. The 20 inputs to the neural network were the current joint angles of the legs, the legs’ touch sensors,
the rotational angles of the torso, and finally a sine function. The 12 outputs of the neural network controlled
the leg joints. HyperNEAT was able to evolve a network which could locomote the robot, though it required
the explicit inputting of a periodic (sine) function to the neural network so that it could rythmically control
the motor.

Recently, [Najarro and Risi, 2020] evolved Hebbian (and static) neural networks to control the locomotion
of simulated 3D quadruped robots. The neural network was 3-layer feedforward, using tanh-activated con-
tinuous neurons. The robot was shaped like a 4-legged spider, with a single spherical torso and 4 articulated
legs (with 2 hinge-joints each). The 28 inputs to the neural network were the positions and velocities of
body segments. The 8 outputs of the neural network controlled 8 leg joints. The neural network operated
using the ABCD Hebbian plastic mechanism, used in Section 3.1.1. It was found that, when the networks
encountered situations for which they were trained, the static-weighted networks slightly outperformed the
Hebbian networks. However, when the networks encountered situations for which they were not trained, for
example when one of the leg’s morphology was damaged, no static-weighted network was able to cope with
the damage at all. On the other hand, it was found that in the Hebbian networks, unlike static networks,
some robots adapted their gait to overcome their leg damage and still successfully complete the locomotion
task. This suggests that the ABCD Hebbian model, which is a parallelizable real-time learning algorithm,
allows for robust and adaptive behavior in robots, and warrants further exploration.
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3 Framework

3.1 Animat

An animat consists of two high-level components: a brain and a body. Their frameworks can be entirely
separate from each other. The only technical requirement is that the two frameworks interface with each
other to communicate information.

More technically, the body and brain interface at the point of sensory-motor neurons. When a physical
event occurs on/in the body, the body sends that information to the brain by activating a special neuron
called sensory neuron (aka input neuron). The brain, conversely, can send information to the body by
activating a special neuron called motor neuron (aka output neuron). Non-sensory-motor neurons are called
interneurons (aka hidden neurons).

3.1.1 Brain (Hebbian network)

The continuous model was used for the neuron, and a Hebbian learning model was used for the connections.
The algorithm operating the brain was entirely parallelized. As such, a brain of any size operates in the
same amount of constant time O(1). An animat’s brain is updated once per update period T = 0.1 seconds.
Brains were permitted to evolve recurrent connections.

Neurons Here, a neuron outputs a continuous value. The range of values a neuron can output is determined
by its activation function, which here was made evolvable. The available activation functions were:

• Sigmoid

y =
1

1 + e−αx
y ∈ (0, 1)

• Tanh
y = tanh(αx) y ∈ (−1, 1)

• Leaky ReLU

y =

{
x, x >= 0

αx, x < 0
y ∈ (−∞,∞)

The slope of each activation function is modulated by an evolvable parameter α ∈ R≥0. A larger α results
in a steeper slope (i.e., the neuron activates more easily, with weaker inputs), whereas a smaller α results in
a more gradual slope (i.e., the neuron is harder to activate, requiring stronger inputs).

Activation functions can vary in the hidden neurons throughout the network, depending on how they
are specified in the brain genome. However, motor neurons were specially restricted to the tanh activation
function to constrain their output range to (−1, 1), such that −1 represents activating the motor to its most
extreme negative angle, whereas 1 represents activating the motor to its most extreme positive angle.

Each neuron has two evolvable parameters in addition to the activation function. First is a bias b ∈ R,
which is the “base” input to the neuron. Second is a sign, a Boolean flag which, if set, flips the sign of the
neuron’s output (i.e., from positive to negative, or from negative to positive).

Hebbian Learning Natural brains (neural networks) learn by a process called “Hebbian learning” [Hebb,
1949]. Though we cannot fully simulate the wetware of an animal to recreate “true” Hebbian learning, there
are mathematical abstractions of the Hebbian learning process. Here, the ABCD Hebbian model was used,
as in [Najarro and Risi, 2020], due to the results reported by [Najarro and Risi, 2020] of adaptive behavior
observed in an evolved quadruped robot.

In the ABCD model, each weight w on a connection c increments its magnitude by ∆w at time t according
to the following equation [Najarro and Risi, 2020, p.4]:

∆w = r ∗ (A ∗ apre ∗ apost +B ∗ apre + C ∗ apost +D) (1)
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Where {A,B,C,D} are the evolved Hebbian learning coefficients for that specific connection, r is the
evolved learning rate, apre is the activation of c’s pre-synaptic neuron at time t, and apost is the activation
of c’s post-synaptic neuron at time t.

3.1.2 Body (articulated robot)

Body segment

Leg segment

Foot segment

Figure 1: A diagram of a hexapod robot used in the experiments.

Morphology [Sims, 1994] details a genetic encoding for evolving the morphology of 3D articulated robots.
The encoding is human-readable: one can use it hand-design a robot morphology. For example, one could
easily design genomes for insectoids, humanoids, and trees, as in [Sims, 1994, p.4]. In a Sims genome,
each node of the graph represents a body segment type, and each edge in the graph represents a physical
connection between body segments.

In the experiments, segmented bug robots similar to Sims’ were used (see Figure 1 for a diagram).
Specifically, variously-sized hexapod (3 torso segments, 6 legs) and quadruped (2 torso segments, 4 legs) were
tested. The robot contained 7 total body segments per torso segment. The body segments were cuboids
hierarchically connected by 3D (aka ball-and-socket, spherical) joints. There were large body segments
comprising a column, the “torso” or the agent’s central body. Each torso segment had a pair of legs, one
leg on the left and the other on the right. A leg itself consisted of three total body segments: an upper leg
segment (thigh), a lower leg segment (calf), and a foot. The hexapod robot thus contained 21 total body
segments, whereas the quadruped contained 14 total body segments.

Sensors For the task of locomoting in a fixed global direction, the body was equipped with forms of
proprioception (i.e., a sense of body orientation) and somatosensation (i.e., a sense of physical touch).
For proprioception, for each body segment, the values of a quaternion Q =< w, x, y, z > representing the
body segment’s global rotation were used as the sensory neuron activations, where w, x, y, z ∈ [−1, 1]. For
somatosensation, each of the 6 faces of cuboid body segments were equipped with a touch sensor. A touch
sensor outputs 1 when colliding with an object, such as wall or ground; it outputs 0 otherwise. Sensor
values were input to the neural network at each timestep. In total, each body segment contained 10 sensory
neurons (6 touch sensors, 4 rotation sensors). Thus, a hexapod robot (with 21 segments) contained 210
sensory neurons, whereas a quadruped robot (with 14 segments) contained 140 sensory neurons.

Motors The body was controlled by motor neurons which drive the joint angle between segments. Each
body segment had 3 associated motor neurons, which control the joint’s X−,Y−, and Z−drives. Thus, a
hexapod robot (with 21 segments) contained 21 ∗ 3 = 63 motor neurons, whereas a quadruped robot (with
14 segments) contained 14 ∗ 3 = 42 motor neurons. The drive angles of the robot were limited to [−45, 45]
degrees. Segment mass in addition to joint stiffness and damping were tweaked throughout the experiment,
for testing and due to issues with stability in the physics engine. In the end, the values were: mass = 1.25
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per unit volume, stiffness = 500, and damping = 25.75. Motor values were read from the neural network
at each timestep and used to drive the joint motor.

Body
Recursive Limit: 3

Body Recursive

Leg
Recursive Limit: 2

Foot

Left Leg

Right Leg

Leg-to-foot
Terminal Only: True

Leg Recursive

Figure 2: The genome encoding the segmented hexapod robot’s morphology.

Genome With 3 types of body parts, the genome required 3 nodes: a Body node, a Leg node, and a Foot
node. The Body and Leg nodes were equipped with recursive connections, so their length could be scaled
to any desired value; since a node indirectly encodes a type of body segment (e.g., a leg), it can be re-used
as many times as desired and even connected to itself for a long chain of the body part. For example, by
simply modifying the recursive limit in the Body node, the number of torso segments is modified, allowing
to easily generate both hexapod (recursive limit = 3) and quadruped (recursive limit = 2) robots for testing.

3.2 Animat Creator

Figure 3: A screenshot from the Animat Creator showing a walking quadruped robot.

The Animat Creator is an application that was developed for evolving locomoting articulated robots. It
contains a 3D scene for evolution and various GUI tools for monitoring the evolutionary process (see Figure
3). At initialization, the first generation of animats is spawned. They all have the same initial brain genome,
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which is the starting point for evolution. It is possible to manually pre-design genomes so that the process
begins at a reasonable starting point, rather than hoping the evolutionary process can develop the whole
thing from scratch.

The application gives developers the freedom to plug in any arbitrary genetic (neuroevolution) paradigm
for testing. This “plug-and-play” mechanism helps the project avoid limitations that might be imposed by
designing the project around any one specific neuroevolution algorithm, and allowed easily switching between
paradigms to gather results for comparison. The plug-and-play interface works by associating a unique string
label with each body part sensor/motor. The requirement of the genetic encoding is, when generating the
neural network from the genome, to associate the string labels of body parts with corresponding sensory-
motor neurons. For example, a (sensory) neuron labeled “LeftBody_MiddleLeg_Foot_RotationSensor_X”
will at any given moment have an activation corresponding to the middle-left foot’s x-rotation in space,
whereas a (motor) neuron labelled “LeftBody_MiddleLeg_Foot_Motor_X” drives the middle-left foot joint’s
x-rotation.

The Animat Creator consists of 3 components:

• The Incubator, a 3D scene filled with multiple training pods containing individual animats

• The Genome Editor, an application that allows viewing and editing brain genomes

• The Brain Viewer, an application that is used to view the physical structures and activations of animat
brains

An animat’s fitness score is equivalent to its distance travelled along the positive global z-axis. At the end
of each generation (10 to 20 seconds long), the animats were sorted by their fitness scores in preparation for
reproduction. The reproduction was 50% asexual and 50% sexual. This means the first half of the offspring
genomes were generated by asexually reproducing the top 50% scoring animats. The second half of the
offspring genomes were generated by sexually reproducing pairs of animats until the total desired number
of offspring was reached; the number of offspring produced in a “litter” by each pair was determined by the
proportion of their combined fitness scores to the combined fitness scores of all animats in the generation.
After reproduction, all offspring genomes were mutated.

3.2.1 Incubator

Figure 4: A group of training pods. An animat is at the bottom of each pod.

Evolutionary algorithms require a population of individuals, which represent the latest evolved solutions, and
act as the stepping stone to the next generation of solutions. In this case, the evaluation of one individual
is independent from any other; therefore, the individuals were kept physically separated, each in their own
private container dubbed a training pod. A training pod is a long cuboid with 4 walls and a floor (see
Figure 4). For an experimental trial, the animat is spawned at one end of the training pod, and its fitness
is evaluated by how far it is able to travel towards the other end of the pod.

All the training pods and animats were contained in a single physics scene, called the Incubator. Since the
algorithm to compute collision physics is not constant-time, the number of animats that could be simulated
per generation without framerate lag was limited to about 80 or less. As the physics was computed on the
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CPU, it also had to compete with the computation of many animat brains (also computed on the CPU).
Though there probably is no physics engine with much better efficiency, we could still parallelize the fitness
evaluations by running each training pod in its own separate process. Then at the end of all simulations,
the results could be aggregated on the single main process. Nonetheless, parallel simulation was not done
here as it would have needlessly increased complexity; 50 individuals was sufficient for evolving locomotion.

3.2.2 Genome Editor

The Genome Editor is an application that was built to allow creating, editing, and viewing animat genomes
in a 2D GUI. The way in which the genome is displayed depends on its paradigm. Here, two classes of
genomes are made available: trees and graphs.

Both CE and SGOCE genomes are represented by symbolic instructions in a tree data structure (see
e.g., Figures 9,10). The algorithm to layout the tree GUI was taken from [Mill, 2008]. Each node in a tree
genome can be edited. Clicking a node activates a dropdown menu, from which a new cellular instruction
may be selected. Since trees can get quite large, left-clicking on a connection will center the screen on a
connected node. Right-clicking a connection will insert a new node into the genome at the location clicked.

NEAT, HyperNEAT, and ES-HyperNEAT genomes are represented by a graph (aka network) data struc-
ture, including nodes and edges (see e.g., Figure 14). Each node in a network genome is assigned a layer,
which determines its x-coordinate. The y-coordinate is determined by the order in which the nodes are
drawn, so that nodes drawn in the same layer stack up in a column.

The Genome Editor can be used to manually design and edit brain genomes. A manually-created
genome can be saved to the disk, then loaded into the Animat Creator as an initial genome for testing and
evolution. For example, the editor was used to design and test various CE genomes in Section 4.1. During
the evolutionary process, the Genome Editor displays the brain genome of the currently-viewed animat to
the user.

3.2.3 Brain Viewer

Figure 5: An active brain, visualized in the Brain Viewer.

The Brain Viewer shows the neural activity and 3D structure of animat brains (see Figure 5). A brain’s
structure, meaning the locations of its neurons and the synapses/connections between its neurons, is gen-
erated from a given brain genome and displayed in 3D space. In this way, when a brain genome is being
created in the Genome Editor, its corresponding brain structure can be viewed in the Brain Viewer, which
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may be a useful feature for determining how changes to the genome affect changes in the brain structure.
Each neuron is displayed as a circle, and each connection is displayed as a line drawn between two neurons.

During the evolutionary process in the Animat Creator, the animat’s brain and real-time neural acti-
vations are displayed in the Brain Viewer. This can help the user understand correlations between the
animat’s brain activations and its behavior. A green neuron represents a positive activation, whereas a red
neuron represents a negative activation. The more intense the green/red color of the neuron, the higher the
magnitude of its activation (up to a limit of 1, though activation magnitudes can exceed 1 in the case of
ReLU); if a neuron is black, that means its activation is zero.

4 Experiments

Figure 6: Quantitative results obtained from each neuroevolution method.

Various neuroevolution methods were implemented and tested, on a population size of about 50. See Figure 6
for some sample quantitative results from the various methods. From the graphs, it is clear that all methods
of neuroevolution were able to evolve improved locomotion results over multiple generations. A qualitative
discussion follows.
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4.1 Cellular Encoding (CE)

SEQ

ENDEND

WAIT

sensor
layer

SEQ

WAIT

PAR

SEQWAIT

PAR PAR PAR

intermediate
layer #1

intermediate
layer #2

motor
layer

PAR

Figure 7: The initial Cellular Encoding single-tree genome.

Cellular Encoding [Gruau, 1994] was tried first. In CE, the genome is a cellular program, represented in the
form of a tree. The instructions in the tree tell each cell whether to divide or differentiate at each time step.
Each cell has its own pointer to the genetic code, and continues executing the code until the end is reached,
after which the neural network is fully formed. In this way, the nodes and connections of the neural network
are represented indirectly rather than directly.

There are multiple benefits of this approach compared to direct encodings. One is that this indirect
genome, at least in its multi-tree version, is much more compact than directly using a full network represen-
tation. Another is that the genomes are somewhat human-readable, since they use understandable cellular
instructions. Also, a single mutation in evolution is much more impactful, it can impact multiple substruc-
tures throughout the neural network since mutations affect subtrees of instructions followed by multiple
cells, instead of mutating singular neurons and connections one at a time. Finally, the phenotype can exhibit
regularities since groups of cells follow the same or a similar sequence of cellular instructions.

Theoretically, the CE model supports modularity, though originally this functionality was not fully fleshed
out. As noted by [Hussain, 1997, p.20], the first attempts of representing modular genetic code in single-tree
CE were implemented using a form of addressing-by-template. By this method, a certain instruction could
“call” another subtree like a function using another subtree as a template, so long as the templates of both
the caller and the callee trees matched up. It turned out that the template method did not operate very
elegantly in trees. As such, [Gruau, 1995] later improved the scheme for modularity by representing genomes
in a sequence of trees, rather than one single monolithic tree. In this way, an instruction (here called Jump
JMP ) could be used with relative addressing to “call” another tree in the sequence, like a function in a
computer program.

Here, a pared-down version of CE as described in [Gruau, 1994, Gruau, 1995] was implemented. In order
to begin evolving a locomoting animat with CE, an initial CE genome had to be hand-designed. Additional
cellular instructions were introduced specific to the ABCD Hebbian algorithm, such INCA (increment A),
DECA (decrement A), INCB, DECB, etc. The genome was designed to ensure that all the sensory-motor
neurons are properly created and identified. The brain was divided into an input layer (containing the
sensory neurons), 1 or 2 hidden layers (containing the hidden neurons), and an output layer (containing the
motor neurons).

Mutation operators affected nodes in the tree. During the genome mutation step, every node in the
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tree/genome had a chance to be mutated. A mutation hyperparameter m was set so that a genome would
undergo approximately m = 5 mutations on average. There were 3 types of possible mutations: add, modify,
and delete. An add mutation adds a random instruction to the tree, as a child to the mutated node. A modify
mutation changes the mutated node’s cellular instruction into a different random instruction. Finally, a delete
mutation removes the mutated node from the tree. The nodes that were included in the initial genome (i.e.,
the Jump [JMP ] and division [SEQ,PAR] nodes) were protected from mutation, since they were necessary
to properly develop the layers and the sensory-motor neurons of the brain.

The initial experimental trials used a single-tree genome (see Figure 7). Recombination of two single-tree
genomes was achieved by swapping a randomly selected subtree from each (as in Koza’s genetic programs
[Koza, 1990, p.12-13]). The ancestor cell first performed SEQ (sequential) cellular division into 3 cells: a
sensor ancestor cell, a hidden ancestor cell, and a motor ancestor cell. These ancestor cells performed PAR
(parallel) cellular divisions until the correct number of cells was reached to align with the sensors and motors.
The single-tree did not result in locomotion, or much movement at all. This is likely because my version of
the algorithm was bugged, but regardless, the single-tree genome lacked the capacity for modularity as I did
not implement addressing-by-template.

In later trials, the single-tree genome was extended into a multi-tree genome, containing a total of 15
trees (see Figures 8,9). Recombination of two multi-tree genomes was achieved by two-point linear crossover
of the tree sequences. The multi-tree genome facilitated faster evolution than the single-tree genome, since
each tree acted as a re-usable module. As similarly designed in [Gruau, 1995, p.8], each tree of the genome
was designed to correspond to a hierarchical modular area of the body. For example, Tree #8 represents a
module for half of the entire body; Tree #8 would be used/called twice, since there are two halves to the
body. Similarly, Tree #9 represents a module for a leg. Since there are 6 legs in a hexapod robot, the leg
module would be called 6 times.

Figure 8: The initial Cellular Encoding multi-tree genome, handwritten with notes and labels.

Overall, Cellular Encoding performed successfully for robot locomotion. The brain in Figure 5 was devel-
oped from a CE genome.1 The number of neurons in the network was constrained by disabling the mutation
of cell divisions. This was to prevent an ambiguous identity (or deletion) of sensory-motor neurons, and also
because how best to handle mutations involving two-child cellular instructions (such as cellular division)
is unclear. As such, the substrate was pre-specified and could not evolve. Only the neuron characteristics
were allowed to evolve (e.g., bias, activation function), along with connections between neurons and their
characteristics. Sexual reproduction implemented in the form of crossover seemed to perform better (or at
least seemed to achieve results faster) than asexual reproduction.

Qualitatively, the best locomotion results achieved in the CE trials can be described as smooth “rhythmic”
motion. The evolved hexapod robots tended to shift their limbs on one side of the body forward, then shift
them back cyclically, in a regular period. This resulted in the robots shuffling their limbs forward and
backward in a rhythmic manner, almost like a gallop. For a video clip, see Section 6.

1Though note only the z location of neurons is accurate (due to sequential SEQ division); the x and y locations are randomly
arranged since there is no spatial axis defined for parallel PAR division
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Figure 9: The initial Cellular Encoding multi-tree genome, digitized in the Genome Editor.
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4.2 SGOCE

Figure 10: An SGOCE genome in the Genome Editor.

While CE seems theoretically neat, a couple of practical issues became apparent during the implementation
and testing. Firstly, the instructions were somewhat clunky, as there are 30+ cellular instructions, many of
them performing indexed operations on an ever-changing ordered list of synapses. Another major issue, as
noted by [Hussain, 1997, p.35], is that while CE theoretically addresses the problem of growing any arbitrary
neural network from a single ancestor cell, it is not clear where/how to add the input and output neurons
for a given problem, which is often what experimenters wish to do. In the CE trials, to address the problem,
the genome was manually hand-designed to ensure that the sensory-motor neurons develop properly and
are labeled, though ideally CE would just “automatically” plug them in. Finally, in CE it is not easy for
neurons to arbitrarily connect to each other, since they only exist in an abstract data structure rather than
physical space. As such, forming new connections requires complicated cellular instructions and referencing,
or the inefficient process of first forming excess synapses and then pruning them at a later stage. This issue
is easily resolved by the SGOCE extension to CE, which embeds the neurons in physical space and adds new
cellular instructions (e.g., grow connection, GROW ) that allow cells to directly connect to each other.

A version of the SGOCE algorithm was implemented in voxel (3D cellular) space and tested in the Animat
Creator (see Figure 11). As in CE, the process starts with a single ancestor cell, and it follows a cellular
program, dividing and differentiating, to create a neural network. Unlike in CE, the cells of SGOCE are
embedded in a physical space rather than an abstract data structure. The benefit of representing the cells in
physical space is that they have a unique physical location, which means they can locate and interact with
each other directly.

Figure 11: A brain generated by SGOCE. Sensor layer is on the left, motor layer is on the right. The hidden
neurons, which grow and divide according to the cellular program, are interspersed throughout the middle.
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In testing, the sensory-motor neurons were embedded directly into voxel space before running the CE
program, rather than generated from the CE program. Neurons generated by the SGOCE program are only
hidden neurons. The hidden cells could immediately begin interacting with the sensory-motor neurons in
space by using a GROW instruction to create an output synapse in some relative direction according to
the vector ⟨x, y, z⟩. Similarly, a cell divides in space using a DIV I instruction, placing the offspring cell in
some relative direction specified by vector ⟨x, y, z⟩. The values of the vector are arguments contained in the
instruction node. Whenever a node is mutated, either the instruction itself changes or the instruction is left
alone and its arguments are mutated. The more arguments an instruction has, the more likely the arguments
are to be mutated rather than the instruction. More technically, an instruction with n arguments has a 1

n+1
chance of the instruction changing, and an n

n+1 chance of the arguments changing.
For SGOCE, my testing was only cursory, and I could not produce a moving robot. Still, the method is

retained as an interesting developmental encoding to be explored in the future. The regular cellular encoding
is a paradigm similar to the cellular development of our own brains. By embedding the cells in 3D space,
the paradigm becomes even more understandable, realistic, and potentially useful.

4.3 NEAT

Sensory Neurons Hidden Neurons Motor Neurons

Figure 12: The connectivity of the initial NEAT genome.

After the CE methods, the NEAT algorithm was implemented as described in [Stanley and Miikkulainen,
2002] (though without a speciation mechanism) and tested. Unlike CE, NEAT is a direct encoding, which
means it cannot evolve re-usable modules for generating the network structure. Instead, NEAT evolves the
brain’s structure directly, one neuron and synapse at a time. While direct methods lack in modularity and
compactness, one benefit is they allow for fine-tuning the network (at the level of individual neuron/synapse).

Figure 13: The initial NEAT brain.
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The setup for the initial NEAT genome was to first add all the sensory neurons to the genome, then to
add all the motor neurons to the genome, then to insert some reasonable starting number of hidden neurons
(e.g., 128), and finally to connect them as fully connected layers (from sensory layer to hidden layer to motor
layer, see Figure 12,13).

Mutation operators and rates were experimentally determined. They are as follows:

• Connections: Each synapse had 100% chance to be mutated. A synapse is mutated by randomly
selecting one of its ABCD Hebbian parameters ps. There was 97% chance of perturbing ps by ±0.05,
0.5% chance of halving ps, 0.5% chance of doubling ps, 1% chance of changing the sign of ps, and 1%
chance of disabling the connection (a disabled connection has a 25% chance of being re-enabled during
reproduction).

• Neurons: Each neuron had 50% chance to be mutated. A neuron is mutated by randomly selecting
one of its parameters pn, either its bias or activation function modulator α. There was 99% chance of
perturbing pn by ±0.05, 0.5% chance of halving pn, and 0.5% chance of doubling pn. All neurons used
a sigmoid activation function.

• Other: No nodes or connections were permitted to be added.

The robots discovered by this algorithm were able to locomote forward rather effectively, though not
very “smoothly”. Each limb appeared to move independently and erratically, yet the robot was still able
to walk forward. This type of behavior is what we would expect to evolve from a direct encoding: since
the algorithm is unable to evolve all the legs together, it instead must evolve the subnetworks for each leg
separately, and so each leg will move according to its own unique “logic”. For a video clip, see Section 6.

4.4 HyperNEAT

Figure 14: A HyperNEAT genome (i.e., a compositional pattern-producing network) visualized in the
Genome Editor. The edges point left to right.
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The HyperNEAT encoding [Stanley et al., 2009] was implemented in a parallelized (O(1)) algorithm. Hyper-
NEAT is an extension of NEAT where, instead of representing the neural network using a NEAT genome,
a CPPN is represented using a NEAT genome. The traditional HyperNEAT CPPN for 2D static neural
networks has 5 inputs and 1 output.

In HyperNEAT, a neural substrate is first defined by the user, saying how many neurons there are and
where they are located in space. It is assumed that the network is fully connected, and the HyperNEAT
algorithm determines the connection weights. To generate the neural network weights, the CPPN is queried
between all neurons. For example, to determine the weight w on the connection from neuron located at point
(x1, y1) to neuron at point (x2, y2), the 4 coordinates (plus a bias=1) are fed into the CPPN ⟨x1, y1, x2, y2⟩,
and the CPPN’s output is interpreted as the value for w. If a connection weight is below a certain threshold,
the connection can be disabled (equivalently, setting w = 0).

To fit the needs of the Animat Creator, the HyperNEAT algorithm had to be modified. Since the animat
brains are 3D, an additional z-dimension was added to the HyperNEAT algorithm, by designing the CPPN
to take 6 coordinates as inputs rather than 4: ⟨x1, y1, z1, x2, y2, z2⟩. Furthermore, it was extended to evolve
connections’ Hebbian ABCD parameters in addition to their initial weights, by designing the CPPN to have
5 additional outputs (for the learning rate r, and A, B, C, and D). 4 more outputs were also included for
determining α, bias, sign, and neuron activation function. ABCD outputs were scaled by 0.5. The α output
was scaled by 0.1. Finally, rather than disabling a connection with a weight threshold, 1 final binary output
called the link-expression output (LEO) (introduced by [Verbancsics and Stanley, 2011]) was added, which
explicitly determines whether or not to expression the connection between 2 neurons. In total, the CPPN
genome for 3D ABCD Hebbian neural networks had 7 inputs and 11 outputs (see Figure 14).

The CPPN was initialized fully connected, and stored in a NEAT genome. The nodes in a CPPN were
ordered into layers using depth-first search. Then, for a given input, the nodes were evaluated layer-by-layer,
starting at the input layer and moving towards the output layer.

Mutation was as follows.

• Connections: Each connection in the CPPN had an 85% chance of being mutated. If it was mutated,
there was a 97% chance of perturbing the connection weight w by ±0.025, a 1% chance of halving w,
a 1% chance of doubling w, and a 1% chance of changing the sign of w.

• Other: There was a 6% chance of changing a random CPPN node’s function (to a random function),
a 6% of adding a new connection (between 2 random nodes), a 6% chance of adding a new node (at
the location of an existing connection), and a 6% chance of disabling a random connection (a disabled
connection has a 25% chance of being re-enabled during reproduction).

Figure 15: The 4-layer substrate used in the HyperNEAT trials, viewed in the Brain Viewer. Notice the
geometric patterns of neuron activations.
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For the substrate, there were 4 layers: a sensory layer (layer z = 0), 2 hidden layers (layers z = 1 and
z = 2), and a motor layer (layer z = 3). This was done by instantiating a cuboid substrate of dimensions
14 × 10 × 4 neurons: 14 neurons wide to capture all 14 body segments of a quadruped, 10 neurons tall to
capture all 10 sensory neurons in each body segment, and 4 neurons/layers deep.

The sensory-motor layers were laid out in an ordered fashion, though in simple columns, not matching
the geometry of the robot’s morphology (which would possibly produce better results, though is not strictly
necessary). Each leg’s sensory-motor neurons were lined up vertically in columns. In a sensory column,
the top 4 neurons were the rotation sensors, and the bottom 6 neurons were the touch sensors. In a motor
column, motor neurons were equally spaced such that x-drive is at the bottom (on row 0), y-drive is 4
neurons up (on row 4), and the z-drive is an additional 4 neurons up (on row 8). Neurons on the other rows
of the motor layer were used as hidden neurons (see Figure 15).

The HyperNEAT experiments resulted in some of the most interesting robotic behavior, in my opinion,
in the sense of being the closest-looking to animal-like movement. Many of the robots exhibited movements
similar to CE, moving rhythmically and somewhat predictably. However, the best HyperNEAT bots moved
differently, in a way that looked smooth and rhythmic yet also controlled and deliberate. The best Hyper-
NEAT robot planted its feet on the ground to push its legs and consequently its body up off the ground.
Then, while maintaining straight posture, the robot lifted and planted its legs in a coordinated fashion (see
Figure 17), resulting in what looked like an animal gait or deliberate walk, if rather clumsy. The brain
activations as shown in the Brain Viewer were also interesting, forming geometric patterns (see Figure 15),
probably related to the specific CPPN function used to generate the network connectivity. For a video clip,
see Section 6.

4.5 ES-HyperNEAT

Figure 16: Various brains discovered with ES-HyperNEAT

The evolvable-substrate extension to HyperNEAT (ES-HyperNEAT) was implemented as described in [Risi
and Stanley, 2012]. Whereas in the regular version of HyperNEAT, the hidden neurons and their positions
are pre-specified by the user, in ES-HyperNEAT the hidden neurons and their locations are evolved, specified
by the CPPN pattern. It does not require any additions to the CPPN itself. Instead, a different algorithm
iteratively searches for hidden neurons in regions of high variance/information-density compared to other
locations.

The algorithm was extended to work in 3D rather than 2D. Thus, it used octrees rather than quadtrees.
The variance v for an octree node with value c and mean value of its k children c̄ was computed using the
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formula from [Risi and Stanley, 2012, p.8], v = 1
k

∑k
1(c̄− c)2. Since there were multiple parameters evolved

per connection in addition to the weight w, the value c for a connection was not just c = w, but the sum of
all continuous-valued connection parameters (i.e., the sum of bias, all 5 ABCD parameters, α, and w).

In the experiments, ES-HyperNEAT discovered an incredible variety different brain structures (see Figure
16). The various neural controllers translated to various behaviors, some of which acted similar to robots
evolved with cellular encoding, others which acted closer to the robots evolved with HyperNEAT. For those
similar to CE, the robot would gallop forward by moving its legs rhythmically forward and backward. For
those similar to HyperNEAT, the robot would plant its feet downward and push its body up. For a video
clip, see Section 6.

5 Conclusion

In conclusion, 5 paradigms of neuroevolution were implemented and tested for articulated robot locomotion.
Using the Cellular Encoding, NEAT, HyperNEAT, and ES-HyperNEAT methods, I was able to find neural
controllers capable of locomoting articulated segmented hexapod and quadruped robots within very few
(only dozens) of generations. Although I was unable to achieve any results for SGOCE due to limited time
available for testing, based on the results it seems very likely that, being a more flexible extension of CE, it
is also capable of finding successful neural controllers.

The generated robots from all methods showed many similarities to each other, probably due to sharing
the same Hebbian brain paradigm, but they also exhibited some unique differences, due to their unique
evolutionary history and genetic paradigm. For example, robots generated from the indirect encodings
exhibited smoother, more regular movements than robots from the direct encoding.

Though the ability to evolve Hebbian networks for the articulated robot locomotion task is not a new
research finding, here the previous findings are confirmed, for highly-segmented robots, and for various
neuroevolution paradigms. The new software tools created here are made available for experimenters to
quickly plug in and test neuroevolution algorithms on the locomotion task.

5.1 Future Directions

In the future, it would be interesting to try spiking neurons rather than, or in addition to, continuous
neurons; as the Hebbian paradigm is based on biological brains, it would make sense to pair it with a model
of the natural spiking behavior of biological neurons.

Another factor to consider is the co-evolution of robot body morphology alongside neuroevolution, as
was done in Sims’ evolving creatures [Sims, 1994]. For example, CPPNs evolved with NEAT have been used
to evolve the morphology of voxel robots [Cheney et al., 2014], though without neural control. Naturally, it
would be interesting to experiment with brain-body co-evolution using two CPPNs to represent both neural
network and body, or perhaps even the same single CPPN/genome for both. This would also facilitate
laying out the sensory-motor neurons in a geometric fashion that mimics the body’s morphology, unlike I
did in the HyperNEAT experiment here, where I simply lined up each body segment’s neurons into vertical
columns since I did not want to try estimating the neuron locations. Instead, with paradigms combined in
the same physical space, the sensory-motor neurons would automatically be placed in regions of physical
space where the corresponding body segments are actually located. Another option to consider along this
line is a body morphology version of SGOCE, where voxels divide in 3D space to generate a voxel robot
according to a cellular program. Regardless, the Animat Creator should support arbitrary body genetic
encodings, and provide an interface able to link them with arbitrary brain encodings, though of course since
different genetic encodings will be incompatible with each other, all encodings must at least conform to some
minimum requirement or interface to ensure compatibility.

In the future, the Animat Creator and its associated tools should be updated to ease testing for the
user. For example, a new feature should be added to allow testing genomes in training pods directly from
the Genome Editor, rather than the current arduous process which requires saving the genomes to disk and
then loading them. There should also be a new feature to design body morphology genomes in the Genome
Editor, to go along with user-designed brain genomes. That way, users can design entire creatures, not only
their brains. Then of course, there should be the option to evolve both brain and body genomes together.
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In terms of next steps towards the overall research goal set out in [Hahm, 2022] of creating a nature-
inspired ecosystem of evolving AI robots, the ability to successfully evolve Hebbian robots which locomote
in a certain absolute direction is good evidence that these robots can also be evolved which locomote in a
certain relative direction, that is, towards certain objects according to sensory stimuli. In the context of
an ecosystem, the minimum required attractive stimuli would be food and mates. Thus, the next step is to
evolve robots which move towards food and mates, then implant the “minimum” creatures into an ecosystem
as the starting point for evolution. These behaviors should be sufficient to sustain an active population and
evolve interesting diverse species, as evidenced by the populations of Hebbian animats in PolyWorld [Yaeger
et al., 1994].

Figure 17: A walking robot.

6 Code and Videos

The Animat Creator is open-source and available here: https://github.com/ccrock4t/AnimatCreator
Video recordings of some results are available at these URLs:

• Cellular Encoding: https://www.youtube.com/watch?v=yyDE7w-ajMA

• NEAT: https://www.youtube.com/watch?v=3PsT3HhZ-AA

• HyperNEAT: https://www.youtube.com/watch?v=NbGKKZ56JVA

• ES-HyperNEAT: https://www.youtube.com/watch?v=2ID8hFq6fGA
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