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1 Introduction

According to most theories and people’s intuition, it makes sense to say that
one person or system is “more intelligent” than another one. According to
some opinions, it even makes sense to use a number to indicate the degree of
intelligence.

In general, if a certain property can be properly measured, it can be com-
pared between any two entities with the property, but comparability does not en-
tail measurability, because the relation can be partial (i.e., not defined between
any two entities), or there is no natural unit for a measurement. Therefore,
comparison is more fundamental than measurement for evaluating a property.

The comparison and measurement of intelligence have been studied in psy-
chology and other related fields (education, anthropology, philosophy, etc.) for
decades [Sternberg, 2000]. In particular, intelligence quotient (IQ) has been
widely used for various purposes, though the controversies around it never stop
[Gottfredson, 1997, Grigorenko and Sternberg, 1998].

The situation in AI is even more complicated, as the comparisons of intelli-
gence may happen in three scopes:

1. among different types of intelligence (computers, humans, animals, etc.),

2. among different AI systems (e.g., NARS, SOAR, CYC, AlphaGo, etc.),

3. among different variants of the same system (e.g., OpenNARS, ONA, etc.).

In each scope, the purposes served by the comparison and measurement are not
exactly the same, and consequently, the focuses of the research differ, and so do
the results.

In the following, I first surveys the major issues and the various opinions on
each of them. After that, I will analyze the issues and made several conclusions
on the general topic of comparison and measurement in artificial intelligence.
Finally, I will propose some concrete ideas in the NARS-related works.
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2 Opinions and Approaches

To compare or measure a property, a precondition is to have a clear definition
of the property. However, this is exactly what is lacking on “intelligence”,
especially in the context of “artificial intelligence” [Legg and Hutter, 2007a,
Monett and Lewis, 2018, Wang, 2019]. Obviously, different definitions of intel-
ligence require different ways of comparison and measurement, which is a major
reason for the large number of approaches on this topic. For a comprehensive
survey, see [Hernández-Orallo, 2017].

For instance, each of the five types of AI defined in [Wang, 2019] suggests
different standard for comparison and measurement of intelligence:

Structure-AI: To compare and even measure the similarity of an AI model
with the human brain. Many models have been justified in this way
[Hawkins and Blakeslee, 2004, Markram, 2006], though each of them tends
to be similar to the brain in different aspects, and there is little consensus
on the necessary aspects of the brain to be simulated in an AI, not to
mention commonly agreed measurements.

Behavior-AI: Turing Test [Turing, 1950] uses “indistinguishable from human
in conversation” as the criterion of being intelligent. Though this idea has
been insightful and influential, it has raised various criticisms and contro-
versies [Hayes and Ford, 1995, French, 2000, Marcus et al., 2016]. Using
human IQ tests to evaluate AI systems [Bringsjord and Schimanski, 2003]
is in a similar situation.

Capability-AI: Many claims on the achievements of AI, including IBM’s Wat-
son [Ferrucci et al., 2013] and DeepMind’s AlphaGo [Silver et al., 2016],
are based on their extraordinary abilities in solving hard problems. Sim-
ilarly, it is a common practise in machine learning to evaluate models
according to their performance on benchmark datasets, which has also
attracted criticisms. [Raji et al., 2021].

Function-AI: As a cognitive function is often specified as a type of computa-
tion [Russell and Norvig, 2010, Poole and Mackworth, 2017], intelligence
is widely taken as abstract problem solving abilities, described by a set
of desired features [Anderson and Lebiere, 2003, Laird et al., 2009], which
can be checked one-by-one when evaluating a system’s intelligence. There
is no agreement on the relevant features yet.

Principle-AI: Such an approach evaluates the intelligence of an AI system
according to its accordance with certain domain-independent principle,
usually in the form of rationality or optimality [Legg and Hutter, 2007b,
Wang, 2010]. Here the primary issue is the validity and applicability of
the principle itself.

Though it is possible for a research project to pursue multiple objectives
(such as being both brain-like and practically useful), only one of them can be
considered as primary, as they are not always correlated.
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Accurately speaking, projects guided by different understandings of intel-
ligence are not comparable or commensurable in terms of which one is “more
intelligent,” though such comparisons nevertheless occur often. This is caused
not only by the common tuition that there is only one “true intelligence”, but
also by the reality that all of the above schools (probably except Structure-AI)
still evaluate a system’s intelligence via “task accomplishing” (or call it “goal
achieving” or “problem solving”) tests, which is also how human intelligence is
usually evaluated, compared, and measured [Hernández-Orallo, 2017]. We can
say that such tests are the “greatest common factor” among the schools, though
the tests are designed and evaluated according to different considerations.

In this situation, the questions commonly discussed include

(1) What tasks should be used to test a system’s intelligence?

(2) What is the relationship between the testing scores and intelligence?

For the first question, the answers can be

Single task: For application-oriented systems, it is natural to use the practical
problem to be solved as the sole testing case for the system’s intelligence.
From the very beginning of AI, there has been the belief that certain tasks
are proper indicator of intelligence, such as theorem proving, game play-
ing, natural language conversation, etc. [Feigenbaum and Feldman, 1963].
This tradition continues until today, as shown in the suggestion of looking
for “Good Challenges” [Cohen, 2005] and the practise of using benchmark
problems [Raji et al., 2021].

Multiple tasks: For people who see intelligence as a collection of multiple ca-
pabilities or functions [Gardner, 1983], it is necessary to use a carefully
selected collection of tasks to evaluate the different aspects of intelligence,
then the individual scores are summarized into a total score, like the eval-
uation of all-around athletes [Adams et al., 2016, Mueller et al., 2007].

All tasks: Some theoretical models assume that it is both necessary and pos-
sible to consider all problems solvable by the system, and so the size of
this set or the average quality of the solution can be used to indicate the
system’s intelligence [Legg and Hutter, 2007b, Hernández-Orallo, 2017].

Meta-level task: Some theoretical models consider intelligence as a meta-
level capability that is independent of the concrete problem-solving ca-
pabilities (i.e., the skills or expertise), so intelligence should be evaluated
at the meta-level, such as the ability and efficiency for the system to
learn new skills of a certain complexity or structure [Wang et al., 2018,
Chollet, 2019].

After deciding the testing problems, there are still issues on how the testings
should be arranged and how the scores should be used. Among the factors
considered, a major distinction is made between the following two types:
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Static testing. Directly use the testing scores of single tests as measurements
of intelligence. This is the common practice.

Dynamic testing. Use the increasing rate of the score over a period of time
as measurements of intelligence [Grigorenko and Sternberg, 1998]. This is
a relatively new approach.

3 Analysis and Clarification

Most inspirations of AI research come from the study of human intelligence,
though different people get their inspirations at very different levels of abstrac-
tion of the human mind/brain complex. The same is true for the comparison
and measurement of intelligence.

In psychology, the study of IQ Test started to meet the practical needs to
handle the difference in intellectual ability among human beings when solving
selected problems [Gottfredson, 1997]. However, to directly use this approach
in the comparison and measurement of AI systems runs into obvious problems.
Computers have been able to solve many problems far better than human brains
can do, though people intuitively do not consider that as intelligence, as analyzed
in [Wang, 2019].

In [Wang et al., 2018], a simple diagram is used to intuitively illustrate differ-
ent ideas about the measurement of intelligence. As a starting point, assuming
we have established a reasonable measurement S(t) as an indicator of an AI’s
problem-solving capability at a certain moment t. Using it, we can distinguish
different types of “AI”, as shown in Figure 1:

Figure 1: Different types of problem-solving ability.
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Computation. If an AI is theoretically equivalent to a Turing Machine, then
its problem-solving capability does not change over time, as it returns
to the same initial state after each run, so the same input always leads
to the same process, output, and resource expense [Hopcroft et al., 2007].
Therefore, S(t) = c, S′(t) = 0, meaning that its problem-solving capability
remains a constant and never changes in time.

Learning. In the current Machine Learning study, “learning” is usually taken
as a process in which the system’s capability (of solving a problem) in-
creases as the training goes, and eventually converges to a fixed input-
output mapping [Flach, 2012]. Therefore, S′(t) > 0, S′(t) → 0, S(t) → c,
meaning that its problem-solving capability increases initially, then, when
learning finishes, it roughly remains a constant.

Adaptation. For a system like NARS, adaptation (or “learning” in the original
and broad sense) is a never-ending process, so S(t) does not necessarily
converge to a stable input-output mapping. Since the system’s adaptation
mechanism is designed at the meta-level and largely independent of the
system’s experience, it can be roughly considered as a constant, that is,
S′(t) = c [Wang, 2006].

Super-intelligence. This is a possibility suggested by some researchers, who
take intelligence as a ladder that extends beyond the “human-level”, so
some future AI may work according to mechanisms beyond our compre-
hension [Kurzweil, 2006, Bostrom, 2012]. In Figure 1, this possibility is
represented by a function where S(t) and S′(t) are both increasing func-
tions of time.

The major difference among these types of systems is in their directives,
S′(t), rather than in S(t) themselves. Actually, this is the case even when human
intelligence is measured, as IQ is a quotient obtained by dividing the subject’s
“mental age,” which correlates to S(t), by the person’s chronological age, which
correlates to t. S′(t) is defined by the limit of (S(t) − S(t0))/(t − t0) when
(t − t0) → 0. Therefore, what IQ measures is adaptation/learning capability,
rather than problem-solving capability.

In its daily usage, the term “intelligence” is indeed often used to indicate
human problem-solving ability, because among humans, their innate capabili-
ties, i.e., the initial values S(t0), are relatively similar to each other, so their
values at a later time S(tn) roughly correlate to their derivatives S′(t) in the
period [t0, tn]. However, this rough correlation does not exist among computer
systems, because a system with a high score S(tn) on certain tests may have no
adapting/learning capability at all (e.g., in Turing computation S(tn) = S(t0)).
From the value of S(tn) and tn, S

′(t) cannot even be estimated without known
the S(t0) for that specific system.

The above analysis leads to the conclusion that “problem-solving capability”
and “adapting/learning capability” need separate measurements, and the latter
is closer to the intuitive meaning of “intelligence”, while the former is better
called “skill” or “expertise.”
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Between S(t) and S′(t), the former usually heavily depends on the system’s
knowledge on the specific testing problem, while the latter being less problem-
specific, and depends more on the system’s general-purpose cognitive capability,
which is another reason why it better fits the label “intelligence.” In general,
skills come mainly from the system’s nurture, while intelligence comes mainly
from the system’s nature.

Turing computation specifies functions and algorithms independent of their
usage history, while the current machine learning research interprets “learning”
as “to learn a computation or function”, which is arguably different from the
open-ended learning processes in the human mind [Wang and Li, 2016]. What
is labeled as “adaptation” is closer to what the term “learning” means in psy-
chology and everyday life. Of course, it does not mean that intelligence remains
unchanged in the system’s lifetime, but that its change is relatively much smaller
than the change of the skills, so in Figure 1 it is only roughly taken as a constant.

As for the systems where S′(t) changes as much as S(t), like the “super-
intelligence” in Figure 1, I do not consider it as a realistic possibility that de-
serve analysis and discussion, but only a theoretical one [Wang et al., 2018],
because such a system does not even have a nature to be specified except being
“superhuman” and incomprehensible.

In conclusion, the above analysis shows that testings for intelligence should
be dynamic [Grigorenko and Sternberg, 1998] and on the system’s (meta-level
and domain-independent) skill acquisition capability, rather than about the spe-
cific skills it has at a moment [Chollet, 2019], even though the tests are inevitably
about specific skills.

4 Proposals for NARS

Based on the previous analysis, some suggestions are made about the comparison
and measurements of intelligence between (an implementation of) NARS and
other systems.

4.1 Between different versions of NARS

What is immediately needed in NARS research is the guideline for comparison
between different design decisions with respect to their impacts to the system’s
intelligence.

Since all the designs follow the basic principles of NARS, including its work-
ing definition of intelligence and development strategy, some comparisons can
be done via theoretical analysis, with respect to the objective of “being adap-
tive under AIKR (the Assumption of Insufficient Knowledge and Resources).”
These comparisons will be at the meat-level, in the sense that they are only
about the built-in components of the system, and independent of the system’s
experience or content in memory.

Everything else being the same, a more intelligent NARS will be “more
adaptive” by interacting with its environment in more complicated manners,
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with

• higher expressive power (i.e., a richer Narsese grammar),

• higher inferential power (i.e., more NAL rules),

• more input/output channels (i.e., more sensorimotor capabilities).

The above factors are all about the logic part of the system.
For the control part of NARS, to be “more intelligent” means to have higher

resource efficiency, especially with respect to computational time and space.
This is a more complicated topic than that in the logic part. Here some decision
decisions can still be justified via theoretical analysis, if they do not depend on
special properties of the situations or tasks. For those that cannot be decided
theoretically, practical testings will be needed, though there are still general
guidelines:

• The performance improvements obtained by proper training and education
should not be considered as intelligence improvements, as they are at the
object-level.

• The performance improvements in certain types of tasks may come at a
cost in other types of tasks (such as bias in resource allocation among
channels, buffers, and the memory). They will produce NARS imple-
mentations with different “personalities” and each adapts well in different
domains or environments, with roughly the same level of intelligence.

• The testing tasks should be as domain independent as possible. For in-
stance, if the desired performance can be provided by the acquiring of a
certain type of compound operation, then the tests should be able to use
components from different domains to get the same effects. In this way,
systems’ intelligence can be compared even if they have disjoint opera-
tions, such as among robots with different sensorimotor mechanisms.

• When testing a design change, diverse tasks are more suitable than uni-
form tasks to show the effects of the change in various aspects of the
system, where intelligence can be considered as the overall effect, like the
“g-factor” that is based on the assumed correlation among cognitive func-
tions.

• Testing for resource efficiency can be carried out by comparing answers to
questions or memory snapshots at different moment, and/or with differ-
ence space parameters.

In general, it is possible to compare the difference of intelligence among
different versions of NARS according to the above guidelines, though the results
only establish a partial order among the versions, rather than a total order,
since there may still be dependency on environments and tasks. It is possible to
define a numerical IQ as the quantile among the comparable versions, though
it probably will not be very useful at this stage of the research.
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4.2 Between NARS and other AI systems

In principle, NARS cannot be compared with AI systems developed to achieve
a very different understanding of “intelligence,” as they are actually aim at
different goals.

For AI systems whose working definitions of intelligence is close enough with
NARS, comparisons can be approximately carried out, both theoretically and
empirically. Again, here the comparisons should be at the meta-level, though
the tasting problems will be at object-level.

It makes sense to compare NARS with other AI systems in their capabilities
at a specific application, though those comparisons are not about their intelli-
gence, but their skills and applicability. The skill of NARS on solving a specific
problem can be improved by proper training and education without a redesign,
and therefore may have little to do with the system’s intelligence.

For example, Chollet wrote “The intelligence of a system is a measure of its
skill-acquisition efficiency over a scope of tasks, with respect to priors, expe-
rience, and generalization difficulty” [Chollet, 2019] that has overlap with the
definition of intelligence of NARS, though the ARC dataset he proposed still
looks too problem-specific to be used on NARS, as it is completely focused on
vision, and does not encourage hierarchical perception. In that aspect, ARC is
even less proper than the Bongard Problem [Hofstadter, 1979].

4.3 Between NARS and other types of intelligence

It makes sense to compare NARS with various forms of natural intelligence (of
human, animal, or their collections). Since these systems can be considered
as being adaptive under AIKR, the comparisons between NARS and human or
animal will actually be closer to the comparison between variants of NARS than
between NARS and other “AI systems”.

As discussed above, the comparisons should be at the meta-level (cognitive
ability and mechanism), not object-level (problem-solving capability or perfor-
mance), even though the testing problems must be concrete. Even when the
system’s performance can be measured with a score S, what matters most is
not S(t), but S′(t), that is, how the score changes with experience. Therefore,
some type of dynamic testing will be more proper here.

According to my working definition of intelligence [Wang, 2008, Wang, 2019],
the similarity among various forms of intelligence is in the relationship between
a system’s experience and behavior (adaptation under AIKR), rather than in
the content of the specific experience and behavior. In particular, AGI is not
designed and developed to replace humans, as such a system does not neces-
sarily have human-like experience, nor human-like behaviors or problem-solving
capabilities. For example, a robot’s sensors and actuators may be completely
different from that of human beings, while still be highly intelligent. To test the
intelligence of such a robot using human problems will be totally pointless.
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5 Conclusions

The comparison/measurement of intelligence is both necessary and possible,
though there are many misconceptions in the current practise.

Between AI systems designed according to very different understandings of
“intelligence,” no common comparisons and measurements are meaningful, and
so are milestones, benchmark problems, etc.

Intelligence should be considered as a meta-level property, though all prac-
tical testings must use object-level problems. Therefore, the selection of prob-
lems will inevitably introduce bias into the results. Consequently, each test
contributes evidence to the evaluation of intelligence, but cannot provide con-
clusive result once for all. It means we cannot expect to develop a single test to
settle the issue once for all, but to depend on many such tests.

For intelligence, comparison is more fundamental thanmeasurement, and the
latter can be established on the former as a relative rank, that is, if a system is
more intelligent than p percent of the other system that have been compared to
it, then p can be used as its “IQ.” As the scope of comparable systems change,
such a measurement will only have a temporal value. Even so, it still makes
more sense than applying a human IQ test to AGI, or to depend on a fixed set
of problems, no matter how they are selected or designed.
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