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Abstract

This paper proposes a new approach toward natural language pro-
cessing in a general-purpose intelligent system. The major features that
differs this approach from the traditional ones are: natural language un-
derstanding and production are not carried out by a separate module in
the system, but by the reasoning-learning mechanism responsible for all
kinds of cognitive functions; furthermore, when a sentence in a natural
language is processed, its syntactic, semantic, and pragmatic aspects are
taken into consideration altogether. This approach has been formalized
in the form of a logic, and partially implemented as a reasoning system.
Some preliminary results are introduced and discussed.

1 Two Chomskyan Assumptions

1.1 The modularity of language processing

Since the very beginning of the study, natural language processing (NLP) has
been recognized as a major aspect of artificial intelligence (AI). For example, by
proposing his test for machine intelligence [Turing, 1950], Alan Turing implicitly
assumes that the existence of other cognitive functions needed by intelligence
can be recognized in a system’s language performance.

Though the ability of using natural languages is widely acknowledged as nec-
essary for (human-like) intelligence, its relation with other cognitive functions
(such as perception, reasoning, learning, and action) is a controversial topic.
Two well-known positions are represented by Noam Chomsky and Jean Piaget,
respectively, and their opinions are contrasted in a debate in 1975 participated
by them and some other researchers [Piattelli-Palmarini, 1980]. One key topic
of the debate is the relation between language and intelligence. According to
Chomsky, human language competence is basically innate and modular, as a
language instinct in the a form of a “universal grammar” hard-wired into the
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human brain. On the contrary, Piaget believes that languages are learned from
experience as other human knowledge, using the general-purpose learning mech-
anism of the human mind.

In cognitive science, this debates continues in various forms, though in
AI, the Chomskyan approach has been dominating the field of natural lan-
guage processing (NLP). The existing NLP research projects usually aim at
the building of NLP systems or modules that do not depend on the other
cognitive functions, though the resulting system can be integrated with other
functions, serving as an “NLP interface” of the overall system to the outside
[Allen, 1994, Jurafsky and Martin, 2009, Russell and Norvig, 2010]. Even when
functions like learning and reasoning become necessary, they are customized to
work within the NLP module. Consequently, NLP is handled as independent to
the other fields of AI. Only in a very small number of projects is NLP treated
uniformly with other functions, such as knowledge representation and reasoning
[Shapiro and Neal, 1982].

This modular treatment of NLP has several reasons. Outside AI, it is
from the Chomskyan tradition in linguistics, and the philosophical opinion
that the mind has a modular architecture [Fodor, 1983]. As shown in the
Chomsky-Piaget debate [Piattelli-Palmarini, 1980], though the Piagetian ap-
proach is philosophically appealing and has supporting evidence from develop-
mental psychology, it has not provided a detailed constructive explanation on
how natural languages are processed by a general-purpose cognitive process.
Inside AI, the mainstream has turned away from the study of versatile and
multifunctional systems, and focused on domain-specific and problem-specific
functions, which leads to serious fragmentation of the field [Brachman, 2006].
Though many researchers may agree that NLP should depend on other cogni-
tive functions, they usually consider the isolated research on NLP a necessary
simplification at the current stage.

1.2 The autonomy of syntax, semantics, and pragmatics

Another fundamental assumption in linguistics established by Chomsky is the
opinion that syntax, semantics, and pragmatics are autonomous to each other,
and should be studied in that order. In particular, the syntactic structure of a
sentence in a natural language can be analyzed without considering its meaning
and usage. According to this opinion, the language competence of a human
being is partly represented by a grammar, similar to how a formal language
is specified. Equipped with such a grammar, the comprehension process of a
sentence includes the parsing of the sentence that maps the linear sequence of in-
put words into a tree structure for internal representation. After that, semantic
analysis will determine the meaning of the words and the sentence. Eventually,
pragmatic analysis will determine how to use the sentence, by considering the
goals of the speaker and the listener, the current context, and other factors
[Chomsky, 1957, Dik, 1978].

Though this opinion became popular and influential in linguistics, it has
strong competitors there. For instance, Dik’s “functional grammar” is based on
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the opposite assumption that “pragmatics is the all-encompassing framework
within which semantics and syntax must be studied; semantics is subservient
to pragmatics and syntax to semantics; the priorities run from pragmatics via
semantics to syntax” [Dik, 1978]. Similarly, cognitive linguistics assumes “gram-
mar is conceptualization” and “knowledge of language emerges from language
use” [Croft and Cruse, 2004]. The relation between semantics and pragmatics
has become a hot topic in recent years, too, where the key topic is whether, or
to what extent, semantics is autonomous to pragmatics [Szabó, 2005].

Once again, though the Chomskyan assumption has been challenged in lin-
guistics, it has been dominating the NLP study in AI. Most of the projects
carries out language understanding in the order of syntax first, then seman-
tics, and finally pragmatics, where the first step depends on the existence
of a grammar. Even the statistical approach of NLP, which is usually per-
ceived as anti-Chomsky, makes the same assumption, though it takes a gram-
mar to be probabilistic and empirically acquired [Manning and Schütze, 1999,
Jurafsky and Martin, 2009]. There have been some attempts to use “meaning-
driven rules” in syntactic analysis [Schank, 1980], but such attempts have never
become mainstream.

1.3 A uniform approach

As mentioned above, the two Chomskyan assumptions — the modularity of
language processing and the autonomy of syntax, semantics, and pragmatics —
are under debate in cognitive science, but are often taken as self-evident in AI.
A major reason for this is the lack of alternative solutions.

The main objective of this article is not to continue the theoretical discussion
of the two assumptions, but to introduce a new approach toward NLP where
the two assumptions are rejected. This approach does not target precisely on
NLP, but treats it as part of a larger goal, that is, to build a computer system
with human-like intelligence, which has been called “artificial general intelli-
gence” (AGI) in recent years to distinguish such an objective from the conven-
tional AI, which is domain and problem specific [Goertzel and Pennachin, 2007,
Wang and Goertzel, 2007].

In the following, I will explain the NLP-related capability in NARS, an
AGI project developed in the framework of a reasoning system [Wang, 2006,
Wang, 2013]. NARS is based on the assumption that intelligence is the ability
for a system to adapt to its environment while working with insufficient knowl-
edge and resources [Wang, 2011]. It means that the system depends on finite
capacity in information processing, works in real time, and is open to novel
tasks and knowledge. Because of this assumption, NARS is very different from
the traditional reasoning systems in several fundamental aspects.

The basic ideas of NLP in NARS can be summarized as the following:

• To represent linguistic knowledge in the same form as other types of knowl-
edge, with various levels of abstraction, so that morphological, lexical, and
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grammatical knowledge are unified, and are directly associated with se-
mantic and pragmatic knowledge.

• To obtain linguistic knowledge from multiple forms of inference, including
deduction, induction, abduction, and revision, so it can be derived from
the system’s experience in language usage.

• To use linguistic knowledge selectively in NLP tasks to achieve scalability
and context-sensitivity, according to their records in usefulness and rele-
vance to the current context, so as to capture the fluid nature of meaning.

• To carry out NLP tasks as other cognitive tasks, using the same domain-
independent reasoning-learning mechanism, so as to unify NLP into a
model of general intelligence.

NARS is an open source project with demonstrations and working examples.
Given the length restriction of this article, it is impossible to describe all aspects
of NARS in detail here. In the following, only the aspects of the system that are
directly related to NLP are described. For the other aspects of the project, see
[Wang, 2006, Wang, 2013] and other publications, many of which are available
at the author’s website1.

2 Knowledge Representation in NARS

2.1 Terms and statements in Narsese

NARS uses a formal language, dubbed Narsese, for internal representation and
external communication. It is a term-oriented language and belongs to the
term logic school (which uses subject-copula-predicate sentences and syllogistic
rules), rather than the predicate logic school (which uses predicate-arguments
sentences and truth-functional rules) [Wang, 2006].

The basic component of Narsese is a term, an identifier that names a con-
cept. A term is a recognizable entity in the system’s (internal and external)
experience, that is, it is whatever the system can recognize or name. In its
simplest form, an atomic term is represented by a sequence of characters from
an alphabet, such as that of English.

A Narsese statement relates a few terms to each other, and its basic form is an
inheritance statement “S → P”, where ‘S’ is the subject term, ‘P ’ the predicate
term, and ‘→’ the inheritance copula, which is a reflexive and transitive relation
between two terms. Intuitively, the statement says that S is a specialization of
P , and P is a generalization of S. For example, knowledge “A robin is a bird”
can be represented as “robin → bird” in Narsese. A variant of inheritance is
the similarity copula, ‘↔’, which is reflexive, transitive, and symmetric. For
example, knowledge “A boat is just like a ship” can be represented as “boat↔
ship”.

1http://www.cis.temple.edu/~pwang/
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To express complicated content in a term-oriented language, Narsese utilizes
compound term of various types, each of which is formed from some component
terms by a term connector that serves a logical function. They include

Sets. A term can (though does not have to) be a set with its instances or prop-
erties enumerated. Term {Pacific, Atlantic, Indian,Antarctic, Arctic} is
an extensional set, and it can be used in similarity statement “{Pacific,
Atlantic, Indian,Antarctic, Arctic} ↔ ocean” to list the oceans; term
[red, round] is an intensional set that can be used in “apple→ [red, round]”
to express “Apples are red and round”.

Intersections and differences. A compound term can be specified using the
instances (or properties) of existing terms. Term (bird ∩ [black]) is an ex-
tensional intersection representing “black bird”, while term (bird−[black])
is an extensional difference representing “non-black bird”. The intuitive
meaning of the intersection and difference connectors are similar to their
counterparts in set theory, though not identical to them.

Products and images. Non-copula relations can be expressed by inheritance
statements. Knowledge “Cats eat fish” can be equivalently represented as
inheritance statements “(cat × fish) → food”, “cat → (food / fish)”,
and “fish→ (food /cat )”. Here (cat×fish) is a product that represents
the relation between “cat” and “fish”, (food / fish) is an extensional
image that represents “things that take fish as food”, and (food /cat ) is
an extensional image that represents “things that cats take as food”.2

Statements. Narsese allows a statement to be used as a compound term to
form a “higher-order” statement. For instance, knowledge “John knows
that the Earth is round” can be represented as “{John × ({Earth} →
[round])} → know”, where know is a relation between a cognitive sys-
tem John and a statement “{Earth} → [round]”, and this knowledge
itself can be represented in Narsese as “know → (([cognitive]∩ system)×
statement)”.

Compound statements. Similar to the treatment in propositional logic, com-
pound statements can be composed from simpler statements, using state-
ment connectors conjunction (∧), disjunction (∨), and negation (¬). Fur-
thermore, two “higher-order” copulas are defined between statements: the
implication copula, ‘⇒’, intuitively stands for “if-then”, and the equiva-
lence copula, ‘⇔’, for “if-and-only-if”, though they are not defined exactly
as in propositional logic.

Beside atomic and compound terms, Narsese also has several special types
of terms:

2Here the image connectors are used in the infix form, while in the previous publications
on NARS they are often used in the prefix form. There are no difference between the two
forms except in display format.
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Variable. A variable term stands for another term. An independent variable
is identified with the prefix $ and can be substituted by any term (under
certain condition); an dependent variable is identified with the prefix #
and can substitute any term.3

Event. An event is a statement whose truth-value has a specified temporal
duration, such as “The door is open”.

Operation. An operation is an event that can be realized by the system itself,
such as “To open the door”.

Events and operations are described in detail in [Wang, 2013] and omitted here.
They are mentioned merely to show that Narsese can consistently represent
declarative, episodic, and procedural knowledge, in a way that is similar to
logic programming [Kowalski, 1979].

2.2 Semantics of Narsese

While the traditional “mathematical logic” was invented to formalize theorem
proving in mathematics, NARS is built to capture the “laws of thought” in ev-
eryday thinking. A fundamental difference between these two types of reasoning
is that in the former, the reasoning systems derive implied truths (the theorems)
from the assumed truths (the axioms), while in the latter, all knowledge of the
system is summarized experience, so may be revised by new experience. Ac-
curately speaking, no empirical knowledge can be considered as “axioms” that
cannot be challenged by new evidence. However, it does not mean that every
statement is equally justifiable and acceptable. Instead, it means that the ba-
sis of justification cannot be a constant set of axioms, but the ever-expanding
experience of the system. This is why the system is named “NARS”, for “Non-
Axiomatic Reasoning System”, and why its major semantic notions “meaning”
and “truth-value” are specified according to an “experience-grounded seman-
tics” (EGS) [Wang, 2005, Wang, 2006].

In this article, EGS is only informally introduced. Roughly speaking, the
“experience” of NARS consists of a stream of Narsese sentences coming into
the system during its life cycle. At a given moment, for a given statement the
past experience may provide positive (agreeing) or negative (opposing) evidence.
EGS defines a measurement of “amount of evidence” for an idealized (binary)
version of Narsese, so, in principle, the amount of positive and negative evidence
for the statement is represented by two non-negative numbers w+ and w−,
respectively, and their sum is the total amount of evidence w the system has for
the statement at that moment.

The truth-value of the statement is 〈f, c〉, a pair of real numbers in [0, 1],
and it is formally defined according to available evidence. Here f is “frequency”

3The independent/dependent variables are intuitively similar to the universal/existential
variables in predicate logic, respectively, though the accurate definitions are different. The
notations for variable terms in this paper are displayed differently from those in [Wang, 2013]
and some other publications, though there is no difference in their processing.
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and defined as f = w+/w, and c is “confidence” and defined as c = w/(w + 1).
Therefore, frequency is the proportion of positive evidence among all available
evidence, so is intuitively similar to probability, though it is fully defined on
past experience, and does not necessarily converge to a limit value. On the
other hand, confidence is the ratio of the amount of evidence at the current mo-
ment compared to that after the coming of a new piece of evidence with a unit
amount, and therefore indicates the sensitivity of the belief to new evidence, or
its stability. At the beginning, when the system knows nothing about the state-
ment, its c is 0; with the coming of evidence, c increases monotonically, though
in theory it never reaches its upperbound 1. Therefore NARS will never be
“absolutely sure” about any of its empirical knowledge, and all of its knowledge
is revisable by new evidence, with different easiness.

In NARS, the meaning of a term is neither determined by “the object it
refers to”, or by a given “definition” or fixed frame with slots and values, but is
defined by its role in the system’s experience. If we see the knowledge of NARS
as a graph, with the terms as vertices and statement as edges, then the meaning
of a term is specified by all the edges connecting the term to other terms. This
meaning is “experience-grounded” in the sense that all the connections are built
according to the experience of the system, so in principle may change over time.

2.3 Linguistic knowledge in Narsese

Since a “term” is just a name of an internal data structure of the system, and
does not require a predetermined denotation or definition, it can be used to
represent any type of entities or patterns. In the previous examples, terms
like bird and fish are amodal categories, and English words are used as their
names to associate them to the corresponding human concepts, though they
can be equivalently named T3721 or niao, since their meaning have little to
do with their names, but is determined by their relations with other terms.
A term can even name a sensation or operation of the system that does not
exactly correspond to any human concept. Therefore, all linguistic knowledge
is represented by terms and statements, too. In the following, bold font will be
used to indicate words in English, such as bird and fish.

The semantic relation between a word (like bird) and the category it rep-
resents (like bird, T3721, or niao) can be handled in the same way as other
conceptual relations, i.e., by product and image introduced before, such as
“{bird×bird} → represent”. In general, represent is a many-to-many relation
between a word and a category. So the same word can represent different cate-
gories, and therefore the above statement can coexist with “{bird×chicken} →
represent” and “{fowl×bird} → represent”. Furthermore, each instance of the
relation is “true to a degree”, as indicated by its truth-value defined previously.
In this way, the system can keep multiple possible representation relations, while
still know what is the usual choice of word (for a given category) or category
(for a given word).

Similarly, the syntactic relations among words, phrases, and sentences can
be represented in Narsese as other relations. For example, “ ‘Cats eat fish’ is an
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English sentence” in Narsese is statement “{Cats×eat×fish} → ([English]∩
sentence)”. The meaning of larger linguistic larger units (such as phrases,
sentences, texts) can be expressed using the represent relation, too, though the
related terms are usually compounds with internal structures, as in statement
“{(Cats × eat × fish) × ((cat × fish) → food)} → represent”, where food
is a relational category where the first argument takes the second argument as
food. From these relations, other relations, such as co-occurrence of the words
in sentences, can be derived.

Syntactic categories can be expressed as terms in Narsese, too, like in state-
ment “{fish} → noun”. Again, this statement is true to a degree, and can
coexist with “{fish} → verb”. Similarly, “The past tense form of ‘want’ is
‘wanted”’ can be represented as “{want×wanted} → past-tense”.

Morphological knowledge about words and morphemes is expressed like syn-
tactic knowledge. For example, affix can indicate a 3-argument morphological
relation as exemplified by “{want× ed×wanted} → affix”. Using indepen-
dent variable $x and dependent variable #y, the system can represent knowledge
“A verb with ‘ed’ added becomes its past tense form” as

({$x} → verb)⇒ (({$x× ed×#y} → affix) ∧ ({$x×#y} → past-tense))

Obviously, this statement will have many counterexamples, which will be counted
as its negative evidence, and are stored separately, such as “{go × went} →
past-tense”.

In this way, the system’s linguistic knowledge exists in various levels of gen-
erality, and includes both general patterns and special cases. The difference
between linguistic and non-linguistic knowledge are not in their format, but in
their content, since the latter includes terms specific to a natural language (such
as fish) or natural languages (such as verb).

In summary, like other terms in NARS, the meaning of a word like fish or
want is determined by its experienced relations with other terms (i.e., what the
system has learned about this word), and these relations can be either semantic
or syntactic (even pragmatic, like Hello), according to the nature of the relation
involved.

3 Inference Rules in NARS

3.1 Syllogistic rules

Using a term logic, NARS utilizes syllogistic rules. Such a rule takes two
premises (which contain a common term) to derive a conclusion (between the
other two terms). When the copula involved is inheritance, there are three basic
syllogistic inference rules:

deduction abduction induction
first premise M → P P →M M → P

second premise S →M S →M M → S
conclusion S → P S → P S → P
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These rules are named using the terminology introduced by C. S. Peirce
[Peirce, 1931], though the exact definitions of the rules in NARS are not the same
as his. In NARS, the deduction rule extends the transitivity of the inheritance
copula from binary to many-valued, while the induction rule and the abduction
rule can be seen as “reversed deduction”, obtained from the deduction rule by
exchanging the conclusion with a premise, then renaming the terms.

Each inference rule has an associated truth-function to calculate the truth-
value of the conclusion from the truth-values of the premises. The truth-
functions are designed to decide the truth-value of the conclusion according
to the evidence provided by the premises alone. In this way, the inference rules
in NARS are still “truth-preserving”, though according to EGS, truth-value is
evaluated with respect to the system’s past experience, neither to the state of
affairs in the world, nor to the future experience of the system.

The derivations of the truth-functions can be found in [Wang, 2013] and
some other publications about NARS. For the current discussion, it is enough
to know that the deduction rule is strong, as the confidence value of its conclusion
is relatively high (it can approach 1), while the other two rules are weak, as they
only produce conclusions with low confidence values (less than 0.5). If the truth-
values are omitted and the rule is applied among binary statements, the strong
rules are still valid, but the weak rules are not.

When the inheritance copula ‘→’ in the above rules is replaced by the im-
plication copula ‘⇒’, the inference rules remain valid in NARS:

deduction abduction induction
first premise M ⇒ P P ⇒M M ⇒ P

second premise S ⇒M S ⇒M M ⇒ S
conclusion S ⇒ P S ⇒ P S ⇒ P

This group of rules is isomorphic to the previous group, in the sense that the
truth-functions are the same, though the meaning of the sentences is different,
due to the use of different copulas. When one term is taken to mean “something
that the system knows” and is implicitly represented, a third group of rules can
be obtained:

deduction abduction induction
first premise S ⇒ P P ⇒ S P

second premise S S S
conclusion P P S ⇒ P

This last group is closer to how these three types of inference are specified in the
current AI research, in the framework of propositional logic [Hobbs et al., 1993,
Flach and Kakas, 2000]. The above syllogistic rules show a common principle
of NARS: in its conclusion, each rule summarizes the evidence provided by the
premises, and the conclusion usually contains compound terms that are not in
the premises.

Through substitutions, variable terms may be eliminated or introduced in
reasoning. For example, from “{Tweety} → [yellow]” and “{Tweety} →
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[yellow]” the system derives “($x → bird) ⇒ ($x → [yellow])” by induction,
with a relatively low confidence value.4 Similarly, if the system is initially given
“($x → bird) ⇒ ($x → [yellow])” and “{Tweety} → [yellow]”, it will derives
“{Tweety} → bird” by abduction, also with a relatively low confidence value.
Finally, from “($x→ bird)⇒ ($x→ [yellow])” and “{Tweety} → bird”, it will
derives “{Tweety} → [yellow]” by deduction, with a relatively high confidence
value. This relationship among deduction, induction, and abduction was the
same as suggested by C. S. Peirce [Peirce, 1931], though he didn’t have a nu-
merical truth-value involved in the inference, and the details of formalization in
NARS is also different from Peirce’s approach.

3.2 Compositional and structural rules

The terms S, P , and M in the syllogistic rules can be either atomic or com-
pound, since their internal structures are ignored in these inference steps. NARS
has other inference rules sensitive to the structure of compound terms, so can
compose or decompose compound terms. This is one way of the system to
“create new concepts”.

For example, from “{Tweety} → [yellow]” and “{Tweety} → bird”, a com-
positional rule derives “{Tweety} → ([yellow] ∩ bird)”. Different from the syl-
logistic rules, this rule produces conclusions that have a term ([yellow] ∩ bird)
that is not in the premises, which may or may not be among the terms already
known to the system — if not, then it is a new concept, otherwise it is a new
relation of the known concept.

As explained before, in NARS the meaning of a term is determined by its
(available) relations with other terms. Consequently, the inference activity more
or less changes the meaning of the terms involved, though all the inference
are defined formally. As in the above example, assume initially the system
knows nothing about the term {Tweety} except “{Tweety} → [yellow]” and
“{Tweety} → bird”, then the above inference makes the meaning of {Tweety}
richer by adding a third relation into it, though it is derived from the other two.

For a compound term like ([yellow] ∩ bird), the situation is more compli-
cated. The system not only know its semantic relation with {Tweety}, but also
its syntactic relations with its components, [yellow] and bird. Different from
semantic relations (which are learned and multi-valued), syntactic relations in
Narsese are defined and binary. Since there is only a constant number of term
connectors like ‘∩’, the system instinctively knows how to handle them (i.e.,
their meaning is embedded in the related inference rules). Consequently, the
meaning of a compound term is determined both by its semantic relations and
its syntactic relations.

If the system is initially given “{Tweety} → ([yellow] ∩ bird)” and the
syntactic relation between bird and ([yellow] ∩ bird) is taken into account, a
decompositional rule will be invoked to derive “{Tweety} → bird”. In this

4From the same premises, induction also derives “($x → [yellow]) ⇒ ($x → bird)”,
“bird → [yellow]”, and “[yellow] → bird”. The difference among them is discussed in
[Wang, 2013] and some other publications on NARS. The situation for abduction is similar.
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case, ([yellow]∩ bird) is understood literally, as birds that are yellow. For every
term connector, there are rules that form the corresponding compound terms,
as well as rules that decompose them into their components.

However, compound terms are not always handled in this way. According
to EGS, the meaning of compound terms in NARS is “semi-compositional”,
that is, the meaning of a compound term is partially, though not completely,
determined by the meaning of its components plus the meaning of the term
connector. In the above inference step, ([yellow] ∩ bird) is used “literally”, i.e.,
according to its syntactic relation with its components. However, the compound
term can be used by other inference rules (like the syllogistic rules) as a whole,
without considering its internal structure. Consequently, it may end up with
some meaning that cannot be reduced to the meaning of its components. For
example, under certain circumstance the system may form the belief that yellow
birds have certain unique properties that are shared neither by other birds nor by
other yellow things. Compound terms with such unique properties or instances
will gradually become independent of their components, and are more and more
often used like atomic terms.

When a natural language is processed in NARS, this semi-compositionality
will be extended from Narsese to that language. It means that a phrase or sen-
tence in English will be initially understood as a structure consisting of words,
but when some of them gradually obtain enough uniqueness from the experience
of the system, they will be more and more often treated as irreducible. Whether
a compound term should be treated as a structure becomes a matter of degree.
In language understanding, the decomposition of sentence stops when a mean-
ingful and plausible semantic representation is obtained, which may happen
before the word level is reached. This treatment can explain the productivity
and systematicity of languages, as well as the forming and using of idioms and
proverbs.

3.3 Revision and choice rules

The previous description shows some similarity between NARS and statistical
NLP, since both use statistical information of linguistic materials. However, the
two approaches also have important differences. One major difference is that
statistical (or probabilistic) approaches usually assume the system gets all the
relevant information at the beginning, then do statistical inference on them.
In this way, all the probabilistic evaluations in the model are based on the
same chunk of evidence, which is implicitly expressed. On the contrary, NARS
works in real time, which means new evidence arrives from time to time, and
the system must make judgments under time pressure, which forces it to omit
relevant information when a conclusion is reached. Therefore, in NARS each
judgment is made with its own evidential base — this is what the confidence
value measures.

One direct consequence is that the truth-values in NARS are not necessarily
consistent, in the sense that at the same time in the system the same state-
ment can be given multiple truth-values, according to different evidential bases.
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Whenever such a pair of inconsistent judgments are identified, the revision rule
derives a judgment based on the pooled evidence [Wang, 2009]. This rule serves
the functions of evidence accumulation and inconsistency resolution, and allows
the system to tolerant the conflicts among its beliefs.

Narsese consists of not only declarative sentences that represent the system’s
beliefs (also called judgments or knowledge), but also interrogative sentences and
imperative sentences that represent the system’s questions and goals, respec-
tively. The representation and processing of goals are explained in [Wang, 2012,
Wang, 2013] and will not be discussed in this article. Here we only describe the
processing of questions.

Formally, in Narsese a “question” is a statement without a truth-value. One
type of question contains query variables to be instantiated to make the state-
ment true, while another type does not contain such variables and only asks a
truth-value to be decided. A question can be answered by a matching belief the
system has, but since in NARS every belief is true to a degree, no answer can
be perfect. What the system does is to find the “best possible” answer.

The major tasks in NLP, language understanding and language generation,
become question-answering tasks in NARS that contain Narsese sentence like
“{sentence× ?x} → represent” and “{?x× term} → represent”, respectively.
In the former, the task is to find a term that the given sentence represents;
in the latter, the task is to find a sentence that represents the given term. In
Narsese, a term with a ‘?’ prefix is a query variable to be instantiated. On the
other hand, “{sentence × term} → represent” is a question for the system to
evaluate the truth-value for the proposed relation between the given sentence
and term.

If for a given question there are more than one answer, the choice rule is
invoked to decide which one is better. For the variable-instantiation type of
question, the answer with a higher expectation value (which is a function of fre-
quency and confidence) is usually chosen5; for the For the truth-evaluation type
of question, the answer with a higher confidence) value is chosen [Wang, 2009].

For a given question, beside directly searching for an answer, NARS also
uses the inference rules backward to produce derived questions, whose answers
will lead to the answers of the original question.

One major topic in NLP is ambiguity. While most approaches attempt to
interpret every sentence in a unique way, in NARS it is possible for the same
sentence to be related to multiple terms as “its meaning”. The choice rule will
select the best candidate whenever a unique answer must be chosen, though in
the meanwhile, the other inferior candidates may still more or less contribute
to the system’s understanding of the sentence.

In summary, the inference rules of NARS form a general-purpose reasoning
and learning mechanism, by which the system can summarize its past experience
into beliefs, which provide generalization and abstraction of the experience to
various levels, and can be use to guide the system’s behavior when a new problem
is solved. This reasoning and learning mechanism handles syntactic, semantic,

5There are other factors involved, such the simplicity and relevance of the answer.
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and pragmatic knowledge about a natural language in a unified manner, just
like how non-linguistic knowledge is handled.

4 Memory and Control in NARS

4.1 NARS overview

As a reasoning system, NARS can accept three types of tasks: (1) a piece of
new knowledge to be absorbed, (2) a question to be answered, and (3) a goal to
be achieved. A task is carried out by interacting with the system’s beliefs, which
are the knowledge already absorbed by the system. Both tasks and beliefs are
represented as sentences in Narsese, though they are treated differently in the
system. At any moment, the system usually have multiple tasks, and a much
larger number of beliefs.

As a finite system working in real-time and open to novel problems, NARS
can accept a new task at any moment, and there is no restriction on the content
of the task, as far as it is in a form that is recognizable by the system. The
“native language” of the system is Narsese, with its grammar built into the sys-
tem. NARS can learn an arbitrary natural language by treating its words and
sentences as special terms, and its linguistic knowledge as special statements,
as described previously.6 In NARS, the primary function of a natural language
is communication, and other functions, like knowledge representation, are sec-
ondary, since most of the system’s knowledge are not represented using natural
languages, but in Narsese.

Since there is no restriction in content, NARS accepts a task even when the
system does not have the relevant knowledge to provide a satisfactory solution
for it. Instead, the system always attempts to provide the best solution it can
find using available beliefs.

Ideally, to get “the best solution according to available knowledge” means
to let the task interact with every relevant belief. However it is impossible in
NARS, given its assumption on the insufficiency of resources — there are new
tasks coming from the outside environment, as well as derived from existing
tasks, and each of them requires to be processed as soon as possible. Conse-
quently, the system has to dynamically allocates its computational resources
(mainly time and space) among the tasks, so each of them will only interact
with some of the beliefs. The resource allocation mechanism is similar to how
an operating system manages the resources of a computer system, though in
NARS the processing of tasks are not isolated from each other, and each of
them does not follow a predetermined algorithm, nor ends according to certain
predetermined criterion.

Since each interaction between a task and a belief corresponds to an inference
step with the two as premises, the life time of NARS consists of a sequence
of “working cycles”, each of which takes a roughly constant time, and carries

6NARS can be further extended to interact with the environment through a sensorimotor
mechanism [Wang, 2006, Wang, 2013], though that topic will not be discussed in this paper.
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out an inference step plus some input/output activities. The processing of a
specific task is a sub-sequence that may interweave with the other tasks, and
may have shared steps with the others. Given the ever-changing nature of the
environment, the accurate processing path and result for a given task may be
practically neither predictable nor repeatable, except in very special situations.

Furthermore, in NARS a task does not have a predetermined “computational
complexity”, since its time and space expense not only depends on the content of
the task (i.e., the corresponding Narsese sentence), but also on the time pressure
attached to it, as well as the current situation within the system. This issue
will be further explained in the following.

4.2 System architecture

NARS consists of the following major components:

• a memory containing all beliefs and tasks,

• an inference engine deriving new tasks from a given task–belief pair,

• a task buffer keeping new (input or derived) tasks,

• one or more input/output channels connecting the task buffer and the
outside environment,

• a control center managing the working process.

As mentioned previously, NARS uses a term logic, which has the nice prop-
erty that two sentences can be used as premises in an inference step only when
they share a common term. To take advantage of this feature, in NARS the
tasks and beliefs are accessed via concepts, according to the terms in them. For
example, a task or belief with the statement “robin→ bird” as content can be
accessed directly from the concepts named by atomic terms robin and bird, as
well as compound term (robin→ bird). Consequently, every inference step oc-
curs within some concept named by the shared term, and sentences in different
concepts will not directly interact with each other. Furthermore, this property
guarantees the semantic relatedness of the premises and the conclusion.

In parallel to the situation of term, the meaning of a concept is defined by
its experienced relationship with other concepts. For example, the meaning of
concept bird at a certain moment is determined by what the system knows and
is thinking about the term bird. Restricted by insufficient resources, NARS
cannot take all existing beliefs into account when processing every task, but
has to use them selectively. Therefore, the current meaning of a concept is
determined by a subset of the tasks and beliefs existing in the system that form
the full meaning of the concept.

An important feature that distinguishes NARS from many other categorical
models is that the meaning of a concept is not fixed, but fluid and changes
over time [Wang and Hofstadter, 2006]. This change takes two major forms:
the long-term changes in the full meaning, and the short-term changes in the
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current meaning. These changes are not arbitrary, but are determined by the
system’s experience and the current context.

Now we can say that NARS gets “new concepts” in several ways: it can
accept a novel term from its environment, create one using its inference rules,
or give new meaning to an existing term. The initial meaning of a concept
is usually simple, though it may become complicated as the system gets more
related experience. In particular, the meaning of a composed concept may
gradually become different from its literal meaning, which is directly formed
from the meaning of its components.

As a special type of term (and concept), linguistic terms (words, phrases,
sentences, etc.) have the same property. In NARS, the “meaning” of a word
depends on what the system knows about it, as well as what associations of the
word are brought into consideration at the moment.

4.3 Working cycle

As a reasoning system, the running of NARS consists of repeated working cycles.
In each cycle, the following steps are taken:

1. Select a concept from the memory,

2. Select a task from the concept,

3. Select a belief from the concept,

4. Derive new tasks from the selected task and belief and put them into the
buffer,

5. Return the belief, task, and concept with feedback information,

6. Preprocess the tasks in the buffer.

All the selections in the first three steps are probabilistic and priority-based.
In NARS every data item (belief, task, and concept) has a priority value at-
tached, which is proportional to the probability for it to be selected at the
moment. Initially, every input task has the option to include a priority value
to indicate its relative urgency, specified by the user or other system providing
the task. In this way, the user can influence (though not decide) how soon this
task will be processed. Beside this optional value, the system will also evaluate
its quality so as to assign an initial priority to the task. If the preprocessing of
the task triggers the creation of related belief and concept, their initial priority
will be decided accordingly. Then, each time an item is selected, its priority will
be adjusted according to the immediate result of the inference step. In the long
run, the priority value of an item is decided by the following major factors:

its intrinsic quality, such as the clarity and simplicity of a concept, or the
confidence of a judgment in a task or belief;

its performance history, that is, whether the item has been useful to the
system in the past;
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its immediate relevance, that is, whether it is directly related to the current
situation, as reflected in the existing tasks.

Without describing all the details, the above introduction explains that NARS
always tries to use its available resources in the most efficient manner, judged
according to its own experience. Due to the assumption of insufficient knowl-
edge and resources, there is no way to promise any absolute correctness or
optimality, but the system is not treating every possibility as equal. While the
inference rules decide what can be derived in the system, the memory struc-
ture and control strategy selectively turns some possible derivations into actual
derivations.

At the end of a working cycle, the buffer may have some tasks accumulated,
either from the input channels, or from the inference activity. Each of them will
be processed briefly:

• Duplicated tasks are merged,

• Conflict judgments are handled by the revision rule,

• Matching question and judgment are checked by the choice rule to see if
the judgment provides the best-so-far answer to the question,

• New tasks satisfying certain conditions will become added into the corre-
sponding concepts,

• New tasks satisfying certain conditions will trigger the creation of corre-
sponding concepts or beliefs,

• New tasks satisfying certain conditions will become output, sending to the
user or another system,
. . . etc.

The outgoing tasks of NARS are of the same types as the incoming tasks,
that is, a task can be a judgment (conclusion, answer), a question, or a goal.
Consequently, multiple NARS-like systems can cooperate via communication
when solving problems, and the language they use can either be Narsese or an
acquired (natural or artificial) language.

Since NARS is designed to depend on a constant amount of storage space,
the number of concepts and the number of tasks and beliefs within each concept
have upper bounds. When the memory (or a concept) is “full”, the concept (or
task/belief) with the lowest priority value is removed. This policy and the decay
that happens to all priority values form a forgetting mechanism. Consequently,
the system not only constantly gets new tasks, beliefs, and concepts from the
environment and the reasoning process, but also loses some old ones from time
to time. In a relatively stable environment, the system should gradually get
some useful concepts that each has an essential meaning from which the most
of the other relations can be derived.

At the beginning of a life cycle of the system, by default the system’s mem-
ory starts empty, though for practical applications it may start with preloaded
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content. During a life cycle, the content of the memory changes constantly, as
the result of new experience and reasoning activity, and the internal states of
the system never repeat. Therefore, if a task is given to the system at different
moments of its life cycle, it may be treated more or less differently. That is
why at the problem-solving activities do not follow an algorithm, and nor have
predetermined ends [Wang, 2006].

Applied to NLP, it means that the processing of each language understanding
or language generation task is determined at the run time by the available
knowledge and resources at the moment, rather than following a fixed routine
and with a constant expense.

4.4 Meaning and context

Traditionally, it was assumed that a linguistic manifestation (such as a word,
a phrase, or a sentence) has a meaning that independent of the context in
which it is used. However, such an opinion has been challenged in linguistics
[Szabó, 2005]. In logic and AI there have been attempts of formalizing context,
usually by using an additional argument c to indicate the context in which a
proposition p is true [Barwise and Perry, 1983, McCarthy, 1993]. In NLP, con-
text usually means the other texts proceeding and following the text being ana-
lyzed, as exemplified by the definition of “context-free” and “context-sensitive”
grammars [Jurafsky and Martin, 2009]. Once again, this article will not survey
the related literature, but focuses on how “context” is represented in NARS, as
well as its relation with meaning.

Though “context” is defined differently in different fields and approaches, it is
introduced, as far as this discussion goes, to capture the change in meaning and
truth-value, that is, the same word may mean differently in different situations,
and the same sentence may be true in certain situations, but false in certain
other situations. For this reason, the representation and processing of context
depends on the definition of truth and meaning, which are the main content of
a semantic theory.

As explained previously, the semantic theory of NARS is EGS, in which both
truth-value and meaning are defined as functions of the system’s experience.
Since “experience” is the input stream that expands in time, EGS provides a
natural treatment for context.

The meaning of a term in NARS is defined by its experienced relations
with other terms. At any moment, the set of beliefs directly concerning the
term consist of its general meaning, and the active beliefs (i.e., the ones with
relatively high priority values) consist of its current meaning. Though both
types of meaning change over time, it is the latter that is “context sensitive”.
Even when new beliefs are produced in a period of time, the priority among them
still changes, because certain beliefs may be activated by the related new tasks.
For example, the changes in the external environment cause adjustment of the
priority distributions, and so do the the changes in the internal environment,
such as pursuing or forgetting of goals.

The truth-value of a statement in the system is also context dependent,
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because when evaluating it, the system usually cannot take all existing evidence
into consideration, but only consider the active evidence, which is determined
by the priority distribution among the beliefs, which changes from situation to
situation.

Consequently, even when no new knowledge is obtained, the meaning of
terms and the truth-value of statements may change from time to time. Such
changes are not arbitrary, but are directly related to what the system is expe-
riencing at the moment, both in its external environment and internal environ-
ment, which can be referred to as the “context”, in which meanings of terms
and truth-values of statements are determined and used in the processing of
tasks.

On the other hand, it does not means that these is nothing “context free”
or “context independent”. As mentioned previously, in a given environment
the system may develop some concepts that have “essence” or stable mean-
ings. However, the distinction between “rigid” concepts and “fluid” concepts is
relative and a matter of degree.

The above description about the relation between meaning and context is
applicable to all terms in NARS, so it is also the case for all the terms that are
specific to a natural language. That is, what a word means may more or less be
different when the environment of the system changes. Compared to the other
approaches, this treatment of context is more general, in that

• The context of a word includes, but not limited to, the other words pro-
ceeding or following it in the text it belongs. For example, what a word
means often depends on the system’s expectations, which are not com-
pletely determined by the proceeding text.

• A context may or may not have an identifier, and transitions between
contexts may be either sudden or gradual. When a context is identified
by a term, it helps to divide a concept into sub-concepts and to specify
their boundary, though without such an identifier, the context dependency
of meaning can still be reflected in the system.

5 NLP as Reasoning and Learning

All task processing activities in NARS, including NLP as special cases, are
carried out as reasoning following inference rules. On the other hand, when the
focus is on the long-term effects of the activities, they can all be considered as
different forms of learning, since what the system does is to use the experience
to adapt to the environment.

5.1 A simple example

NARS has been formally specified and partially implemented [Wang, 2013]. Re-
cently, some preliminary experiments on NLP have been carried out in the
system. Since NARS has no built-in competence specific to for any natural
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language, the system’s NLP ability comes from learning. In principle, it is like
how a human child learns a language [Bloom, 2000, Tomasello, 2003], that is,
the learning starts from simple words, then proceeds to phrases and sentences,
with syntactic, semantic, and pragmatic knowledge learned side-by-side.

In the following, a working example processed by NARS is explained, in
a simplified form (compared with the actual form produced by NARS). More
details of these examples can be found at the author’s website.

Initially, NARS is given the following beliefs:

{cat× cat} → represent 〈1, 0.9〉 (1)

{fish× fish} → represent 〈1, 0.9〉 (2)

{{cat× eat× fish} × ((cat× fish)→ food)} → represent 〈1, 0.9〉 (3)

The meaning of these sentences has been explained before: each of the first two
associate a word to an atomic term, and the last one a sentence to a statement,
using the represent relation, for which the system has no other knowledge. At
the current stage, such given samples of represent relations provide the starting
point of NLP, though in the future some of these relations can be established by
the sensorimotor mechanism of the system, or derived from other information.

This example is set at an early stage of language learning, where sentences
are in the “telegraphic speech” form, i.e., as sequences of words. Features like
tense, plurality, and the use of capital letter have not been taken into account
yet, though in principle they can all be handled at later stages of learning.

To make the discussion simple, all the initial beliefs are given the default
truth-value 〈1, 0.9〉. According to the previous description of EGS, we see that
it corresponds to the situation where the statement has been tested nine times,
and in all cases the inheritance relation is confirmed.

Since the objective of this test is to check the capability of the grammar
rules and the inferential rules, the details of memory and control are left out.
Instead, in each inference step two premises are selected manually, and only the
relevant conclusions are mentioned in the following discussion.

From knowledge (1)-(3), the system can uses the induction rule to derive
generalized knowledge, and in the process variable terms are introduced into
the conclusions:

({$1× $2} → represent)⇒
({{$1× eat× fish} × (($2× fish)→ food)} → represent) 〈1, 0.45〉 (4)

(({$1× $2} → represent) ∧ ({$3× $4} → represent))⇒
({{$1× eat× $3} × (($2× $4)→ food)} → represent) 〈1, 0.29〉 (5)

The above conclusions will contribute to the meaning of the phrase “eat fish”
and the word “eat”, respectively. Here we can see that how far a sentence will
be generalized depends on the selection of the other premise, and the further
the generalization goes, the less confident the result will be.

At this stage, if the system gets other sample sentences with “eat fish” or
“eat” and are also mapped into the same terms, similar inductive generalizations
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will happen. The resulting beliefs will be combined by the revision rule to get
more and more confident generalizations. On the other hand, if counter exam-
ples are found, the corresponding inductive conclusions will have low frequency
values, which will also decrease the frequency values of the overall summary,
though still increase its confidence value. With the accumulation of evidence,
the repeated patterns in the language will produce linguistic knowledge with
higher and higher confidence, while all the knowledge remains revisable by new
experience.

From (4)-(5) and the following given beliefs

{dog× dog} → represent 〈1, 0.9〉 (6)

{meat×meat} → represent 〈1, 0.9〉 (7)

the system can derive the following conclusions using the deduction rule:

{{dog× eat× fish} × ((dog × fish)→ food)} → represent 〈1, 0.41〉 (8)

{{dog× eat×meat} × ((dog ×meat)→ food)} → represent 〈1, 0.26〉 (9)

These conclusions have relatively low confidence, but can still let the system
understand and produce novel sentences it never heard before, by answering
questions like

{{dog× eat× fish}× ?x} → represent ? (10)

{?y × ((dog ×meat)→ food)} → represent ? (11)

For a given question, if there are multiple candidate answers, the choice rule
will decide the best answer, as explained previously.

In this way, NARS can understand and produce novel sentences in a natural
language through reasoning, according to the linguistic knowledge it learned
from its experience. This process does not require the existence of a complete
grammar of the language, and nor is there a pure syntactic parsing process.

In this example, the only syntactic information involved is word order,
though it does not mean that this approach can only process this type of in-
formation. Since every recognizable pattern in the system’s experience can be
named by a term and stored in a concept, other linguistic relations (which can
be syntactic, grammatical, morphological, etc) are uniformly expressed as con-
ceptual relations that can be used by the inference rules.

In general, the learning of a natural language is handled just like the learning
of knowledge in other domains. The system will use the available knowledge
to organize the experience into simple, stable, and applicable patterns to be
applied to novel situations.

5.2 Comparisons and implications

The NARS approach toward NLP is fundamentally different from the other
approaches explored in AI and linguistics, though still similar to them here or
there.
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As discussed at the beginning of the article, NARS rejects the two funda-
mental Chomskyan assumptions, i.e., the modularity of language processing and
the autonomy of syntax, semantics, and pragmatics. NARS does have an in-
nate competence, but it is a reasoning-learning capacity. Narsese has a built-in
formal grammar, but it is for a logical language, which is very different from
natural languages. For instance, Narsese sentences are already in tree structure
and NARS has no innate notions of noun, verb, adjective, etc. Furthermore, in
NARS the syntactic knowledge of a natural language does not take the form of
a grammar, but associated to individual words or types of words with various
level of abstraction. When processing an input English sentence, there is no
parsing, but a reasoning process that uniformly handle pragmatics, semantics,
and syntax.

Similar to the positions taken by function grammar [Dik, 1978] and cognitive
linguistics [Croft and Cruse, 2004], in NARS language understanding starts at
pragmatics, since NLP tasks are all carried out to satisfy certain needs of the
system, and in certain context. Then comes semantic analysis where words are
mapped into terms, and the ambiguity in the process are partly resolved by
the pragmatic factors (motivation, context, etc). Syntactic analysis becomes
necessary only when the meaning to be expressed is complicated enough for
compound terms to be used, as well as there is additional information on tense,
plurality, etc., to be expressed. Even in this situation, syntactic analysis still
depends on the guidance of pragmatic and semantic factors.

There are other NLP models where semantic information is used to guide
syntactic analysis, such as case grammar [Fillmore, 1968], functional grammar
[Dik, 1978], conceptual dependency theory [Schank, 1980], etc., where the se-
mantic information is typically represented by frames that each corresponds to
a verb, with functional slots to be filled in for agent, goal, recipient, and so
on. NARS shares some ideas with these approaches, as shown by knowledge
like “(({$1 × $2} → represent) ∧ ({$3 × $4} → represent)) ⇒ ({{$1 × eat ×
$3} × (($2 × $4) → food)} → represent)”, though the meaning of a word is
not predetermined by a single frame, but learned as a set of judgments. On the
other hand, the representation of NARS is also different from semantic network
[Shapiro and Neal, 1982] in that Narsese contains a constant number of term
types that are directly recognized and processed by the inference rules.

NARS agrees with the statistical approach of NLP on that the linguistic
knowledge is statistical by nature, and should be learned from actual usage
data. However, NARS does not make the usual assumption that the statisti-
cal data comes from a consistent probability distribution. Consequently, the
calculations of truth-values do not follow probability theory (though have sim-
ilarity with it in certain places). Furthermore, language learning in NARS is
not “corpus-based”, but happens in a context where NLP is associated with
motivation, sensorimotor, and every sentence serves certain purpose and func-
tion to the system, rather than as an observation of linguistic materials. In this
way, pragmatic and semantic information are related to syntactic information at
the very beginning, rather than associated with it later. Finally, the statistical
approach treats a sentence according to the average situation, while NARS pro-
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cesses every sentence in a case-by-case manner, by taking the current context
into account.

Compared with other inference-based NLP works [Shapiro and Neal, 1982,
Hobbs et al., 1993, Krovetz, 2000], NARS differs from them in all the major
components of a reasoning system:

• The system has a term-oriented language with two-factor truth-values,

• The language is used according to an experience-grounded semantics,

• The inference rules are syllogistic and compositional,

• The memory structure is concept-centered and priority-based,

• The control strategy manages dynamic resource allocation.

5.3 Summary

The NARS approach toward NLP has the following major properties:

• The processing of natural languages is unified with other cognitive pro-
cesses, such as reasoning, learning, and categorizing. The only specialty
is the linguistic knowledge, which is language-specific.

• All types of linguistic knowledge are learned from experienced language
use, rather than built into the system. The learning process follows in-
ference rules, including deduction, induction, abduction, analogy, revision,
and so on. The system can directly accept syntactic, semantic, and prag-
matic knowledge from the outside, so as to bypass some internal learn-
ing process. Such input knowledge will still be revised according to the
system’s experience. Compared to the existing approaches of NLP, this
approach may be more similar to how a human being learns a natural lan-
guage, though NARS is not designed as a descriptive model of the human
mind.

• A natural language is treated as a conceptual system that changes over
time. New words, phrases, and sentences are introduced from time to
time, and the existing ones may change their meaning gradually. Even
grammatical conventions may change over time. Some of the changes
are long-term and irreversible (such as the learning and evolving of word
meaning), while some other changes are short-term and temporary (such
as the content-dependent interpretations of words). The system has the
ability to adapt to such changes that come from the environment, as well
as to initiate such changes by using a language creatively.

• Though the distinction of syntax, semantics, and pragmatics still exist,
these aspects of a language are not processed separately in the system.
Syntactic knowledge relates the words and phrases in a natural language
in various ways; semantic knowledge associates the words and phrases to
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the terms/concepts; pragmatic knowledge links knowledge to goals (not
discussed in this paper). However, they are all conceptual relations in
NARS.

• Syntactic knowledge has various generality, with concepts from specific
(like “cat” and “eat”) to general (like “noun” and “verb”) at multiple
levels. In the long run, the system will balance the demand on generality
and specificity, so as to improve the efficiency of the usage of its knowledge.

NLP in NARS is a new research topic that has only produced some prelimi-
nary results, so it is too early to make strong conclusions about its strength and
weakness. However, at least we can say that it has many novel and interesting
properties, so deserves further exploration.
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