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Abstract. A pragmatic design for a general purpose reasoner incorpo-
rating the Non-Axiomatic Logic (NAL) and Non-Axiomatic Reasoning
System (NARS) theory. The architecture and attentional control differ
in many respects to the OpenNARS implementation. Key changes in-
clude; an event driven control process, separation of sensorimotor from
semantic inference and a different handling of resource constraints.
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1 Introduction

The Non-Axiomatic Reasoning System has been implemented several times ([10],
[9], [6]). OpenNARS, now known as OpenNARS for Research (ONR), was used
both as a platform for new research topics and an implementation for applica-
tions [5]. Not all ideas in ONR are complete, and application domains require
the proven aspects to work reliably. Whilst this has led to the systems capabili-
ties being stretched to the limits it has also given us a better understanding of
the current limitations. The proposed architecture, OpenNARS for Applications
(ONA), has been developed to resolve ONR’s limitations by combining the best
results from our research projects. The logic and conceptual ideas of ONR [6],
the sensorimotor capabilities of ANSNA [7] and the control model from ALANN
[9] are combined in a general purpose reasoner ready to be applied.

ONA is a NARS as described by Non-Axiomatic Reasoning System theory
[18]. For a system to be classified as an instance of a NARS it needs to work under
the Assumption of Insufficient Knowledge and Resource (AIKR). This means the
system is always open to new tasks, works under finite resource constraints, and
works in real time. For the resource constraints to be respected, each inference
step (cycle) must take an approximately constant time O(1), and forgetting is
necessary to stay within memory limits. Here, relative forgetting describes the
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relative ranking of items for priority based selection (a form of attention), while
absolute forgetting is a form of eviction of data items, to meet space constraints.
Events, beliefs and concepts compete for resource based on current importance,
relevance and long term usefulness.

What all Non-Axiomatic Reasoning Systems have in common is the use of the
Non-Axiomatic Logic (NAL) [18], a term logic with evidence based truth values,
which allows the systems to deal with uncertainty. Due to the compositional
nature of NAL, these systems usually have a concept centric memory structure,
which exploits subterm relationships for control purposes. A concept centric
memory structure ensures premises in inference will be semantically related. This
property, together with the priority based selection, helps to avoid combinatorial
explosion. An additional commonality between NARS implementations is the
usage of the formal language Narsese, it allows the encoding and communication
of NAL sentences with the system, as well as between systems.

Compared to BDI models [1] [3], plans and intentions are treated as beliefs,
as procedure knowledge is learnable by NARS, instead of always provided by the
user. Just selecting a plan according to desires / goals to become an intention,
based on current circumstances (beliefs), is a much simpler problem to solve, as
it ignores the learning aspect of behaviors which is so critical for AGI. Reinforce-
ment learning (see [15], [19] and [14]) captures the learning aspect and solves
the Temporal Credit Assignment Problem, but does so just for a single signal
(reward, a single outcome). NARS solves it for all events it can predict, some
of which may correspond to goals to achieve. There is also multi objective rein-
forcement learning [8] [16], which however does not capture a changing utility
function corresponding to changing goals. NARS does not learn a fixed state-
action mapping, but instead its behaviors can change rapidly with the changing
goals. Hence, NARS combines and extends the key aspects of both BDI and
Reinforcement Learning without inheriting some of their limitations.

2 Architecture

A key driver of the architectural change is the nature of how concept, task and
belief are selected for inference. In ONR the selection is based on a probabilistic
choice from a data structure (Bag) and is concept centric [13]. ONA takes a dif-
ferent approach: an event is popped from a bounded priority queue. The event
determines the concept to be selected, through a one-to-one mapping between
event and concept terms. Then a subset of concepts are selected based on their
priority (determined by a configuration parameter). This selection of concepts is
the attentional focus as these are the concepts that will be involved in the infer-
ence cycle. Whilst the number of concepts to select is a fixed value (for a given
configuration), the priority of concepts is constantly changing. A self-regulating
threshold is used to maintain the priority distribution within the necessary range
to meet the selection criteria. This selection of concepts is the first stage of the
inference cycle. The selected concepts are now tested for evidential overlap be-
tween the event and concept beliefs (evidence cannot be overlapping [6]). Finally,
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there is an ‘inference pattern’ match check, between the event and belief. If all
the conditions are met the inference result is generated, and added to memory
to form new concepts or to revise any pre-existing concept’s belief. Then the
event, or the revised one if revision occurred, is returned to the cycling events
queue, with a reduced priority (if above minimum parameter thresholds).
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Sensory FIFO Cycling|Events
Channels Sequencer Queue
A A
| R Concept
] . 7 Memory

Sensorimotor
Inference

Fig. 1: High level architecture showing input sequencing and cycles for sensori-
motor and semantic inference

Sensory Channels: The reasoner allows for sensory input from multiple
modalities. Each sensory channel essentially converts sensory signals to Narsese.
Dependent on the nature of the modality, its internals may vary. As an example
for application purposes, a Vision Channel could consist of a Multi-Class Multi-
Object Tracker for the detection and tracking of instances and their type, and
an encoder which converts the output into: the instances which were detected
in the current moment, their type, visual properties, and spatial relationships
among the instances [5].

FIFO Sequencer: The Sequencer is responsible for multi-modal integration.
It creates spatio-temporal patterns (compound events) from the events gener-
ated by the sensory channels. It achieves this by building both sequences and
parallel conjunctions, dependent on their temporal order and distance. These
compositions will then be usable by sensorimotor inference (after concepts for
the sequence have been added to concept memory and the compound event
added as belief event within the concept). As shown in figure 1, these compound
events go through cycling events first, ideally to compete for attention with
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derived events to be added to memory. The resource allocation between input
and derivations is a difficult balance, for now, we let input events and the com-
pound events (from FIFO sequencer) be passed to memory before derivations.
We acknowledge that this simple solution might not be the final story.

Cycling Events queue: This is the global attention buffer of the reasoner.
It maintains a fixed capacity: items are ranked according to priority, and when
a new item enters, the lowest priority item is evicted. For selection, the highest-
priority items are retrieved, both for semantic and sensorimotor inference, the
retrieved items and the inference results then go back into the cycling events
queue after the corresponding inference block. The item’s priority decays on
usage, but also decays in the queue, both decay rates are global parameters.

Sensorimotor Inference: This is where temporal and procedural reason-
ing occurs, using NAL layers 6-8. The responsibilities here include: Formation
and strengthening of implication links between concepts, driven both by input
sequences and derived events. Prediction of new events based on input and de-
rived events, via implication links. Efficient subgoaling via implication links and
decision execution when an operation subgoal exceeds decision threshold [4].

Semantic Inference: All declarative reasoning using NAL layers 1-6 occurs
here as described in [18], meaning no temporal and procedural aspects are pro-
cessed here. As inheritance can be seen as a way to describe objects in a universe
of discourse [17], the related inference helps the reasoner to categorize events,
and to refine these categorizations with further experience. Ultimately this allows
the reasoner to learn and use arbitrary relations, to interpret situations in richer
ways and find crucial commonalities and differences between various knowledge.
Also, due to the descriptive power of NAL and its experience-grounded seman-
tics, semi-natural communication with the reasoner becomes possible, and high-
level knowledge can be directly communicated. This is the case even when the
meaning of some terms is not yet clear and needs to be enriched to become more
useful.

Concept Memory: The concept store of the reasoner. Similar to the cy-
cling events queue, it maintains a fixed capacity: but instead of being ranked by
priority, items are ranked according to usefulness, and when a new item enters,
the lowest useful item is evicted. Usefulness takes both the usage count and last
usage time into account, to both, capture the long term quality of the item, and
to give new items a chance. All events from the cycling events queue, both input
and derived, that weren’t evicted from the queue, arrive here. A concept node is
created for each event’s term, or activates it with the event priority if it already
exists. Now revision of knowledge, of the contained beliefs, takes place. It also
holds the implications which were formed by the sensorimotor component, which
manifest as implication links between concepts. The activation of concepts al-
lows the reasoner’s inference to be contextual: only beliefs of the highest priority
concepts, which share a common term with the event selected from the Cycling
Events queue (for Semantic Inference), or are temporally related (through an
implication link or in temporal proximity, for Sensorimotor Inference), will be
retrieved for inference.
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3 Data Structures

Data structures can be grouped into two broad classes: Data and contain-
ers. The primary data elements are Events, Concepts, Implications and Terms;
whilst the containers are FIFO, PriorityQueue, ImplicationTable and HashTable.
HashTable is an optimisation and mentioned here for completeness but is not
required for the functional description. It is used to efficiently retrieve a concept
by its term (hash key) without searching through memory.

Term: All knowledge within the reasoner is represented as a term. Their
structure is represented via a binary tree, where each node can either be a
logical NAL copula or atomic.

Event: Each Event consists of a term with a NAL Truth Value, a stamp
(a set of IDs representing, the evidential base of any derivations or a single ID
for new input), an Occurrence Time, and a priority value. The stamp is used to
check for statistical independence of the premises, derivations are only allowed
when there is no overlap between the stamps of the premises.

Concept: Each concept has a term (its identifier), a priority value for atten-
tion control purposes, a usage value, indicating when the concept was last used
and how often it was used since its creation. There is a table of pre-condition
implications that act as predictive links, specifying which concepts predict which
other’s events. Plus an eternal belief (giving a summary of event truths), most
recent event belief, and predicted event belief.

Implication: These are the contents of the pre-condition implication tables
in the concepts. Usually its term has the form a = b which stands for “a predicts
b”. Sometimes they also include an operation, such as (a, op) = b, which is
the procedural form, and similar to schemas as in [2], though their context is
never modified. They allow the reasoner to predict outcomes (forward) and to
predict subgoals (backward). When the outcome b is predicted (with an operation
execution as side effect for the procedural form), negative evidence is added
to the prediction on failure, while on success positive evidence is added. The
simplest way to accomplish this is to add the negative evidence right away while
ensuring that the positive evidence added will outweigh the negative. In this way
no anticipation deadline needs to be assumed and the truth expectation of the
implication will gain truth expectation on success, and loose truth expectation
on failure, anticipation realized via Assumption of Failure.

PriorityQueue: This is used by: Cycling Events Queue and Concepts Mem-
ory. It is a ranked, bounded priority queue which, when at capacity, removes the
lowest ranked item when a new item is added. Events are ranked by priority, and
concepts by usefulness, a (lastUsed, useCount) which maps to raw usefulness
via usefulnessRaw = 4£C0unt where recency = currentTime — lastUsed. A

recency+1’
normalised value for usefulness is obtained with use fulness = —usefulnessRaw
usefulness Raw+1

Implication Table and Revision: Implications are eternal beliefs of the
form a = b, which essentially becomes a predictive link for a, which is added
into an implication table (precondition implication table of b).

An implication table combines different implications, for instance a = g
and b = g to describe the different preconditions which lead to g, stored in
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the implication table in concept g. Implication tables are ranked by the truth
expectations of the beliefs, where exp(f,c) is defined as (c* (f — 1) + 1), the
confidence as ¢ = w1 Where w = wy +w_ is the total evidence, wy and w_ the
positive and negative evidence respectively, and frequency is defined as f = %

Attentional Control Functions

The high level requirements of the attentional control were explained in the
Conceptual Foundation section. Here we cover the low level detailed functions for
resource management which are enforced by the corresponding data structures:

Attention_forgetEvent: Forget an event using monotonic decay. This hap-
pens in the cycling events queue, where the decay after selection can differ from
the decay applied over time, dependent on the corresponding event durability
system parameters. (multiplied with the priority to obtain the new one)

Attention_forgetConcept: Decay the priority of a concept monotonically
over time, by multiplying with a global concept durability parameter.

Attention_activateConcept: Activate a concept when an event is matched
to it in Concept Memory, proportional to the priority of the event (currently
simply setting concept priority to the matched event’s when its priority exceeds
the concept’s). The idea here is that events can activate concepts while the
concept’s priority leaks over time, so that active concepts tend to be currently
contextually relevant ones (temporally and semantically). Additionally, the usage
counter of the concept gets increased, and the last used parameter set to the
current time.

Attention_deriveEvent:

The inference results produced (either in Semantic Inference or Sensorimotor
Inference), will be assigned a priority, the product of: belief concept priority or
truth expectation in case of an implication link (context), Truth expectation of
the conclusion (summarized evidence), Priority of the event which triggered the
inference, and m where ¢ is the syntactic Complexity of the result. (the
amount of nodes of the binary tree which represents the conclusion term)

The multiplication with the parent event priority causes the child event to
have a lower priority than its parent. Now from the the fact that event durability
is smaller than 1, it follows that the cycling events queue elements will converge
to 0 in priority over time when no new input is given. This, together with the
same kind of decay for concept priority, guarantees that the system will always
recover from its attentional states and be ready to work on new input effectively
after busy times.

Attention_inputEvent: The priority of input events is simply set to 1, it
will decay via relative forgetting as described.

4 Operating cycle
Following is an overview of the main operating cycle with a detailed breakdown
of each component:

1. Retrieve EVENT_SELECTIONS events from cycling events priority queue
(which includes both input and derivations)
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2. Process incoming belief events from FIFO, building implications utilizing
input sequences and selected events (from step 1)

3. Process incoming goal events from FIFO, propagating subgoals according to
implications, triggering decisions when above decision threshold

4. Perform inference between selected events and semantically /temporally re-
lated, high-priority concepts to derive and process new events

5. Apply relative forgetting for concepts according to CONCEPT_DURABILITY
and events according to EVENT_DURABILITY

6. Push selected events (from step 1) back to the queue as well, applying relative
forgetting based on EVENT_DURABILITY_ON_USAGE

Semantic Inference: After an event has been taken out of cycling events
queue, high-priority concepts which either share a common subterm or hold
a temporal link from the selected event’s concept to itself will be chosen for
inference. This is controlled by adapting a dynamic threshold which tries to keep
the amount of selected belief concepts as close as possible to a system parameter.
The selected event will then be taken as the first premise, and the concept’s belief
as the second premise. Here the concept’s predicted or event belief is used when
it’s within a specified temporal window relative to the selected event, otherwise
its eternal belief. The NAL inference rules then derive new events to be added to
cycling events queue, which will then be passed on to concept memory to form
new concepts and beliefs within concepts of same term.

Implication Link formation (Sensorimotor inference): Sequences sug-
gested by the FIFO form concepts and implications. For instance event a followed
by event b, will create a sequence (a, b), but the sensorimotor inference block will
also make sure that an implication like @ = b will be created which will go into
memory to form a link between the corresponding concepts, where a itself can be
a sequence coming from the FIFO sequencer, or a derived event from the cycling
events queue which can help to predict b in the future. Also if a = b exists as link
and a was observed, assumption of failure will be applied to the link for implicit
anticipation: if the anticipation fails, the truth expectation of the link will be
reduced by the addition of negative evidence (via an implicit negative b event),
while the truth expectation will increase due to the positive evidence in case of
success. To solve the Temporal Credit Assignment problem such that delayed
rewards can be dealt with, Eligibility Traces have been introduced in Reinforce-
ment Learning (see [14] and [15]). The idea is to mark the parameters associated
with the event and action which was taken as eligible for being changed, where
the eligibility can accumulate and the eligibility decays over time. Only eligable
state-action pairs will undergo high changes in utility dependent on the received
reward. NARS realizes the same idea via projection and revision: when a con-
clusion is derived from two events, the first event will be penalized in truth value
dependent on the temporal distance to the second event, with a monotonic de-
cay function. If both events have the same term, they will revise with each other
forming a stronger event of same content, capturing the accumulation aspect of
the eligibility trace. If they are different, the implication a = b can be derived
as mentioned before, and if this implication already exists, it will now revise
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with the old one, adding the new evidence to the existing evidence to form a
conclusion of higher confidence. If b is a negative event, the truth expectation
will decrease (higher confidence but less frequency), while a positive observation
b will increase it. This is similar to the utility update in RL, except with one
major difference: the learning rate is not given by the designer, but determined
by the amount of evidence captured so far. In RL implementations this deficit
is compensated by decreasing the learning rate over time with the right speed
(by trial and error carried out by the designer). However given amount of addi-
tional time is not a guarantee that more evidence will be collected for a specific
state-action entry, its state might simply not have re-appeared within the time
window, yet the next time it’s encountered the learning rate for its adjustment
will be lower, leading to inexact credit assignment.

Subgoaling, Prediction and Decision (Sensorimotor inference): When
a goal event enters memory, it triggers a form of sensorimotor inference: sub-
goaling and decision. The method to decide between these two is: the event
concept precondition implication links are checked. If the link is strong enough,
and there is a recent event in the precondition concept (Event a of its concept
when (a,o0p) = g is the implication), it will generate a high desire value for the
reasoner to execute op. The truth expectations of the incoming link desire values
are compared, and the operation from the link with the highest truth expectation
will be executed if over a decision threshold. If not, all the preconditions (such
as a) of the incoming links will be derived as subgoals, competing for attention
and processing in the cycling events queue. Also, event a leads to the prediction
of b via Deduction, assuming a = b exists as implication in concept b.

Motor Babbling: To trigger executions when no procedure knowledge yet
exists, the reasoner periodically invokes random motor operations, a process
called Motor Babbling. Without these initial operations, the reasoner would be
unable to form correlations between action and consequence, effectively making
procedure learning from experience impossible [11], [7] and [6]. Once a certain
level of capability has been reached (sufficient confidence of a procedural impli-
cation (a,op) = g), the motor babbling is disabled for op in context a.

5 Experiments & Comparisons

To demonstrate the reasoner’s general purpose capabilities we tested with a
variety of diverse examples using the same default system configuration. The
following examples are all available at the project web site, see [20].
Real-time Q/A. In this example the reasoner needs to answer questions
about drawn shapes in real time (see Fig. 2). Input events consist of shape
instances, their types, and filled property as output by a Convolutional Neural
Network. The shape’s relative location is fed into the reasoner. Queries can be
arbitrary queries such as “What is left of the unfilled circle?”. In our experiment,
the reasoner answered these questions correctly 80 percent of the time within 50
inference steps from 20 example inputs in 10 trials. This were 200 Narsese input
events and 9 seconds per trial, fast enough for real time perception purposes.
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Procedure Learning. In the toothbrush example knowledge about different
objects, their properties and what they can be used for is provided (see Fig. 2).
The goal is to unscrew a screw without a screwdriver. The solution is to melt
a toothbrush and to reshape it into a form usable to unscrew the screw. The
reasoner finds this solution consistently, within 30 inference steps, while ONR
often needed 100K or more.

Generalisation. The goal of this experiment was to show that the reasoner
could learn and then apply generalised procedural knowledge to examples not
previously experienced. The test setup composed of: three switches, with differ-
ent instance names and two operators, ‘goto’ and ‘activate’. From 2 observations
of the user activating switches, the reasoner should learn that the ‘goto’ opera-
tion applied from the start position, will lead to the agent reaching the switch
position. It also learns that when the switch position was reached, and the ‘acti-
vate’ operation is called, the switch will be on. The third switch is then activated
by the reasoner on its own as a solution to the user goal, by invoking ‘goto’ and
‘activate’ on the new switch instance, applying generalised behavior which the
reasoner has learnt to be successful for the previously encountered instances.

Real-time Reasoning. As presented in [5], ONR, was successfully used to
autonomously label regions and to identify jaywalking pedestrians based on a
very minimal background ontology, without scene-specific information, across a
large variety of Streetcams, using a Multi Class Multi Object tracker. A similar
example (capturing key reasoning aspects) is included in the release of ONA,
the new reasoner will replace ONR in future deployments.

Fig.2: Using minimal scene-independent background knowledge to detect jay-
walking (left), learning to reach and activate switches from observations. (right)

Procedure Execution. Previously, a 24hr reliability test of OpenNARS
v3.0.2 (ONR) was carried out with the Pong test case. The system ran reliably
for the 24hr period with a hit/miss ratio of 2.5 with a learning time of two
minutes and some minor fluctuation in capability in the first 3 hrs.

In comparison, OpenNARS for Applications v0.8.1 (ONA) ran reliably for the
24hr period with a hit/miss ratio of 156.6 with a learning time of <10 secs and
no negative fluctuation. It should be noted that the pong test was not identical
for each test scenario. The test for ONA was more difficult with 3 operations
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(compared to left/right operations only for ONR Pong, it didn’t include stop)
and approximately 2x faster ball speed, demanding quicker reaction times.
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Fig.3: Q&A about detected shapes (left), Toothbrush problem solving (right)

6 Conclusion

The decision to take a pragmatic approach to the architecture has proven to
be a worthwhile investment. The change to an event driven control model has
removed much of the complexity of the prior control system. The separation
of semantic and sensorimotor inference has highlighted the key issues of both
aspects whilst avoiding the complexity of a unified handling. The reduction in
complexity has led to many benefits including: simplified parameter tuning, sep-
aration of concerns, and clear attentional focus boundaries.

The use of the meta rule DSL [6] to represent the logic rules allows the
reasoner to be configured for specific domains. Enabling subsets of inference
rules for specific use cases avoids the processing of unnecessary inference rules
and the resulting increase in non-relevant results.

From a software engineering perspective, the OpenNARS (ONR) codebase
was well overdue a rewrite as the continuous incremental change had led to it
being difficult to maintain and modify. The choice of portable C as the imple-
mentation language means the reasoner can be compiled on a broad range of
platforms including embedded, mobile and all major OSs.

In summary, the new architecture and control has led to significant improve-
ments in both efficiency and quality of results, especially in respect to procedure
learning and attention allocation. Connecting to the reasoner via the shell or
UDP protocol is straightforward and tuning the parameters and inference rules
for specific use cases is now possible with minimal effort.

The project is open source, under the MIT license, and available in [20].
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