
The Conceptual Design of OpenNARS 3.1.0

Pei Wang, Patrick Hammer, Peter Isaev, Xiang Li

October 19, 2020

NARS (Non-Axiomatic Reasoning System) can be analyzed in three parts
[Wang, 1995, Wang, 2006, Wang, 2013]:

• its language (Narsese) decides what can be expressed as tasks and knowl-
edge,

• its logic (NAL) decides what tasks and knowledge can be derived from the
available ones,

• its control mechanism decides which possible derivations will be actually
carried out among the existing possibilities.

At the current stage, the first two parts (as described in [Wang, 2013]) have
become relatively stable, while the control mechanism is still under study and
development. There have been publications on the conceptual design of the
control part [Wang, 1995, Wang, 2004, Wang, 2006, Wang, 2009, Wang, 2012],
as well as its open-source implementation OpenNARS1 [Hammer et al., 2016,
Wang et al., 2020, Isaev and Hammer, 2020].

The overall architecture and working cycle of NARS is a major aspect of
the control mechanism, and their design has mainly remained the same since
OpenNARS 1.0.0, except minor changes. The major motivation of the new
architecture in OpenNARS 3.1.0 is to support multiple I/O channels of vari-
ous modality, including both external and internal experiences without human
involvements. This extension also provides the basis for a more efficient and
stable control mechanism to be gradually established in the future versions of
OpenNARS.

This report provides a comprehensive description of the conceptual design of
the new version of OpenNARS with a focus on the control mechanism, and ex-
plains the design decisions according to the basic principles behind NARS, that
is, adaptation under the Assumption of Insufficient Knowledge and Resources
(AIKR).

1http://opennars.org/

1

1 Data Items and Structures

1.1 Tasks and knowledge

All activities of NARS are task processing. There are four types of tasks, cor-
responding to the four types of sentence in Narsese: judgment, goal, question,
and query.

The tasks are handled using the system’s knowledge, which includes

• a collection of beliefs, each of which is a statement with a truth-value, and
summarizes a fragment of past experience,

• a collection of desires, each of which is a statement with a desire-value,
and hopes a fragment of future experience.

In NARS, desire is a special type of belief, just like query is a special type of
question.

Each task is processed in a sequence of inference steps, in each step it inter-
acts with a belief (or desire) so as to become partially achieved, as well as to
generate derived tasks, which are expected to lead to its further achieving.

The achieving level of a task is a real number h in [0, 1], defined separately
for each type:

Judgment: If the expectation of its truth-value is e, and the system already
has another belief (with identical content but distinct evidence base) with
expectation e′, h = |e− e′|. If there is no previous belief, h = |e− 0.5|. It
measures the extent the content of the judgment has been known to the
system.

Goal: If the expectation of its desire-value is e, and the system has a matching
belief with expectation e′, h = |e − e′|. If there is no matching belief,
h = |e − 0.5|. It measures the extent the desired statement is already
realized.

Question: If t is the truth-value of a matching belief, h equals the expectation of
t if the question contains query variables, otherwise h equals the confidence
of t. It measures the extent the requested truth-value has been obtained.

Query: If d is the desire-value of a matching desire, h equals the expectation of
d if the query contains query variables, otherwise h equals the confidence
of d. It measures the extent the requested desire-value has been obtained.

Each task records its current achieving level and refers to the belief/desire pro-
viding h, the best solution found so far.

Therefore, what NARS does when running is to repeatedly select a task, then
a belief or desire to process the task. After the two are selected, the inference
rules decide the extent to which the task has been achieved, as well as what
tasks to derive from them as means to further achieve the task. The job of

2

the control mechanism is to decide how to make the selections for each working
cycle.

Under AIKR, task processing in NARS has the following features that dis-
tinguish it from the reasoning and problem-solving processes in conventional
systems:

• Multi-tasking: new tasks are accepted or derived when the old ones are
still under processing;

• No task-level algorithm: the processing of a task may have no available or
feasible algorithm to follow;

• Open-ended: few task can be processed “to the end” by taking all relevant
knowledge into account under the time restriction;

• Controlled concurrently: the tasks need to be processed in parallel, rather
than one after another sequentially;

• Tolerance to under-achieved tasks: the processing of a task may be paused
after any number of steps, due to the appearing of other more urgent tasks,
no matter what is the achieving level of this task. As extreme cases, the
system may have no idea about how to achieve certain tasks, though will
not be trapped or crushed by them.

Under this condition, the overall objective of the system is not to reach any
specific achieving level on any single task, but to achieve all of them as much
as possible, meaning to raise a weighted sum of their achieving levels, where
higher-priority tasks tend to get achieved to a higher degree. A control strategy
is a concrete approach toward this objective in all conceivable situations.

Since different strategies will be suitable for different situations, and the
future situations are unknown even in a statistical sense, there is no “optimal
strategy” to talk about, though it does not mean that any design decision is
equally justifiable as “adaptive under AIKR.” In general, many designs can be
considered as “reasonable,” each with a different “personality” so is favored in
certain (but not all) situations. What can be expected in the following discussion
is to find such reasonable strategies.

Since it is impossible to use all knowledge on every relevant task, and the or-
der matters (because some postponed possibilities may not be considered again
as the situation changes), the major function of the control mechanism of NARS
is to select a task to process in each step, and to select knowledge to process
the task. These two selections will jointly decide the applicable inference rules
in a data-driven manner. Such an inference step must be carried out in a short
time to meet the requirement of real-time processing.

1.2 Budget and bag

Because the objective is to use limited resources on all the tasks, and each of
them normally needs multiple steps, a selection problem becomes a distribution

3

problem, that is, instead of processing the tasks one after another, each task gets
a “budget” indicating its relative share in the system’s overall resource supply in
the near future. This budget is determined by summarizing all the factors under
consideration, including the (relative) urgency, salience, potential, etc. of the
task, as well as its relevance to the context. Similarly, each belief/desire also has
different accessibility that reflects its estimated contribution to the processing of
the tasks. Conceptually, the control problem is not taken as sequential searching
a state space, but as asynchronous parallel exploration of the paths, or controlled
concurrency [Wang, 1995].

Because the present computer hardware does not directly support such a
mode of processing, the resource distribution is implemented as priority-biased
selections. Here the idea directly come from the resource management mech-
anism of operating systems, especially the time-sharing of the processor and
dynamical allocation of primary storage. However, in NARS these mechanisms
are further extended to allow anytime, real-time, and open-ended processing.

In NARS, a budget is given to any data items demanding (potentially un-
bounded) repeated processing or accessing. Each budget consists of a priority
value (p) and a durability value (d), indicating the current rank among the
items competing for the same resource and how long the rank will be main-
tained, respectively. The second factor is introduced to reflect the changing in
the environment and within the system. This initial definition [Wang, 1995]
was later augmented to include a third value quality (q), which summarizes the
innate features of the item to evaluate its value [Hammer et al., 2016]. Quality
decides the item’s “base priority,” after the context-relevant factor has com-
pletely decayed. The “quality-factor” in priority is q ∗ Q, where Q is a system
parameter QUALITY TO PRIORITY. Overall, the priority value is a function
of time that decreases exponentially with a derivative determined by the dura-
bility, until it reaches a minimum value that is proportional to the quality value.
A rough diagram of the roles of the three factors is Figure 1(a).

Roughly speaking, priority is about the (short-term) context, durability the
(long-term) history, while quality is usually timeless. It is assumed that the
current context is not exactly the same as the accumulative history, though
they are closely related. Furthermore, different contexts have different time
spans. With these independent dimensions, various budget can be specified.

In principle, it is possible to summarize the three into a single measurement
(or two measurements), though to calculate, use, and adjust the three separately
is conceptually easier, at least at the current stage. In situations where the three
factors must be combined to summarize the item’s “total budget,” a justifiable
measurement is t = d(p + q)/2, intuitively taking the budget as the area of a
trapezoid, with p and q as two sides and d the height, as Figure 1(b). This value
does not correspond to the time actually spent on the item (which depends on
when it will be removed), but allows different budget values to be compared.

The priority of a task represents its relative urgency, rather than an absolute
deadline, because

1. The actual processing time depends on the hardware/software host system

4

in which NARS is implemented,

2. For an adaptive system, a “soft deadline” (where the utility of its solution
is a non-increasing function of time) is a more general form of time pres-
sure, and a “hard deadline” is a special case where the utility drop from
its maximum value to its minimum value at a certain moment.

3. Under AIKR, there is no guarantee to meet all deadlines,

As a consequence of AIKR, this need for dynamic resource allocation among
items happens in many places in NARS. To handle them uniformly, the data
structure “bag” has been introduced [Wang, 1995] as an abstract data struc-
ture of a constant capacity and can contain items of some type, each identified
uniquely by a key and ranked by a priority (as part of its budget). The major
operations defined on a bag are

put an item into the bag. If the bag already contains an item with the same
key, the two will be merged, otherwise the item is added into the bag. If
the number of items has reached the bag’s maximum capacity (a system
parameter), the item with the lowest priority is removed.

take an item from the bag. The item is selected probabilistically, and the
chance for each item is positively correlated to its priority value.

There are other secondary operations, like access an item by key, etc.
In the current implementation, a bag is an array of lists, each for a range of

priority value, plus a hashtable for key-based access, as shown in Figure 2.
Bags cannot be replaced by deterministic priority queues, partly because

in this context “priority” does not indicating the order of processing, but the
share of processing time an item obtains when competing with other items
over a period of time. In this situation, the processing of each item cannot be
finished before the next one starts, so a priority queue often causes starvation
of low priority items, even when the priority values are based on insufficient
knowledge. Bag realizes a balance between exploitation (of existing knowledge
about an item) and exploration (of new knowledge about an item), as it still let
the low-priority items be occasionally accessed, so as to given them the chance
to increase their priority by proving their values.

1.3 Concept and memory

Since NAL is a term logic, every inference rule in it normally requires two
premises containing a common term. Though this requirement looks restrictive,
it actually enables the system to keep the premises and conclusions semantically
related, as well as greatly reduces the scope of search in the selection of premises
and rules in each inference step.

This property further suggests a “concept-centered” memory structure. In
NARS, a “concept” is a data structure named by a term, and contains or links

5

Figure 1: Factors in a budget value.

Figure 2: The structure of a bag.

6

to all the tasks and knowledge that can be directly used in an inference step
with that term as the shared term.

For example, if statement 〈S → P 〉 is the content of a task, then it can and
only can be accessed from the concepts named by terms S, P , 〈S → P 〉, and the
compound terms with 〈S → P 〉 as a component, such as 〈〈S → P 〉 ⇒ Q〉. For
the last cases, 〈S → P 〉 must be at a level of depth that it is directly identified
in an inference rule. For example, statement 〈〈〈S → P 〉 ⇒ Q〉 → R〉 can be
directly accessed from the concepts named by R and 〈〈S → P 〉 ⇒ Q〉, but not
directly from those named by S, P , and 〈S → P 〉, because each inference rule
only parses the syntactic structures of its premises to a certain (usually 1 or 2)
level of depth.

Because of this feature, a preliminary implementation of NARS [Wang, 1995]
can take a concept as a node, and a task or belief as a link between two nodes
(concepts). Figure 3 visualizes this memory, where each node is labeled by a
term, each black link represents a belief, and each red link represents a task
(either a judgment or a question). A concept is a node with its incoming and
outgoing links. In the implementation, a term T names a concept CT containing
a bag of tasks and a bag of beliefs that can be directly used in inference with T as
the shared term. The main memory is basically a bag of concepts representing
a conceptual network with prioritized nodes and links.

The situation becomes more complicated when the logic is extended to in-
clude higher-order inference (NAL-5 and above). When a statement can be used
as a term, the links in Figure 3 become nodes (concepts) themselves. In this
situation, there are two possible treatments for tasks and beliefs, one is to store
them as standalone entities linked from the relevant concepts, or as internal
fields of a concept. In the current design, tasks are handled in the former way,
and beliefs in the latter way.

One of the reasons of this treatment is that the content of certain tasks
(goals and questions) may contain query variable (such as 〈S → ?x〉), so is
a “compound variable” whose meaning and truth-value can be decided only
after being instantiated by a (constant) term. Therefore, such a term does
not name a concept. On the contrary, beliefs are always judgments whose
contents correspond to concepts. The variable components in a compound like
〈〈S → $x〉 ⇒ 〈T → $x〉〉 will not change the nature of this statement as
referring to a concept, though its components 〈S → $x〉 and 〈T → $x〉 do not
refer to any concept, and nor do they have truth-values, as they are (compound)
variable terms, according to Definition 10.4 in [Wang, 2013]. In particular, all
compounds containing query variables are variables themselves.

Consequently, a belief can be either contained in or linked from a concept,
while some tasks cannot be contained in a concept corresponding to its content.
A concept is an identifiable ingredient or pattern in the system’s experience, and
has experience-grounded meaning, or is “intrinsically meaningful” (no matter
how rich its meaning is). On the contrary, variable terms, or certain compound
terms containing variables, do not correspond to concepts.

Figure 4 shows a fragment of the memory with 5 concepts and 2 tasks. A
task is stored outside any concept, and linked from all concepts where it can be

7

processed. The link from a concept to a task is a “task-link” and is stored in a
bag in the concept. The syntactic relations among terms (between a compound
term and its components) are represented by “term-links” which appear in pair,
pointing to opposite directions. All the term-links in each concept are also
maintained in a bag.2

As items in bags, all links have priorities, as marked in Figure 4. The task-
links to the same task may have different priorities in different concepts, and
opposite term-links may also have different priorities. This is because when the
same data item is accessed from different places, its relative priority is usually
different.

If a term is a statement, its corresponding concept will have a table of beliefs.
Multiple beliefs of the same content may co-exist, as far as each of them has a
different evidence base. Even after two beliefs are “merged” by the revision rule,
the premises will still be kept, because the information in it is not completely
merged into the revised version.3

The same treatment is used for desires. For instance, a desire about 〈S → P 〉
is stored in the desire table of the concept for 〈S → P 〉, which is linked with
concepts for S and P by term-links. For a term that is not a statement (like
bird), there is no belief or desire stored in its corresponding concept.

In summary, a concept provides an intermediate-level structure (between
the whole memory and the individual tasks and beliefs/desires) for storage and
processing. It contains bags for task-links and term-links, and tables for beliefs
and desires, as shown in Figure 5. There are also other concept-level attributes
(budget, complexity of the term, etc).

Using the OOP terminology, each concept can be specified as an object of
a certain type (the type of the term) that supports a fixed set of operations
(including the relevant inference rules), and can be processed independently
(even implemented distributively or using customized hardware). The concepts
cooperate via message passing, where each message is a task.

This is why the knowledge representation and memory structure of NARS
are “concept-centered.” Here concepts can also correspond to sensors, operators,
perceived patterns, words in human languages, etc., as special cases, as far as
they have been experienced by the system. A fragment of such a memory
is shown in Figure 6, where a term may correspond to a word or image, or
merely be an internal identifier that cannot be directly communicated to another
system.

2In the current implementation, each link has a “type” indicating the syntactic role played
by the target term in the relation. The types of term-link are used to invoke corresponding
inference rules. An alternative is to use multiple bags, each for a type of term-link. This
design will eliminate the complexity introduced by link type, but add another level of selection
among the link bags, which may introduce a bias among inference type, and make inference
less data-driven.

3One possibility is to represent all statements first as links, and only some of them as nodes
(concepts) whenever necessary, so as to achieve both capability and efficiency. However, it
will make the implementation more complicated.

8

Figure 3: A simplified version of the memory.

Figure 4: A refined version of the memory.

9

Figure 5: Data structures in a concept. [NOTE: “Table of Goals” should be
“Table of Desires,” and the selection in the tables is explained in the following,
which is not by confidence alone.]

Figure 6: Multimodal memory.

10

2 Architecture and Units

2.1 System architecture

The previous architecture of NARS is shown in Figure 7, containing a memory,
an inference engine, and a single task buffer.

The new version of NARS architecture is shown in Figure 8, where the
major extension is the task buffer, while the memory and the inference engine
are basically the same as before.

According to this architecture, the system has the following major processing
units:

• the inference engine

• the main memory

• channels and buffers

The inference engine is invoked via a single routine reason, which normally
accepts a task and a belief (or desire) as input. The input triggers some in-
ference rules, and produces a number of derived tasks, which are put into the
internal-experience buffer. The number of rules that can be triggered by each
input is a constant, and the execution of each rule costs a roughly constant
amount of time and space. Overall, the resource expense of each execution of
the inference engine has a constant upper bound that is relatively low (at the
level of millisecond). The inference engine only provides service, and does not
store any local information.

The main memory of the system is a concept network plus linked tasks, as
described previously. Its content summarizes the system’s experience, and is
constantly changing in a non-repetitive manner. Some of its contents (concepts,
tasks, beliefs, and desires) will be kept for a long term, some others only a short
term, and the two are relatively distinguished and form a continuum, so there
is no separate long-term and short-term memories.

The memory has the following major public routines:

accept task: Accept a task from the overall buffer, and link it from all directly
related concepts.

consider: Take a concept and carry out inference in it.

A concept has the following major routines:

accept task-link: Pre-process the task using the information local to the con-
cept, then add the link into the task-link bag so as to process it repeatedly
in the future.

ponder: A task is selected from the task-link bag, then relevant beliefs are
accessed to carry out a limited number of inference steps on the task.

11

Figure 7: Previous architecture and working cycle of NARS.

Figure 8: Current architecture of NARS.

12

Different from memory, the channels and buffers are purely short-term mem-
ory, and only hold the tasks to be processed.

A buffer is a time-restricted bag of tasks, and also carries out temporal
composition in the observe method on the task that is taken out of the buffer.

A channel manages one type of interaction between the system and the
environment. It supports all the routines of a buffer, plus the channel-specific
operations that initiate processes outside NARS. A channel corresponding to a
modality eventually sends the tasks it formed to the overall-experience buffer
in Figure 8, where all input tasks from different sources and of different types
are mixed with the output of the internal-experience buffer whose input are
the derived tasks from the inference engine. In the overall-experience buffer,
multi-modal compositions happen, and the results are added into the memory.

All of the unit routines have constant upper-bound for their running time.
Among them, put, accept, and execute are “on-demand” routines, in the sense
that each of them is called to accomplish a fixed service, and does not ask for
more resources. On the contrary, observe and consider are “recurring” routines
in the sense that they can be invoked repeatedly, so can consume as much time
as available.

The NARS architecture allows the major processing units to run in parallel
asynchronously and cooperate by passing tasks. Each channel, buffer, and the
memory has its storage and independently defined routines, and the same is
true for the concepts in the memory. Consequently, this architecture can be
naturally implemented as a distributed system, though it is impossible to give
each concept a processor, so some time-sharing is inevitable. Even when dis-
tributed implementation or multi-threads are possible, at the initial stage it is
still desired to implement the system using time-sharing with a single thread
(except for peripheral processes like event-handling in GUI), so as to guaran-
tee the accurate repeatability of the system from the same initial memory and
complete experience. Otherwise debugging and tuning will become even more
complicated.

In a single-thread time-sharing implementation, a working cycle of the sys-
tem can be seen as attention allocation among the processing units, that is, the
buffers and channels (where observe is called), as well as the memory (where
consider is called). Within the memory, attention is further allocated among
concepts, tasks, and beliefs/desires. In principle, the unit selection can be car-
ried out by the take operation defined in bag, though in implementation it is
not necessary to actually put the units into a bag. Given that the units are
predetermined and only a priority (rather than the 3-factor budget) is needed
for this allocation, a simpler solution is to go through each unit, and call its
recurring method a number of times according to the average priority of its
recently processed tasks.

2.2 Buffer

In the new architecture, a buffer is a time-restricted bag containing new (input
or derived) tasks.

13

In addition to the common bag operations and properties, every buffer has
a time limit on how long a task can stay in it (in terms of the internal clock of
the system), and expired tasks are removed without further processing. Conse-
quently, each buffer serves as a filter of new tasks, so the system can focus on
the most urgent and recent tasks. The time period allowed in each buffer will
be a system parameter, as a factor multiplied to DURATION (which defines
the width of the time window for “now”). By default, the factor is 2, so the
buffer include the current moment and the previous moment.

It is possible, even necessary, for different buffers to have different dura-
tion values. In particular, the overall experience buffer should hold tasks for a
longer time than the other buffers that passing tasks to it, since cross-modal
compositions have greater spans than within-modal compositions. For example,
consider the temporal induction of schema “(cond &/ ↑oper) /⇒ cons.”

Given its time-restricted nature, simple temporal compounds like (a &/ b)
and (a /⇒ b) from events a and b can be composed without demanding the
premises to be semantically related. For this reason, temporal (and spatial)
compositions of term normally happen in buffers, not in the memory, where se-
mantic relations are required among premises and conclusions. Implication and
equivalence statements generated in this way need to be marked in metadata, be-
cause only them can trigger anticipations that generate negative evidence when
failed to be confirmed. On the contrary, predictions generated in other ways
(such as by syllogistic rules) cannot expect to be confirmed by direct observa-
tion. This function can be turned off for buffers whether temporal composition
is not needed (e.g., a knowledge base channel).

Therefore, a buffer has the following major routines:

put: As defined in bag.

take: As defined in bag, except that if the selected task is already expired,
the selection will repeat up to a predetermined times. Also, in buffer this
operation is not directly invoked from the outside, but from insider, as
part of observe.

observe: If the buffer does not carry out temporal composition, this routine
just call take to get a task, and return it. Otherwise it also uses the selected
task and every other tasks to form tasks containing compounds events.
The new tasks are put into the buffers. Given their high complexity,
most of them will be removed. The remaining ones usually correspond to
existing concepts in the memory or tasks in the buffer.

Default time interval is used in the compounds formed in the buffers, and
the occurrence time of a compound event is that of its first component, from
which the occurrence times of the other components can be determined. This
restriction do not limit the system’s capability in temporal reasoning, because
more complicated patterns, such as when the time interval between a and b is
longer than the period allowed by a buffer, can still be formed by the inference
engine with the premises selected from the memory, though in that case the two

14

need to be semantically related somehow, and the inference type is not limited
to the above temporal compositions. The non-default time-intervals between
two events is represented either by meta-data, or as terms representing special
“timing” events.

2.3 Channel

A channel in NARS is responsible for a certain type of (input and output)
interaction with a device or an environment outside NARS. Both input and
output activities are carried out by operators defined on the channel, and the
immediate results of the operations are input tasks added into a buffer in the
channel.

At the next stage, there will be several types of channel:

Narsese channel accepts input tasks assigned by another system or device
at any moment, as will as sends outgoing tasks as answers, questions, or
demands to realize active learning and peer-to-peer communication. A
Narsese parser will translate the plain text input into tasks. This type of
channel will also support graphical user interface, and serve as a console
that controls the running of the system.

Knowledge channel sends queries to a knowledge source, receives responses,
and convert them from their native format into Narsese tasks using format-
specific algorithms. This is how NARS acquires structured knowledge via
active learning. This type of channel can also be used to run machine
learning algorithms on data sets to get knowledge for NARS.

Sensorimotor channel manages sensors of a certain type. When there are
multiple sensors with a stable spatial arrangement, their values at each
moment are organized into a sensory term implemented as an array (which
may have more than one dimension) [Wang and Hammer, 2018]. “Spatial
composition” also happens to capture patterns of concurrent sensations
like (a &| b) and 〈a |⇒ b〉 where a and b are sensory terms.

One possible addition is an NLP Channel, which will use existing NLP tools
rather than to do it within NARS. The backup database of Memory is not
handled as a Channel, as it is controlled automatically, not via operations.

All channels are organized in a hashtable, and accessed by key. Each channel
must be predefined, though can be turned on or off at the run time. Meta-data or
higher-order statement can be used to remember the source of input tasks, so as
to evaluate the quality of a channel, and adjust trust and attention accordingly.

Outgoing operations are usually channel-specific. For instance, a visual chan-
nel will control the sensors to move in two or three dimensions. An outside
process does not have to finish within a short period (as the mental operations
carried out by NARS itself). The feedback or reply of the operation is added
into the buffer as tasks.

For certain modality (such as vision), there will be multiple levels of channels
to gradually summarize the input. A sensorimotor channel may be realized by a

15

hierarchy of channels, so the input signal goes through multi-level categorization.
This hierarchy is designed, not learned, and it is possible to be specified in the
configuration file. On the other hand, compound terms formed in a channel can
be a compound term coming out of an arbitrary number of composition, because
the results of composition are added back into the buffer as components. This
concept hierarchy is acquired from experience, unlike the channel hierarchy.

3 Resource Allocation

3.1 Resource competition

The resource competition among the items in their corresponding unit are sum-
marized in the following:

1. Tasks in a system-level buffer: input tasks first compete in the channels,
derived tasks in the internal-experience buffer, and then the selected ones
in the overall buffer.

2. Task-links in a concept-level bag: The budget in a task-link is not neces-
sarily the same as that of a task linked. The task is evaluated with respect
to the whole system when its budget is calculated, but that of a task-link
is from the perspective of a concept.

3. Beliefs/desires in a concept-level table: multiple versions of a belief with
the same content but different truth-values compete each time a belief is
requested. Bag is not used here because each request is one-time. Multiple
versions of beliefs are kept because overlapping evidence may prevent the
version with the highest confidence from being used. Desire table is used
similarly to keep the desire values of a statement.

4. Term-links in a concept-level bag: These links eventually lead to beliefs
kept in the target of the link. For example, in concept M a task with
content M → P is directly linked, but a belief S → M 〈f, c〉 is stored in
concept 〈S →M〉 which is linked in M by a term-link.

5. Concepts in the system-level bag in memory: Though all inference hap-
pens between tasks and beliefs/desires, to take concept as a unit of rep-
resentation and processing has profound consequences, even though this
treatment makes the control mechanism more complicated.

6. Processing units in the system architecture: This level of resource al-
location did not exist in the previous versions of NARS, where a single
input buffer is used to handle input tasks expressed in Narsese, and the
synchronized with the memory-based inference. With the addition of mul-
tiple I/O channels and internal experience, the system needs to distribute
its attention among them according to the current situation.

16

Space competition also happens in the above cases except the last one. Cur-
rently every container has a fixed capacity specified by a system parameter, and
when the capacity is exceeded, the item with the lowest priority is removed.
This policy is implemented in bag and (belief/desire) table.

3.2 Relevant measurements

NARS is adaptive in the sense that it does not process each task according
to a predetermined algorithm (for the task or a class of task it belongs to),
but according to the system’s history and context. Here both “history” and
“context” are from the viewpoint of the system itself. For NARS, its the history
can be recorded by an “experience file” of the system containing the complete
input stream since it started with a initial memory; its context is provided by the
current contents of the memory and buffers, as well as the priority distributions
among them.

From the previous description about the architecture and working routines,
it can be seen that the current context is formed by history, and decides the
processing of the tasks. For the context to form and function properly, some
measurements are needed to capture the relevant aspects.

The first group of measurements comes from the logic part of NARS, and
summarizes the evidence of certain conceptual relations. Though the control
mechanism of the system is not completely determined by the logic, they are
nevertheless related, so these measurements are taken into account in resource
allocation.

The truth-value (and its variant, desire-value) of a statement indicates the
amount of evidence for its content (and its preferred consequences), and consists
of a frequency f and a confidence c, as defined previously. Derived measurements
include

• ignorance i is the complement to confidence, i = 1− c;

• expectation e is an estimation of future frequency, e = c(f − 0.5) + 0.5;

• sharpness s indicates the closeness of the truth-value to binary, s = 2 ×
|expectation− 0.5|.4

The desire-value measurement is extended from statements to all concepts
(terms) to indicate the system’s appraisal to the concept’s association with the
system’s overall situation. It is a single value in [0, 1] used for control only, so
should not be confused with the desire-table.

There are other measurements belong to the logic part that can be taken as
input arguments of budget functions, such as

• achieving-level h of a task, as introduced previously;

4One alternative is to only use expectation. For a negative belief B, its negation (–, B)
will be favored in this way, which will have lower priority than the positive ones by being less
simple. However, this will only work among concepts, but not among beliefs, unless (–, B)
and B are treated as one concept.

17

• syntactic-simplicity s of a term, defined as s = m−r, where m is the
number of atomic components within the term, and r a system parameter
[Wang, 2013];

• directness n of a sentence from input, defined as n = b−r
′
, where b is

the length of the evidential base of the sentence, and r′ another system
parameter.

• fondness f of a concept indicates its correlation with the overall status of
the system.

The core measurements dedicated to resource allocation are the factors in
a budget value: priority, durability, and quality. As explained previously, they
are defined on each task, (task or term) link, and concept, which are all items
maintained in bags. They are both inputs and outputs of budget functions. Also
mentioned previously, they are summarized into the total-budget measurement
for comparisons.

There are also places where resource allocation is not bag-based, but using
a single priority value:

• among beliefs and desires in a table within a concept,

• among channels, buffers, and the memory in the architecture.

At the system level, the global evaluations introduced in [Wang et al., 2016]
will be realized:

• satisfaction: the extent to which the current situation meet the system’s
desires,

• alertness: the extent to which the system’s knowledge is insufficient,

• busyness: the extent to which the system’s time resource is insufficient,

• well-being : the extent to which the system’s “body” functions as expected.

The current value of each of them can be accessed by a feel operator, and the
results enter into the internal-experience buffer, as part of the system’s self-
awareness. They will also be directly taken into account by certain budget
functions.

In a sense, these evaluations serve as “innate goals” guiding the system’s
actions. In that aspect, the desired values of satisfaction and well-being are 1.0,
while the other two are in the neighbourhood of 0.5 (or a system parameter).
In principle, satisfaction can cover the other three by taking “maintaining the
evaluation to the desired level” as a goal. However, it may be easier to treat
the four separately, both in conceptual design and in implementation.

The four evaluations are summarized into a single “pleasure value” p to
indicate the overall status of the system, defined as conjunction or weighted
average of the four (s, w, not(|2a− 1|), not(|2b− 1|)).

18

Even though the global evaluations will have impact on the system’s de-
cisions like the other goals, none of them will be taken as a “supergoal” to
dominate the behaviors, in spite of the other goals. Instead, they have the same
status as far as competing and conflicting among goals happen.

3.3 Budget functions

The budget functions specify the details of resource allocation in NARS, and
therefore decide how each task will be processed, given the system’s history.

The budget functions are designed according to the basic principles of NARS,
with the objective of achieving all tasks as much as possible. Under AIKR, the
system should use the limited resources in the most efficient way, judged at the
moment according to the available information.

For a specific variable to be calculated, different formula will better serve
different situations. Since the future is unknown, there is no optimal formula
that guarantees the best results in all possible futures. Instead, each formula
corresponds to a systematic preference or bias. In the design stage, what can
be expected is to avoid violations of the basic principles, and to balance the
relevant factors in a justifiable way. The choices are partially inspired by how
the human mind handles similar situations, though NARS is not a descriptive
(psychological) model that attempts to simulate human cognition in all details.

The budget functions are part of the system’s intrinsic nature designed ac-
cording to our current understanding about intelligence, and are not learned
from the system’s experience, though some parameters may be adjustable at
run-time by the system itself. All parameters can be specified in the system’s
configuration, and collectively decides the “personality” of a specific implemen-
tation of NARS.

The input and output arguments of the functions have been summarized in
the previous subsection. As the truth-value functions, each budget function is
designed in the following procedure:

1. For the output, identify the relevant ones among the measurements listed
in the previous section to be used as the input;

2. Analyze the relationship of the inputs and the output, and represent it
as a function using Boolean functions (and, or, not) and other simple
arithmetic functions (minimum, maximum, weighted average, etc.);

3. Rewrite the function as a real-number function by extending the Boolean
functions to real number.

Since this design procedure depends on our current knowledge, all the functions
are subject to future revisions coming from further theoretical analysis and
empirical testing.

In the following, the functions are clustered according to where they are used
in NARS.

19

[Bag]

This group of budget functions is shared by all items stored in bags (tasks, links,
and concepts). The initial budget of an item is decided outside the Bag, though
will be used and adjusted within the Bag by the following functions:

Merge: When an item is added into a bag where there is another one with the
same key, the two will be merged, with their budget accumulated. In this
process, the two quality values should be the same, and if not, the max
operator is used. The two priority values are combined using or, so that
the result will be no smaller than either of the two, while still remains
in the [0, 1] range. For the same reason, or is used to combine the two
durability values. Consequently, repeatedly appeared items will get more
resources, both at the moment and in the near future.

Take: The rate for an item to be accessed is positively correlated with its pri-
ority value.5 The default function is to let this correlation be a linear
function, so the access rate of an item is approximately proportional to
its priority. The access rate of each priority level is according to a con-
stant distribution in the index array DISTRIBUTOR.6 The priority of the
selected item is used to update the busyness level of the bag.

Decay: The priority value of every item decays at a rate specified by its dura-
bility. Since modifying all items in a bag in every cycle would be too
expensive, the adjustment is made each time an item is put back into
the bag after processing (“lazy forgetting”)7. If the budget at a certain
moment is (p, d, q), then after a period of a constant length, the priority
decays from p to p ∗ d.8 Since in this period the number of times the item
is processed is roughly propositional to p, each time the priority should
be updated to p ∗ d−(p∗C), where C is a parameter FORGET CYCLES
indicating the number of inference cycles taken as the above constant
period for the durability to be fully applied. The larger this parameter
is, the slower the decay (relative forgetting). This parameter should be
separately defined for each type of bag (though not for each individual
bag), and can be dynamically adjusted at run time (even for individual
bag) according to the average priority of the items to avoid the items to

5A possible future implementation is to use GPU to carry out parallel composition in a
buffer. However, even in that case, priority-biased selection will still be necessary.

6The effect of a nonlinear function may be obtained via forgetting, or by changing DIS-
TRIBUTOR.

7Though “lazy forgetting” only roughly approximates the desired “continuous forgetting”
in the long-run, it is probably the most feasible solution in the existing hardware. Even though
parallel processing is possible to an extent, it cannot be expected that the priority of all data
items decays constantly altogether. One variant of lazy forgetting is to implement the levels
within a bag by a circular array where the top-level is increased after each put or take, so all
items decay together, though their stored priority values remain unchanged until each budget
is re-evaluated.

8One alternative is to replace the p here to p − q ∗Q, so that the result will not be lower
than q ∗Q, the long-term priority determined by quality.

20

crowd at high or low levels. Since quality indicates long-term priority, this
decay is applied until p < q ∗ T , where T is another system parameter
QUALITY TO PRIORITY. For example, of this parameter is 0.1, then
item with quality 1 will not have a priority lower than 0.1.

Remove: When a bag is full, the item with the lowest priority is removed. This
is the only place the space resource is maintained at run time. All the
other considerations and restrictions on space are all specified as system
parameters that normally cannot be modified when the system is running.

[Task]

The initial budget of a task has several alternative sources:

• An input task may come with a budget provided by a user or another
system according to the definition of budget in NARS.9

• System parameters can be used to provide default budget for each type of
task (for instance, goals and questions usually have larger budgets than
judgments). These defaults can also be specified at the channel level.

• The priority and durability of a derived task is the conjunction (and) of
the corresponding factors of its parents (task and belief), as well as a
factor indicating the type of inference. The quality of the derived task
comes from its content (complexity, truth-value, etc.).

When a task enters the overall buffer from a channel or the internal-experience
buffer, its priority is adjusted according to the current context, as indicated by
the global evaluators and the priority of the corresponding concept, so as to
favor the tasks that are relevant when the system is satisfied, alert, idle, and
feeling well. The function can be a weighted average of the previous task prior-
ity and the corresponding concept average, multiplied by the disjunction of the
global evaluations.10

Within the memory, each time a task is directly processed by a concept with
its local knowledge, its achieving level h is updated if necessary. Based on it,
the priority of the task is decreased by multiplying 1− h, so that the relatively
achieved tasks will get less resources. This adjustment is applied before the
across-the-board decay in bag.

If the task is a judgment that provides a best-so-far solution to a pending goal
or question, the achieving level h of the latter is used to increase the priority
of the task from p to or(p, h). This reward will facilitate forward inference
invoked by backward inference, as it will use the belief associated with the goal
or question, without a probabilistic selection of beliefs.

9At the current stage, an input budget will be accepted as it is, though in a future version
channel-specific adjustments may be added as a budget discount by multiplying a factor in
[0, 1] to the priority and/or durability value of each input task from the channel. The initial
value of the factor can be specified when the channel is created, and revised according to the
quality of the input.

10An alternative is to make this adjustment when the task enter the memory from the
overall buffer, or to do it at both places, with different factors considered.

21

[Task-link]

The budget of a task-link is created when a task enters memory and is linked
from the relevant concepts. Initially the budget of each link is the same as that
of the task, and is adjusted by the achieving level in the same way as described
above.

Even so, a link budget and the corresponding task budget will gradually
become different, as the links compete at the concept level, while the tasks
compete at the system level. Eventually, the links to the same task will get dif-
ferent budgets in different concepts, and the task will be accessed with different
chances from different concepts.

[Belief and desire]

When a judgment task is added into memory, a belief is added into the belief
table of the concept that corresponds to the content of the judgment. For
example, the input task 〈S → P 〉[t] will make [t] and the related meta-data
(evidential base, occurrence time, etc.) to be stored in the belief table of the
concept 〈S → P 〉. Consequently, all beliefs in the table have the same content,
but different truth-values coming from different evidential bases and time stamp.
In particular, after a revision, the conclusion st[t] and the premises st[t1] and
st[t2] may coexist in the belief table of concept st.

Though belief with the highest confidence or expectation is usually preferred
(e.g., by the choice rule), multiple truth-values for the same statement are re-
membered, for the following reasons:

• the evidence base of one truth-value may overlap with that of the task,

• high confidence truth-values tend to be equivocal and fail to provide guid-
ance,

• in certain inference (such as analogy and metaphor), one-sided beliefs are
used deliberately,

• context dependency and implicit conditions also ask partial evidence.

Since the selections here have different criterion than the resource-distribution
implemented by bag, belief table has been organized as a deterministic priority
queue. The proposed changes are:

• keep the table small (compared to the bags),

• the priority value is a summary of confidence, sharpness, directness, as
well as an indicator of the recentness of the truth-value,

• priority is mainly used for space competition, and all beliefs will be con-
sidered for each task,

• for each task, only sufficiently different beliefs (in expectation) will be
passed to the inference engine,

22

• previously each task will remember the beliefs it has been used with, which
will be changed to remember term-links, instead.

The same treatment should be used for the desire table, as desires are beliefs
on certain consequences.

[Term-link]

A term-link is used to access the beliefs in the target concept identified by a
term, so it is like the “belief-link” in the earlier versions of NARS, though in
its current form the target of the link is not a belief, but a concept where the
belief is stored.

When a belief is added into a concept, term-links are sent to all the relevant
terms where it may be used for task processing, with a initial budget coming
from the task that created the belief. When a concept accepts this link, it is
added into its term-link bag, where it may be merged with other links coming
from the same concept triggered by different tasks.

Each time after a task is selected in a concept for processing, a few beliefs are
selected by following one of the term-links. To increase the context-sensitivity
of the selection, one option is to take multiple links from the bag first, adjusting
their priority values according to the priority of the target, then choose the link
to follow according to the adjusted priorities.

After each time a belief is used in inference, the term-link accessing it will be
rewarded by a value r that is the maximum of the priority of the derived task
(or the achieving level of the processed task). This reward can be considered as
indicating the usefulness of the belief, and is used to increase the quality of the
link from q to or(q, r), so the link will remain active longer. Another possibility
is to relate q to the weighed average of the achieving levels of the tasks processed
by the belief.

Unlike task-links that tend to exhaust their budgets sooner or later and get
removed from the system, many stable term-links form the core meaning of the
concepts they link to by keeping in the middle-range of the bag.

[Concept]

A new concept in NARS is introduced when a task adding into the memory
contains a term without an existing concept. This novel term may happen from
several sources:

• input from a Channel,

• composed/decomposed by a compositional rule,

• coined by the mental operator compile for a compound.

In all cases, the initial priority and durability values of the new concept are
from the task (the first two cases) or the compound (the last case). The quality
value is the simplicity of the term.

23

Obviously, the use of compositional rules brings the challenge of combinato-
rial explosion. The NARS solution is again the experience-grounded semantics.
Here a new compound term is introduced as an attempt to efficiently summarize
the system’s experience, rather than to describe the world, not to mention all
“possible worlds.” Consequently, a new compound is formed only when there
are evidence supporting such a summary, such as existing extension/intension,
experienced temporal/spatial pattern, etc., and its budget is continuously ad-
justed according to relevant evidence.

In particular, the compound terms formed in sensorimotor may come mostly
from decomposition than composition, i.e., the incoming data forms tempo-
ral/spatial patterns directly, which are later decomposed into parts, and those
that turn out to be useful and frequently used become patters themselves. NARS
does not search a space of possible compounds, neither randomly generates com-
pounds than selects the good ones.

Since each concept is uniquely identified by a term, in the concept bag of
the memory the merge function is never applied, and only the decay function
works to constantly decrease the priority values. The increasing of a priority p
is carried out by an activate function that is called each time a new task-link
or term-link is added into the concept with a priority p′, and the new priority
is or(p, p′). It realizes the priming effect or activation spreading. This is also
the place for the desire-value of the term/concept to be taken into account.
Concepts associating with positive emotions will surely be activated. Whether
the concepts associated with negative emotions are also activated or prohibited
is still an issue.

The durability of a concept is the accumulation of the durability values of
the links. If its current value is d and the value of the incoming link is d′, the
new value will be u ∗ d′ + (1 − u) ∗ d, a weighed average of the two, with the
updating rate u as a system parameter.

The factors deciding the quality of a concept include the syntactic simplicity
of the term and the average sharpness or quality of the beliefs contributing to
the meaning of the concept. The latter can be updated each time a belief is
inserted or accessed, using a formula similar to that of the above durability.11

The fondness f of a concept indicates its correlation with the pleasure value
of the system. After each time a concept is pondered, its f is adjusted to f ′ by
the current pleasure value p as f ′ = r × p + (1 − r) × f , where the updating
rate r is a system parameter. In general, concepts with extreme fondness will
get more resources.

Concept-level resource allocation provides NARS with cognitive functions
not available at the sentence (task and belief) level. For example, adding a task
to a concept may trigger the processing of a dormant task in the concept, and
cause the latter to be processed in an unexpected way. Such an effect provides
an explanation of “inspiration.”

11Another consideration is to favor the “basic-level” concepts, that is, whose with a relatively
balanced extension and intension. However, this factor may be implied by the usefulness of a
concept, so does not need to be considered separately.

24

One future addition is swapping between primary storage and secondary
storage, so as to only keep the active concepts in the former (RAM). There will
be two thresholds in the priority of concepts, one for swapping and the other
for removing. The secondary storage (HD) will be used like a notebook, which
is larger than the primary storage, but still has a constant capability, otherwise
processing time will become unbounded. The thresholds are initially determined
as part of configuration, then adjusted according to the busyness of the system.
Similarly, concepts will be the units in distributed implementations and direct
hardware/firmware implementations of NARS.

[Processing units]

In each working cycle the system observes a channel/buffer or considers a con-
cept in the memory. The relative frequencies of these operations indicate the
top-level attention allocation strategy.

This frequency u will be positively correlated to the weighted average of the
priority p of the recently accessed tasks, i.e., u′ = r × p + (1 − r) × u, where r
is a system parameter. Current value of this measurement is kept in a variable
(call it “busyness” or “priority”?) of Buffer and Concept.

This allocation is managed by two complement mechanisms:

automatic: These processing unites are visited in a round-robin fashion. At
each unit, the recurring operation is repeated, according to the value of
u. For example, the number of repetition is 1 by default, but can be 0 if
u < 0.2, 2 if u > 0.7, and 3 if u > 0.9.

deliberate: The related operations (observe, consider, ponder) can become
goals and be invoked as mental operation by the system itself.

[Global evaluations]

The global evaluators are new additions to the NARS architecture. At this
stage of the design, each of them, g, will be an accumulation of certain local
measurement, m, using a weighted average g′ = r ×m + (1− r)× g, where the
updating rate r is a system parameter multiplying the priority of the item on
which m is defined. All the updates happen after a task is processed in a reason
or accept operation. Their current values will be displayed approximately in the
GUI.

The correspondence between global and local measurements is listed in the
following:

satisfaction: achieving level of a goal,

alertness: (also known as novelty) achieving level of a task that is a judgment
or a question,

busyness: priority of a task,

25

well-being: the extent a feel operator returns a value in the normal range, to
be used in implementations where the system needs to manage resources
other than time and space (such as energy) and its own body (such as
temperature).

Initially these global evaluations will be used only when a new task is ac-
cepted into the system. Later they will be used to control various operations.

4 Self-control

Operations can be executed either by NARS itself or a device or system out-
side NARS. The former is called mental operations, and the latter physical op-
erations. Examples of physical operations include commends to sensors and
actuators in a robot, which are device-specific and not discussed in this writing.

As complementation and augmentation of the automatic control mechanism
described above, NARS can use mental operations to control its own working
processes.

In principle, all the working routines listed previously for the unites can be
“operationalized,” i.e., being turned into operations executable by the system as
a decision made in reasoning, though in practice only some of them should be
handled in this way.12 At the current stage, the way to go is to associate mental
operations to the corresponding methods in the OpenNARS implementation of
NARS, so the execution of such a method will cause a task to be added into
the system’s internal experience buffer as a record of the event. On the other
hand, when a mental operation becomes a goal, it will be executed by invoking
the method. The operator and routine name may or may not be the same.

A list of built-in concepts will be created or loaded for the mental operators,
as part of the initialization of the memory. The current “built-in terms” include
(1) all mental operators, (2) the four global evaluators, (3) SELF. Each built-
in term also has the corresponding concepts created, and will be handled as
the acquired terms. Some mental operators may have innate knowledge. To
get the knowledge about the preconditions and consequences of each mental
operation, some experimental executions (operation babbling) may be necessary,
though they bring risks and dangers, besides resources expense. It is still unclear
whether operationalization can fully replace the need of random experiments.

Here is a list of operator–method associations:

believe(s), want(s), wonder(s), assess(s) associate with acceptTask(t) in
memory, where the task t is generated from the sentence s for each of the
four task type (judgment, goal, question, quest), respectively, with a high
priority value. By executing such an operation, the task selection process

12In the future, when OpenNARS is completely re-implemented, this requirement should be
carefully considered at the beginning, so the same code can be invoked both as an operation
(consciously) and as a routine (unconsciously).

26

in the buffers will be skipped, though this task will still need to be added
into the relevant concepts to interact with the beliefs there.13

tell(s), demand(s), ask(s), check(s) generate tasks like the previous group
at a specific Channel, and send the task to the system or device connected
to NARS using proper format.14

observe(channelID) associates with channelID.observe(), and carries out a
working cycle at the specified channel, and returns a task to be added into
the overall buffer.

remind(term) activates a concept, just like after accepting a task.15

compile(term) is invoked when a compound term have a large total budget
and a low simplicity (e.g., measured by and of the two). This operation
will coin an atomic term and build a similarity statement with truth-
value (1, c), where c is a systematic parameter, between the new term
and the compound. In the compound, this term-link will be handled
specially, so the compound will not be complied more than once. In the
long run, the two terms (concepts) may develop different meanings, with
the compound keeping the literal meaning, and the atomic the holistic
meaning. Eventually, one of them may be forgot, while the other is still
active.16

register(operator, command) associates the operator with a command of a
system or device connected via a Channel when NARS is running.17

feel(v) associates with the updating of the global evaluators at the end of
each working cycle. When the value is too high or too low (say, at the
top or bottom quarter), an event (e.g., feel(satisfaction)) is created, with
the value as frequency and a default confidence, then added into internal
experience. It can also be called consciously to evaluate the measurement.

13It is probably not a good idea to have a mental operation that directly calls reason(task,
belief) in the inference engine. Instead, the consequence can be expected by executing be-
lieve(s) for the belief and one of the above four for the task.

14To use these operations, NARS needs to do channel-specific high-order inference. This will
be related to knowledge acquisition and active learning. In principle, an “incoming task” for
the system itself to do becomes an “outgoing task” for someone else to do when the expected
achieving-level are higher in the latter for goals and questions, while the outward judgments
are answers to the input questions or goals, as well as preconditions for the related outgoing
goals and questions – if the system needs the help of another system, the related background
knowledge should be provided unless it can be assumed to be already known by the other.

15The operator ponder(term) is postponed to a future version. Hopefully remind(term) can
already achieve the desired results.

16Two possibilities to be compared when coining a new term for a compound, such as (a&b):
(1) like in Prolog, use an internal counter to get unique names, such as term 1204, (2) keep
the string of the compound, though omit the structure, such as ′a&b′, where the quotation
mark indicates that the term is atomic. The two have no difference for the system, but suggest
different meaning to human readers.

17The current system only allows built-in channel operations, though will allow run-time
registration in a future version.

27

As a result of temporal composition, some mental operations will be recog-
nized as causes or effects of certain events.

5 Future Works

Besides the issues mentioned in the above footnotes, there are issues to be
addressed in the future versions.

5.1 Remaining issues

There are still remaining issues to be resolved in conceptual design before im-
plementation is considered.

• By default, task derivation only generates tasks of the same type. How-
ever, there are exceptions. For instance, a judgment-task T may generate
question-task 〈?x ⇒ T 〉? when T has a low achieving level and high pri-
ority. It is related to curiosity, explanation, active learning, etc. What
needs to be decided is whether to add these derivations directly into the
inference routines with built-in triggers, or to handle them using mental
operators with learned conditions.

• The proposed operators doubt, hesitate: These operations demand a de-
crease of the confidence of a belief or desire, which cannot be handled
as revision, forgetting, or temporal projection. One possibility is to call
them in revision to penalize the contradicting premises. Another option
is to leave the function to higher-order inference, rather than to mental
operator. After all, deliberative reasoning, like in mathematics, does not
fully depend on truth-values. Here the treatment should be consistent
with how illusion and magic are handled.

• The proposed operator assume will introduce a belief without evidential
base. Though such a “groundless belief” cannot be used to resolve a ques-
tion or goal, nor to revise a grounded belief, it can be used in hypothetical
inference. One possibility is to omit the truth-value of some existing be-
liefs to explore their implications. This issue is probably related to the
“analytic truth” introduced in NAL-5, as well as to the deriving of ques-
tions of the form “〈T ⇒ ?x〉?” from “T?”. One possibility is to leave
hypothetical reasoning to explicit applying of learned inference rules, so
there will not be a need for this mental operation.

• The proposed operators count, compare, calculate: They are easy to im-
plement, but their relations with the working routines need to be studied.
This is related to the role of mathematics in thinking.

It is still unclear in what sense a set of mental operators can be considered as
“complete.” Since the completeness of NAL is argued with respect to Narsese
(“All Narsese expressible sentences are NAL derivable”), the completeness of

28

NARS probably should be something like “All NAL derivable processes are
realizable under conscious control.”

5.2 Additional topics

The following topics are also crucial for the control of NARS, and they roles
cannot be replaced by the design discussed in this report:

• education materials and procedures,

• evaluation metrics,

• configuration for special needs.

In the future, the configuration can be the result of an evolution process, so
the parameter values may move beyond the initial choices and what a system
can learn within its life-cycle.

29

References

[Hammer et al., 2016] Hammer, P., Lofthouse, T., and Wang, P. (2016). The
OpenNARS implementation of the Non-Axiomatic Reasoning System. In
Steunebrink, B., Wang, P., and Goertzel, B., editors, Proceedings of the Ninth
Conference on Artificial General Intelligence, pages 160–170.

[Isaev and Hammer, 2020] Isaev, P. and Hammer, P. (2020). An attentional
control mechanism for reasoning and learning. In Proceedings of the Thir-
teenth Conference on Artificial General Intelligence. To appear.

[Wang, 1995] Wang, P. (1995). Non-Axiomatic Reasoning System: Exploring
the Essence of Intelligence. PhD thesis, Indiana University.

[Wang, 2004] Wang, P. (2004). Problem solving with insufficient resources. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-based Systems,
12(5):673–700.

[Wang, 2006] Wang, P. (2006). Rigid Flexibility: The Logic of Intelligence.
Springer, Dordrecht.

[Wang, 2009] Wang, P. (2009). Case-by-case problem solving. In Goertzel, B.,
Hitzler, P., and Hutter, M., editors, Proceedings of the Second Conference on
Artificial General Intelligence, pages 180–185.

[Wang, 2012] Wang, P. (2012). Solving a problem with or without a program.
Journal of Artificial General Intelligence, 3(3):43–73.

[Wang, 2013] Wang, P. (2013). Non-Axiomatic Logic: A Model of Intelligent
Reasoning. World Scientific, Singapore.

[Wang and Hammer, 2018] Wang, P. and Hammer, P. (2018). Perception from
an AGI perspective. In Iklé, M., Franz, A., Rzepka, R., and Goertzel, B.,
editors, Proceedings of the Eleventh Conference on Artificial General Intelli-
gence, pages 259–269.

[Wang et al., 2020] Wang, P., Hammer, P., and Wang, H. (2020). An architec-
ture for real-time reasoning and learning. In Proceedings of the Thirteenth
Conference on Artificial General Intelligence. To appear.

[Wang et al., 2016] Wang, P., Talanov, M., and Hammer, P. (2016). The emo-
tional mechanisms in NARS. In Steunebrink, B., Wang, P., and Goertzel,
B., editors, Proceedings of the Ninth Conference on Artificial General Intel-
ligence, pages 150–159.

30

