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Abstract. Sequential learning is a fundamental function of an intelli-
gent agent. This technical report introduces a model of sequential learn-
ing, which is interpretable through Non-Axiomatic Logic. The learning
procedure includes three steps, hypothesizing, revising, and recycling,
and can work under the Assumption of Insufficient Knowledge and Re-
sources. Although there are limitations for the current design, the model
has been proven effective in some simple cases.

Keywords: Sequential Learning · Non-Axiomatic Logic · Brain-inspired

1 Introduction

Sequential leaning, which is of paramount importance for an intelligent agent
to interact with the world, refers to acquiring the proper ordering of events or
stimuli[2]. It is the foundation of many learning processes, such as sensorimotor
learning, natural language acquisition, and so on.

Some successful modern approaches addressed this issue. For example, Re-
current Neural Network[7], Transformer[8], and their variants have gained huge
progress in natural language processing and computer vision. Through modeling
neocortical column, the Hierarchical Temporal Memory (HTM) approach can
memorize frequently occurring sequences as long as each event can be converted
to Sparse Distributed Representation (SDR) [4]. Interpretability is an important
aspect of AI security. The major issue of these neural approaches is their lack of
interpretability: the models are black or grey boxes, and developers is hard to
understand what is going on and how to fix it when unexpected behaviors occur.
A sequence of events can also be represented in a logical way, through which a
sequential learning model would be interpretable. In Non-Axiomatic Logic [9],
there are some logical rules for temporal inference[12], including deduction, in-
duction, etc. However, how to extract temporal patterns from sequences is still
a challenge under this logical representation.

Before an agent could acquire the capability to predict an event occurring in
the far future, we believe it should firstly be able to learn some basic patterns of
sequences in which events occur during a relatively short term. Although under
the context of Artificial General Intelligence (AGI), the issue goes far beyond
learning a sequence, we might as well focus on sequential learning temporarily.
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Fig. 1. Schematic diagram of the sequential learning model

2 Model

2.1 Representation

We use a Narsese representation as the major formal language for describing
the model. Simultaneously, the model could also be described through graph as
well as neural representation.

In sequential learning, a representation should be highly contextual. In HTM
theory, a representation under a certain context is modeled by mini-column[1]
of neocortex – a collection of neurons in several mini-columns constitute a dis-
tributed representation, i.e., the whole collection represents a single object, while
each component, within the collection, is involved in several objects’ representations[5].
However, despite of the biological-plausibility, there seems to be no strong rea-
son why SDR is necessary for intelligence. At the same time, how to deal with
uncertainty is a challenge in this model[4]. In principle, a collection of neurons
in SDR is equivalent to a concept in NAL. We believe the most critical intuition
in HTM’s temporal memory model is that a column is a collection of representa-
tions under multiple contexts, and each neuron in a column is a representation
under a certain context. It is natural to think if we could use a single node,
instead of multiple nodes, as a representation, simultaneously preserving the in-
tuition of temporal memory in HTM. From another perspective, each concept in
NARS (Non-Axiomatic Reasoning System)[3], an AGI system based on NAL, is
weakly contextual, meaning that what concept to be activated is determined by
the overall status of the system, while it is not determined directly by what is ac-
tivated at present. As a result, we agree that NARS is good enough at modeling
consciousness[11], however, it still needs to be improved for sequential learning.
By exploiting the logic part of NARS, namely NAL, a representation can work
with uncertainty, and new representations can be derived via well justified logical
rules, promising the interpretability of the model.

In the following, we will introduce the sequential learning model proposed
in this paper. The schematic diagram of the representation approach is shown
in Fig. 1. A column is interpreted as a concept. Within each column, there are
several nodes. A node is interpreted as a task that is comprised of a statement,
a budget, and a truth-value. The statement is the identity of the task, meaning
that the agent is perceiving or feeling something at a certain time. For example,
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when seeing a red flower, a task which represents the red flower raises up. The
truth-value represents the extent of the agent’s perceiving or feeling. A node,
as a task, is especially an event since its truth-value is time-dependent. The
budget represents the extent of computation resources allocated to the task ; it is
highly related to the attention of the agent. The event, in this sense, is not what
occurring outside the mind but the subjective understanding of the occurrence.
Even though a single concept corresponds to multiple events, under a certain
context, usually there should be only one or very few events to activate, so that
only part of meaning of the concept is utilized.

There could be a directed link between two nodes. A link represents temporal
relations, including predictive implication (⇒/ ), retrospective implication(⇒\ ), and
predictive equivalence (⇔/ ) in NAL [9]. the relations between two events E1 and
E2 involves three predictions, “⟨E1 ⇒/ E2⟩.”, “⟨E2 ⇒\ E1⟩.”, and “⟨E1 ⇔/ E2⟩.”.
If event E1 occurs and there is a prediction “⟨E1 ⇒/ E2⟩.”, then E2 is anticipated
to occur, and we call E2 an anticipation. In this way, the model can be interpreted
through the formal language of NAL, Narsese. On the other hand, the model can
also be interpreted using a “neural language”. A node is interpreted as a neuron,
while a link is interpreted as a synapse. If event E is an anticipation, we call
neuron E is pre-active. A mini-column is active if and only if any of its neuron
is active, and so as the pre-active case. If a mini-column is activated when none
of its neuron is pre-active, then all the neurons are activated, otherwise only
those pre-active neurons are activated. By this representation, the meaning of a
concept is highly dependent of previous occurring events, i.e., we say a concept
is strongly contextual.

2.2 Sequential Learning

Now the challenge is how to construct the links given a series of events. Due
to the Assumption of Insufficient Knowledge and Resources (AIKR) [10], there
is no way to store all the events and simultaneously handling all potentially
possible links within limited time. In the model, when a stimulus is input, there
are three steps to response. First, some hypothetical links would be generated;
second, the link strengths are revised; finally, those useless links are recycled
since the resource is limited.

The current design of the learning mechanism is described as the following.

Revising: Given two nodes E1 and E2 between which there is a link, there are
three cases when revising the truth-values of the predictions within a link :

– E1 is active after which E2 is active. A positive evidence is provided to
predictions “⟨E1 ⇒/ E2⟩.” as well as “⟨E2 ⇒\ E1⟩.”.

– E1 is active after which E2 is not active. A negative evidence is provided to
prediction “⟨E2 ⇒/ E1⟩.”

– E1 is not active after which E2 is active. A negative evidence is provided to
prediction “⟨E2 ⇒\ E1⟩.”.
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The other probable case “E1 is not active after which E2 is not active” makes
no sense because no evidence can be provided to the predictions.

Given new evidences, the revision rule [9] is applied to the corresponding
predictions, and the deduction rule [9] is applied to generate anticipations.

Hypothesizing: Before links could be revised, they should be constructed first
through the hypothesizing process. We focused on two columns, C1 and C2 ac-
tivated in succession:

– If some but not all nodes of C1 are active, and so as C2, then skip the
hypothesizing process since there have been some hypotheses for revising.

– If some but not all nodes (denoted as N1) of C1 are active, and all nodes
of C2 are active, then randomly pick up some nodes (denoted as N2) of C2,
and build links between N1 and N2.

– If all nodes of C1 are active, and some but not all nodes (denoted as N2)
of C2 are active, then randomly pick up some nodes (denoted as N1) of C1,
and build links between N1 and N2.

– If all nodes of C1 and C2 are active, then randomly pick up some nodes
(denoted as N1) of C1, and some nodes (denoted as N2) of C2, and build
links between N1 and N2.

For each time, the total number of new links is restricted to a certain value.

Recycling: Due to AIKR, the number of links within a column should not
exceed a certain threshold, otherwise, some of the links should be dropped. This
refers to the forgetting process of memory. The priority in budget determines
the extent of a link tending to be recycled, and the quality in budget is related
to long-term memory, i.e., the link with high truth-value leading to high quality
tends to be preserved. A new link usually has relatively high priority, which
gradually decays to the quality. In this way, the balance between long-term and
short-term memory is achieved.

The links between concepts are revised through the Revising procedure which
is well justified. Since developers are able to figure out what is going on inside
the model and trace-back any unexpected behaviors, the model is interpretable
in this sense.

3 Experiment

A sequence of characters is input into the model, and the prediction accuracy is
measured and compared to the theoretically highest one.

Setting 1: The simplest setting is [C1, C2, .., Cm, C1, C2, ..., Cm, ..., C1, C2, ..., Cm],
i.e., the sub-sequence [C1, C2, ..., Cm] is repeated for many times, where Ci is a
constant character. For example, the sub-sequence could be [A,B,C] if m = 3.
In this case, the expected highest accuracy of prediction is 100%. The result
with m = 6 is shown in Fig. 2.
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Setting 2: Amore complex setting is that the sub-sequence is [V1, C2, .., Cm−1, Vm]
where V1 and Vm are variable characters rather than constant. The variable char-
acters V1 and Vm are sampled for k times, so that k sub-sequences are generated.
The sub-sequences are repeated for n times, and for each time one of the k sub-
sequences is selected. For example, two samples [A,B,C,D] and [X,B,C, Y ]
are generated when m = 4, and the final sequence is the combination of these
two, such as [A,B,C,D,X,B,C, Y,X,B, C, Y, ...]. Given the context [A,B,C],
character D should be predicted, while given the context [X,B,C], character
Y should be predicted. If the context [B,C] is given, both characters D and Y
are predicted. In this case, the expected highest accuracy of prediction is 87.5%,
since only [B,C,D] and [B,C, Y ] are totally predictable, while A and X can be
predicted with 50% accuracy. The result with m = 6 is shown in Fig. 2(a).

Setting 3: Further, some anonymous characters could be added into the se-
quence, so that the uncertainty increases. In this case, the sub-sequence is
[V1, C2, ..., Cm−1, Vm, ⋄1, ..., ⋄p], where ⋄i denotes a random character, which
means it is sampled from any characters when generating the final sequence.
An example is [A,B,C,D, J, U,X,B,C, Y,W,L,A,B,C,D, S,C, ...] when m = 4
and p = 2. In this case, the expected highest accuracy of prediction is 50%, since
only [B,C,D] and [B,C, Y ] are totally predicable, while the other half of the
characters are unpredictable. The result with m = 6 and p = 4 is shown in Fig.
2(b).

We can see that under the experimental settings, the model can always
achieve the best performance. However, there are still some limitations due to
the design of learning mechanism. For example, as shown in Fig. 4, given various
lengths and the numbers of sequences, the model with current design is weakly
scalable, and it still leaves room for improvement.

(a) (b)

Fig. 2. The accuracy (a) and learned network (b) under setting 1
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(a) (b)

Fig. 3. The accuracy under setting 2 (a) and setting 3 (b)

Fig. 4. Accuracy with various lengths and numbers of sequences
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4 Summary

In this paper, an interpretable model of sequential learning is proposed, with a
representation that uptakes the features of Non-Axiomatic Logic and a brain-
inspired approach. The learning procedure of the model involves three steps,
hypothesizing, revising, and recycling, and it can work under the Assumption
of Insufficient Knowledge and Resources (AIKR) [10]. The model is tested with
some slightly contrived problem, and it proves practically to be effective in the
simple cases. However, the current design is far from perfect, and there is still
some issues, especially scalability, with the model. Nevertheless, we can see the
potential of the model which deserves further research.

There are also some interesting issues derived from current research. One is
the connection between principle and structure: the model can be described in
both two ways, neural and logical, and there might be some potential connec-
tion between temporal induction in NAL and synapse learning mechanisms, e.g.,
STDP[6], in spiking neural network. Another is the potential of exploiting quan-
tum computing to enhance the model. A column in the model has the meaning
of multiple possibilities within different contexts, so that a column can be in-
terpreted as a quantum superposition state[13]. This perspective might lead to
some interesting work.
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