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This article discusses an approach to add perception functionality to a general-purpose

intelligent system, NARS. Differently from other AI approaches toward perception, our

design is based on the following major opinions: (1) Perception primarily depends on

the perceiver, and subjective experience is only partially and gradually transformed into

objective (intersubjective) descriptions of the environment; (2) Perception is basically a

process initiated by the perceiver itself to achieve its goals, and passive receiving of

signals only plays a supplementary role; (3) Perception is fundamentally unified with

cognition, and the difference between them is mostly quantitative, not qualitative. The

directly relevant aspects of NARS are described to show the implications of these

opinions in system design, and they are compared with the other approaches. Based

on the research results of cognitive science, it is argued that the Narsian approach better

fits the need of perception in Artificial General Intelligence (AGI).
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1. INTRODUCTION

This article refines the proposal introduced previously (Wang and Hammer, 2018), by using the
ongoing design and development of NARS to introduce an approach for perception in artificial
general intelligence (AGI).

AGI research pursues the goal of creating machines with human-like intelligence, though
“human-like” can be interpreted at different levels of abstraction (Goertzel and Pennachin, 2007;
Wang and Goertzel, 2007). For us, this means a machine which can memorize, learn, plan, reason,
and pursue goals like a human does, in other words, to take intelligence as a highly abstract and
general capacity (Wang, 2019).

NARS (Non-Axiomatic Reasoning System) is an AGI system designed in the framework of a
reasoning (or inference) system, where the notion of “reasoning” is used in its broad sense to
include many cognitive functions, including learning and perception (Wang, 1995, 2006, 2013).

Perception, usually taken to mean sensory understanding, is highly relevant to AI. Perception
and cognition are inextricably linked: cognition implies information processing, and in minds new
information is often sourced from the sensors, and perception is the “making sense” of sensory
data in relation to existing concepts in the mind. In this way, the mind’s processes may be seen as
playing both perceptual and cognitive roles, the distinction mostly hinging on the abstraction and
generality of the process’ contents. In NARS, perception is addressed at a later stage of development,
not because it is unimportant, but because we believe its design strongly depends on the existence
of a general reasoning-learning mechanism, while the design and development of the latter does
not depend on sensory perception to the same extent.
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In this article, we introduce the ongoing work in NARS on
perception and the directly related topics, with a focus on the
difference of our approach with the others, especially deep neural
networks. We start by clarifying our major guiding principles,
and supporting them with the research results of cognitive
science and the limitations of the existing AI techniques, then, the
mostly relevant aspects of NARS are briefly discussed, followed
by some simple examples. Finally, a few key issues in perception
are discussed.

2. CONFLICTING OPINIONS ON
PERCEPTION

In Wang and Hammer (2018), we proposed three basic features
on what we believe the perception process in AGI system should
have: subjective, active, and unified. Here we are going to further
clarify them, as well as to explain why AGI needs them and in
what sense the other approaches do not have them.

2.1. Objective vs. Subjective
Partly because the study of perception in AI has been focused on
computer vision, which grew out of the field of signal processing
and pattern recognition, perception is traditionally taken as a
process to describe, or model, the world or an object as it
truly is according to the given information (Marr, 1982). The
characteristics of the agent in which perception happens are
widely taken as biases that should be reduced as much as possible.
Such a position is also implicitly taken in deep learning, where a
model aims to learn the “correct” or “best” function according
to the training data (LeCun et al., 2015), though some “inductive
bias” is accepted as inevitable (Mitchell, 1980).

Though this position is proper for many applications where
there is well-defined correctness criteria, it conflicts with the
current consensus in cognitive science, where “the existence
of viewpoint-dependent representations is well established”
(Jolicoeur and Humphrey, 1998). Representative opinions
include:

• According to Piaget’s theory, perception is the equilibration
between assimilation and accommodation (Piaget, 1954), and
“perception involves the mastery of the laws of sensorimotor
contingencies (SMCs), those regular sensorimotor co-
variations that depend on the environment, the agent’s body,
the agent’s internal (neural) dynamics, and the task context
and norms” (Di Paolo et al., 2014).

• According to Gibson’s theory, our perception of an object is
strongly determined by its affordance, that is, what we can do
with it (Gibson, 1986).

In many domains, more and more researchers stress the
“embodied and situated” nature of perception (Lakoff and
Johnson, 1980; Brooks, 1991), which take cognition and
perception as influenced by many subjective factors, including
sensorimotor mechanism, conceptual framework, present
situation, motivation complex, attention allocation, and so on.
We believe that these factors are not only essential in human

cognition, but also should be considered in perception in
AGI systems.

Both in machines and in humans, perception should be taken
as a selective and productive process carried out according
to the current needs of the system, where incoming sensory
information is organized and analyzed using the system’s stored
percepts (feature patterns, mental images) and concepts (notions,
categories). Consequently, different systems experiencing the
same situation even with the same sensors will perceive it
differently, from their own subjective point of view. The same
system may even experience the same situation differently if
it occurs at a later time, judging the situation through a new
lens according to its changed memory and attention, though
similarities between the perceptions can be expected. According
to this opinion, perception should not be treated as a function
or computation that maps every sensory input into a unique
“correct” output representation, because no “objectively correct”
model of the world can be defined in the general sense;
instead, each concept in the model is defined by its relations
to other concepts and organized according to the system’s own
subjective experience.

Since the system establishes its beliefs according to its
attended experience, new information is always filtered through
the system’s personal perceptual lens, including its meta-level
components like the sensors, cognitive architecture, and control
mechanism, which set constraints on the information actually
available to and used by the system, as well as the system’s current
object-level belief / desire network, which itself is only a result
of the system’s past experience, and is subjective by definition.
A perceptual agent perceiving an object is constrained in these
ways when doing so, meaning an object of perception will be
interpreted in different ways by different systems, and even by
the same system according to different factors. So, perception is
highly subjective.

This makes measuring progress in AGI perception difficult,
since no one can universally define what is the “correct”
way to perceive every stimulus. However, correct perception
may not require a definition, but instead suffices to function
as a way for the system to understand its environment and
organize sensorimotor signals especially in a way that is useful
relative to the (internal, subjective) goals of the perceiver.
“Correct” perception is such that the system can form stable and
coherent internal models of its environment and interact with it
accordingly to accomplish its goals. It is not always the case that
subjective knowledge is less useful than “objective” knowledge:
while knowledge derived purely from individual experience may
be less universal (i.e., true to all systems), more importantly it is
highly relevant to the individual system and its environment. An
adaptive system merely needs to learn and optimize knowledge
descriptions which are useful to the system itself (i.e., in achieving
its goals), not necessarily knowledge which is useful to other
agents or true from a universal standpoint.

Taking the position that all knowledge is subjective does not
conflict with the demand of objectivity on scientific knowledge,
but rather interprets “objective” as interpersonal consensus or
shared agreement between agents, as opposed to “invariably
true.” By integrating various bodies of human knowledge, science
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can reduce the impacts of personal biases, but cannot avoid the
limitations in knowledge of the whole scientific community at the
current stage.

2.2. Passive vs. Active
In AI research, perception is normally taken to be a type
of input process, while action as a type of output process,
where the two processes are mostly independent of each other
(Russell and Norvig, 2010; Laird et al., 2017). According to
this tradition, a perception module or algorithm accepts input
signals or stimuli from the outside, and processes them in certain
ways (recognition, selection, generalization, abstraction, etc.), to
produce some internal representation for the system to use as a
representation or model of the environment (Marr, 1982; Flach,
2012; LeCun et al., 2015). Though there has been some research
on “active vision” (Aloimonos et al., 1988), it is not a mainstream
approach in computer vision.

On the contrary, in cognitive science the argument that
“perception should be considered as action” has been raised
by some researchers (Hommel et al., 2001; Kevin O’Regan and
Noë, 2001; Noë, 2004; Briscoe and Grush, 2015). According to
this opinion, perception and action are represented and carried
out in an interwoven manner and cannot be clearly separated.
In particular, the knowledge about an external action takes the
form of sensorimotor contingency, representing the feedback or
changes in perception caused by the action. The description
of “active” when it comes to perception is not restricted to
bodily movements, but also includes attention directing the
cognitive system’s internal processes: comparisons, analogies,
anticipations, predictions, and any top-down management of the
system’s memory or sensory inputs are all active.

Externally, the perceptual system executes motor commands
to move its sensory organs exploring, observing, changing, and
interacting with the environment from a variety of different
viewpoints, forming a feedback loop. The system actively
integrates sensory feedback into its memory to construct and
modify concepts, knowledge, expectations, and predictions.
Without active sensors, the system only observes a “zero-
dimensional” view of the world, in which the system does
not explore more than one viewpoint of its environment and
cannot hope to gain enough information to conceptualize reliable
sensorimotor models. Through movements and exploration, the
system learns to identify the relativity between objects and itself,
building subjective but stable internal world models grounded
by its actions, with which to compare later observations.
With repeated experience to the same signals, the system
can autonomously learn and construct confident internal
models. Without active movement and interaction, the available
information is not rich enough to easily build a meaningful
understanding of the environment. Every activity provides
another way in which to view the environment and new
information about the relative relationships between self and
perceived objects.

The internal prioritization and selection of thoughts and
sensations requires attention, which may be actively directed, as
the system cannot process every sensory input and combination
at once if it only has a small amount of limited cognitive resources

and a serial control process. In sensation alone, only basic
features can be pre-processed in parallel from a stimulus, after
which they are presented to a serial top-down control process.
The perceiver can actively focus on specific points in their visual
field to search for and recognize objects, using subsets of stimulus
features along with the system’s internal (active) predictions.
While the entirety of a sensory stimulus is available for top-down
processing, the system’s attention mechanisms decide what is
most important to process and what is unimportant enough to
be filtered from or otherwise disregarded by the system’s locus of
perception (Treisman and Gelade, 1980; Wolfe et al., 2006).

We believe the same principle also applies to AI, especially
to AGI. It means perception should not be taken as a process
in which the system passively processes all the sensory data
indiscriminately. According to this opinion, perception is not a
pure input process but should instead be studied together with
the activities of the system. Perception involves sensorimotor
and introspective coordination where the system learns and
predicts the perceptual effects of its own actions, acquiring
sensorimotor contingencies. In this way, perception cannot be
explicitly taught to an AI system, instead the basic framework
for perceptual experience is built during a gradual and active
memory organization process which occurs over its lifetime, as
the system autonomously moves about learning, interacting, and
gaining new experiences.

2.3. Modular vs. Unified
There has been a long-lasting debate in cognitive science on
whether human cognition and intelligence should be considered
as a unified process or a cooperation of relatively separated
modules (Fodor, 1983; Prinz, 2006). Arguments for the integrated
modular approach can be made including the observed apparent
modularity of functionality in the human brain and the intuition
that abstract concepts like mathematics and language grammar
seemingly transcend the domain of sensory experiences. Modules
in integrated systems also have well-defined and distinct
interfaces with each other, which canmake their interaction clean
as well as each module’s operation cycle swift and independent,
allowing for parallel processing. On the other hand, there are
also arguments for the unification of perception and cognition,
in their representation and processing (Chalmers et al., 1992;
Goldstone and Barsalou, 1998; Jarvilehto, 1998; Lakoff and
Johnson, 1998; Barsalou, 1999; Shams and Shimojo, 2001).

In AI research, the mainstream opinion is to take intelligence
as a collection of cognitive functions (Russell and Norvig, 2010;
Poole and Mackworth, 2017) that are either loosely related in a
society (Minsky, 1985) or tightly integrated in an architecture
(Newell, 1990). In this framework, perception is considered as
occurring at the low-level of the system near the sensory interface
with the environment. The modal sensory signal is mapped to
one ormore abstract amodal representations (e.g., dog, cat, apple,
etc.), which are sent to a cognition system that carries out more
“higher-level” functions, such as reasoning. In this view, the
identification of a sensation from a given modality is a process
mostly distinct from the cognitive process.

In our view, perception should not be considered as carried
out by a separate module that is independent of the other
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cognitive processes, but as closely tangled with them. In
particular, many basic perceptual operations can be treated
as inference, and learning in perception is not that different
from learning in cognition in general. Though perception can
still be considered mainly as a multi-level abstraction and
generalization with a certain degree of modularity, it is not a
purely bottom-up process, but heavily influenced by top-down
forces, including motivation, anticipation, attention, and so on.
In a system with multiple types of sensor, the integration of the
modalities happens at early stages of the process, rather than
until each modality-specific module completes its independent
perceptual processing.

The unified approach means the system uses sensory
activation inputs “as-is” in perception, conceptualizing parts
of the raw sensory signal itself in the same memory as all
other concepts, treating all concepts and beliefs with the same
set of inference rules. A sensory stimulus should not be
mapped to some representative label or amodal concept; for
example, a visual image of a dog should not be used and
understood within the system as a separate concept named
“dog.” Otherwise, the sensations are lost and the system can
only work with some abstract concept named “dog,” which
has no grounding in sensory concepts. Instead, the sensory
signal itself should be experienced directly by its components,
which cause conceptual activations and in certain combinations
enable categorical inferences, constituting the overall “currently
perceived” experience. The memorized features can be used
later to perform object categorization when sensing features that
constitute the same or a similar pattern.

From a unified perspective, it is essential to conceptualize
the sensory-perceptual items within the same memory as their
productive derivations, as these lowest-level concepts are the
foundation used in establishing a grounded (modal) framework
for the development of further conceptual relations. Sensory
processing is therefore not performed entirely by some module
separate from the main system, since sensory experiences
themselves need to interact directly with the system’s memory.
The system, of course, should be selective about what subsets
of the sensory data it processes, creating abstractions and
forming new beliefs that help the system competently navigate
the world in service of its goals. Certain compound perceptual
concepts may be constructed directly from sensory inputs and
should maintain their sensory modality, meaning the perceptual
concept’s structure remains analogous to the structure of the
sensory experience that produced it, though not necessarily
isomorphic to the structure of the object in reality (e.g., a visual
percept is “seeing-like” [not necessarily picture-like] in that the
same concepts for visual features activate, an auditory percept is
“hearing-like” in that concepts for aural features activate, etc.) as
argued by Barsalou (1999).

3. THE NARS APPROACH

As we have argued above, the results in cognitive science
suggest that a perceptual system should be subjective, active,
and unified. Non-Axiomatic Reasoning System (NARS) (Wang,

2006) basically realizes these characteristics, and so makes
a natural candidate for a digital AI capable of perception.
As we will see, the native logic and architecture of NARS
are capable of representing perceptual concepts and allowing
perceptual inferences.

3.1. Representation
NARS uses a concept-centered knowledge representation
where “concept” gets a broad interpretation to represent any
recognizable entity in the system’s experience. Consequently,
a concept may correspond to a perceived pattern, an
executable operation, a word or phrase in a language used
for communication, or an internal entity constructed from
the above entities that are directly obtained from the system’s
experience. The system’s memory is intuitively a network
of concepts.

Each concept in NARS is named by a term, which is an
identifier within the system to address and manipulate concepts.
NARS used a term-oriented knowledge representation language,
Narsese, which is defined in a formal grammar (Wang, 2013). The
language is “formal” in the sense that a symbol in a grammar
rule can be instantiated by different terms to name different
concepts. However, a concept itself cannot be interpreted as
different objects or events. Therefore, in NARS a concept is not
a “symbol” as in the traditional symbolic AI tradition (Newell
and Simon, 1976) that needs to be interpreted or “grounded”
to become meaningful (Searle, 1980; Harnad, 1990). Instead,
its “shape” (that is, its name) indicates its role in the system’s
experience, which is what it “means” to the system and decides
how it will be treated by the system.

The above experience-grounded semantics (Wang, 2005) not
only provides justifications to the logic of NARS, Non-Axiomatic
Logic (NAL) (Wang, 2013), but also makes it possible to extend
the applicable domain of this logic from abstract concepts
to include concepts with sensorimotor associations, as both
sensorimotor experience and linguistic experience are involved
when determining the meaning of a concept or its identifier,
a term.

There is a term hierarchy in Narsese to organize different types
of terms, as well as the concepts they name:

• Term: In its simplest form, a term is merely an internal
identifier of a concept, usually in the form of a string. The
internal structure of such an atomic term is no longer analyzed,
so can be arbitrary, but as soon as it is used to name a
concept, this term-concept association becomes permanent in
the system’s life-cycle. In examples used in publications and
demonstrations of NARS, words in a natural language, like bird
and crow, are often used to give the terms (and the named
concepts) some intuitive meaning, though they never exactly
mean what those words mean for human speakers.

• Variable term: Such a term can name different concepts in
different sentences, like a variable in a mathematical equation
and a pronoun in a human language. The full meaning of
such a term remains undetermined until it is substituted by
a non-variable term, though the sentence where it is used still
provides part of its meaning.
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• Compound term: A term can be a structure formed by a few
component terms plus a connector that has a predetermined
meaning. For example, there are term connectors that are
intuitively similar to (though not exactly defined as) the
operators in set theory, such as union, intersection, difference,
Cartesian product, etc.

• Statement: If a term corresponds to a conceptual relation,
it is a statement that can be given a truth-value measuring
the evidence in the system’s experience that supports or
denies the stated relation. The simplest statement in Narsese
consists of two terms related by a copula and indicates
that one term can be used as the other, in term of either
meaning or truth-value. In Narsese, the basic copulas include
inheritance, similarity, implication, and equivalence. There are
also compound statements formed from other statements by
conjunction, disjunction, negation, etc.

• Event: An event is a statement with a time-dependent truth-
value, so it has a temporal attribute indicating the moment
when the truth-value is about. When this attribute is specified
with respect to the current moment, it is similar to the “tense”
of a sentence in human languages, as it roughly indicates the
occurrence time of the event, which can be past, present, or
future.

• Operation: An executable operation of the system logically is
an event that can be realized by the system itself. Operations
are statements with “procedural interpretation” as in logic
programming (Kowalski, 1979).

The above term hierarchy, as part of Narsese, has been fully
specified in Wang (2013) to uniformly represent declarative,
episodic, and procedural knowledge. Currently, the NARS team
is extending this framework to fully cover the system’s interaction
with its environment. It means that NARS not only can
communicate with other systems in Narsese, but should also
use other (human or computer) languages, as well as to directly
interact with its environment via sensors and actuators.

As NARS is designed to be general-purpose, it has no built-in
sensor, actuator, or natural language processing module. Instead,
the system can connect to various hardware or software, and
use them as tools by converting certain Narsese operations
as commands of that device, and returning feedback and
result as input data to NARS. Consequently, perception of the
environment is carried out by operations, too, as a form of
active perception.

Sensations received by sensors are represented in Narsese as
atomic terms, from which compound terms are constructed.
Besides the term connectors mentioned previously, there are also
connectors for basic temporal or spacial relations among events
that construct patterns accordingly.

In summary, the concept-centered knowledge representation
uniformly represents sensorimotor, linguistic, and conceptual
experience, in which the system’s own action plays a central role.

3.2. Inference Rules
NAL, the logic implemented in NARS, has been formally
specified in Wang (2013), so in this article we only discuss how

its usage is extended from high-level cognition to cover sensation,
perception, and action.

As mentioned previously, in NAL the truth-value of a
statement indicates the (extent of) agreement between the
statement and the system’s experience, rather than between it and
the facts in the world or a model of the world. Consequently, a
non-deductive inference rule (such as induction and abduction)
can be justified as “truth-preserving” as long as the truth-value of
its conclusion correctly measures the evidential support provided
by its premises, according to the relevant definitions (of evidence,
truth-value, etc.) in the experience-grounded semantics of NARS
(Wang, 2005).

A simple form of temporal induction in NARS occurs when
the system observes in a sensorimotor channel that event A is
following by event B after a period of time t. When the two
events are taken as premises by the induction rule, a conclusion
“(A /⇒ B )” is derived, with t as a hidden attribute. This
conclusion intuitively states “A is followed by B (with an time
interval t in between).” As this conclusion is only supported by
a single observation (plus that the occurrences of A and B may
be uncertain themselves), the confidence of the conclusion is
relatively low, so can be considered as a hypothesis.

If the succession of A and B are repeated perceived, each of
them will generate such a hypothesis. With two judgments on
the same statement as premises, the revision rule will generate a
new truth-value for the statement according to the accumulated
evidence, and the confidence of the conclusion will be increased
accordingly. In this way, some “hypotheses” may gradually
grow into “opinions,” “beliefs,” and even “facts”—in NARS, the
difference among those categories are mainly quantitative (in
confidence level), not qualitative (such as confirmed vs. guessed).

The inductive conclusions can be used by the other rules
for various purposes. For instance, when A is observed again,
it can be used with A /⇒ B as premises by the deduction rule

to generate a prediction of B (after time t). If B indeed occurs
as anticipated, A /⇒ B is further strengthened by this positive
evidence, otherwise, it is weaken by this negative evidence (that
is, its frequency value is decreased, though its confidence value
is still increased). In this way, with the coming of more and
more (positive or negative) evidence, the frequency value of the
conclusion will be similar to the probability for the prediction to
be confirmed, and the confidence value will become higher and
higher, so the conclusion will be less sensitive to new evidence.

The above process learns a regularity from the system’s
experience, and is intuitively similar to statistics. However, the
process is not governed by a predetermined algorithm, but
formed by the cooperation of several inference rules in a data-
driven and context-sensitive manner. Furthermore, the truth-
value of a statement like A /⇒ B is not only determined by
enumerative induction. If the system has beliefs A /⇒ C and
C /⇒ B, the deduction rule can also derive A /⇒ B , and
a deductive conclusion has a higher confidence value than an
induction conclusion when the premises have the same truth-
value. This is related to the discussion on “correlation vs.
causation”—when a conclusion is only generated inductively,
it is often considered as merely “correlative,” while a deductive
justification often makes it to be accepted as “causal.” In NARS,
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this distinction can still be made, though it is again quantitative,
not qualitative, as in NARS there is no objective/true cause
assumed for an event.

When two terms A and B are sensory or perceptual, belief
A /⇒ B can represent the system’s episodic knowledge about
the succession of two signals, such as sounds or images, and
the above inference can happen on them, just as when they
represent abstract events. When one of the two is an operation,
then the knowledge represents its pre-condition (for B) or post-
condition (for A), and the inference on them carries out classical
conditioning (Wang and Hammer, 2015). This simple example
shows aspects of the unity of cognition and perception in NARS.

According to the experience-grounded semantics of NARS,
the meaning of a concept is not determined by certain sufficient
and necessary condition, but by its experienced relations with
other concepts. Consequently, classification and recognition are
often carried out by abduction, that is, whether an instance A
belongs to a concept C depends on whether it has a known
property P of the concept. In NAL, the abduction rule takes
C → P and A → P as premises to derive A → C. Similar to
the situation of induction, in abduction each property P can be
either positive evidence (A has property P) or negative evidence
(A has no property P), and each only provides certain amount of
contribution to the conclusion, rather than decides its truth-value
once for all.

Beside building relations among concepts and revising their
truth-values, NAL also constructs new concepts from the existing
ones. For example, from A → B and A → C, a compositional

rule can derive A → (B ∩ C), as an attempt to reorganize
experience in a more efficient way. If the system experiences
more such cases, the concept (B ∩ C) will be used to replace the
individual usages of B andC. Initially, the meaning of the concept
(B ∩ C) is completely determined by its defining relations with B
and C, but gradually the compound termmay form relations that
cannot be fully reduced into the relations with its components.

Once again, here we can see that NAL uses the same inference
rules to carry out cognition and perception.

3.3. Working Process
All interactions between the system and its environment
happen via one of the input-output channels. Each channel
connects NARS with another (human or computer) system, or a
hardware/software used by NARS as a tool. A channel is invoked
by certain operations of NARS, and the results of the operation
are accepted into the system as input tasks.

As a reasoning system, NARS accepts the following types of
task:

• Judgment: A piece of new experience to be processed.
Formally, it is a statement with a truth-value indicating the
evidential support of the stated conceptual substitutability.
Here “statements” include sensations and perceptions.

• Goal:A conceptual relation to be realized by the system via the
execution of some operations. Formally, it is a statement with
a desire-value indicating the extent to which the system wants
the statement to be true.

• Question: A statement with a unknown truth-value or desire-
value that will be decided according to the system’s knowledge.

The functions of a channel include data format conversion
(such as between Narsese and RDF triples), task buffering and
filtering, etc. In a sensorimotor channel, certain types of simple
inference (such as temporal induction and compound event
composition/recognition) are carried out on input tasks, which
can be seen as the beginning of perception.

Selected tasks from the channels enter the overall experience
buffer, which carries cross-modality composition to form more
complicated patterns and hypotheses. Selected tasks from
this buffer enter the system’s memory for long-term storing
and processing.

As described previously, the memory of NARS is a concept
network. Beside the tasks to be processed, there is also the
knowledge of the system, including

• Belief: A statement with a truth-value summarizing the
system’s judgments on the stated conceptual relation.

• Desire: A statement with a desire-value summarizing the
system’s goals on the stated conceptual relation.

Therefore, the knowledge of the system is its self-reorganized
experience, to be used to process the tasks.

The tasks and knowledge are clustered into the concepts,
according to the terms composing them. For instance, if a task
or belief is about belief S → P, then it can be accessed from the
concepts named by terms S and P, respectively.

NARS runs by repeating a basic working cycle. In each cycle,
the channels and buffers preprocess some tasks as described
previously, and in the memory a task is selected, together with
some belief (or desire). The task and the belief will trigger the
applicable inference rules to derive new tasks, which will be
preprocessed in the internal experience buffer, then selectively
enter the overall experience buffer, where they are handled
together with the input tasks.

NARS opens to novel tasks in real time, which means
new input tasks may arrive at any moment, and the full
accomplishment of a task may require knowledge beyond the
system’s current knowledge scope. For example, the system may
have no idea about how to realize a goal, as it demands a
special sequence of operation execution that the system never
did before. Under the assumption of insufficient knowledge
and resources, NARS cannot simply reject such tasks, but has
to try its best according to its experience (as summarized in
its knowledge). However, the system cannot afford the time-
space cost of exhaustively considering all relevant knowledge,
because the tasks usually have response time requirements,
in the form of hard or soft deadlines (such as “as soon as
possible”).

The principle guiding NARS to handle this insufficiency is
relative rationality (Wang, 2011), that is, to accomplish the
tasks as much as the current knowledge and resources allow.
The system dynamically allocates its processing capacity among
the tasks and beliefs according to their priority values, which
summarize multiple factors evaluated according to the system’s
experience (Wang, 2004; Wang et al., 2020).
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The above overall strategy has very important implications in
the perception process.

First, there is no predetermined “perception algorithm” in
the system. Instead, the perception process for a given input is
formed at the run time by the cooperation of multiple inference
rules, as well as by the knowledge used as premises by those rules.
Even repeated input may be perceived differently at different
moments, given the ever changingmemory structure and priority
distributions among concepts, tasks, and beliefs.

The perception process in NARS is not purely bottom-up
from sensory patterns to conceptual labels. Instead, sensory and
perceptual terms are related to the existing concepts in the
memory, including the operations. As suggested in Wang and
Hammer (2018), complicated patterns will be composed with
operations as components. On the other hand, knowledge about
an operation is often represented by its pre-condition and post-
condition, both can be in the form of sensation or perception.
Consequently, how a section of experience will be perceived,
that is, how the sensations are organized and classified, not only
depends on the input signals themselves, but also on the available
concepts (into which the sensations can be categorized) and their
priority levels (that is, which have been activated by the external
and internal environment). Consequently, the perception process
is similar to Piaget’s theory of assimilation and accommodation—
what the system perceives depends on what it knows and what it
is thinking about, and at the same time, its conceptual structure
is more or less modified by the new experience.

Compared with other channels, a major feature of a
sensorimotor channel is the huge amount of input data to be
processed. It is obviously impossible to treat all sensations as
concepts. Unlike the usual assumption, NARS does not attempt
to “model the world as it is,” and the quality of its knowledge,
including the part that is directly related to its sensorimotor
interface, is evaluated according to its contribution to the
adaptation of the system, especially its relationship with the tasks.
Only “high quality” perceptive patterns are entered into memory
as concepts, and the “quality” of a perceptive pattern depends on
the following factors:

• Its occurring frequency: a recurring pattern deserves to be
considered as a unit, as using it can describe the experience
in a more compressed manner.

• Its contribution to the tasks: a pattern that has been useful in
task processing is more likely to be useful again in a relatively
stable environment.

• Its simplicity: under time pressure, a simple description of the
situation is often preferred, even when it is less accurate than
the complex alternatives.

The above factors are obviously related to the Gestalt Principles
summarized from human perception (Koffka, 2014). The
evaluation of these factors cannot be done once for all, but is an
important part of the system’s lifelong learning process.

3.4. Simple Examples
We want to experimentally test our perception hypotheses in
NARS to evaluate their potential validity, following in technical
detail the inference processes from low-level sensory data

through to object categorization or classification. Since NARS is
strongly influenced by the results of cognitive science, it should
naturally implement perceptual processes as long as sensory
stimuli (the inputs) are expressed in a readable and useful
format. To demonstrate its basic perception functionality, we
tested NARS’ hand at an existing computer vision benchmark for
classification, the MNIST database (containing labeled 28-by-28
pixel images of handwritten digits 0–9).

Here we supply preliminary results which may serve as
a baseline to evaluate NARS on perception problems and
compare NARS’ accuracy to other AI models in this domain like
convolutional neural networks (ConvNets), though we should
expect ConvNets to outperform NARS in this area since they are
specifically designed for image classification tasks. NARS has the
advantage of being able to use its visual knowledge generically,
across modalities and domains, though cannot be evaluated
in exactly the same way as a neural network, since NARS is
not guaranteed to produce an output for every given input.
Therefore, we use the closest equivalent in NARS, executing
an operation, which is when the system produces an output
signal to perform an action (like pressing a certain button when
it recognizes the shown digit). This adds complexity to the
endeavor of evaluating NARS, but also allows us to evaluate
the system’s goal-handling abilities and autonomy. The system
must of its own “volition” execute an action indicating that it
recognizes a digit presented in the visual image. Therefore, the
system could feasibly fail to recognize a digit at all, executing no
actions, though it might try to make a reasonable guess according
to the parts of the image it does recognize, as in Figure 1.

3.4.1. Spatial Buffer and Feature Subset Extraction
An existing open-source NARS implementation NARS-Python
v0.3 (Hahm, 2021) was modified to test the perceptual framework
developed above. Specifically, a spatial (multi-dimensional)
buffer was implemented based on the previous work of array
or sensory terms (Wang and Hammer, 2018) as a way to retain
the topographical mapping of input events (i.e., the spatial
structure of individual feature activations). The buffer holds a 2D
array which is the feature map, where each element is an event
representing the feature activation strength at each location.1

Each atomic feature is encoded as an event with a truth value,
aka an atomic sensation. Each sensation’s subject term is named
according to its location, so that there is a unique term assigned
to each portion of visual space. The frequency of the truth-value
represents the sensation’s strength and the confidence represents
something like the reliability of the stimulus transduction. Events
with frequency below 0.5 are negated to make their frequency
above 0.5, converting their negative evidence to positive evidence
for the system to better utilize. The system’s modality-specific
sensors are responsible for producing these atomic sensations
from external stimuli and presenting them in a topographical
mapping, that is a spatially ordered manner. A small subset of
feature activations is extracted from the buffer and composed as
a conjunction of events.

1In the future, the buffer can be fitted with a 3rd dimension to hold other feature

maps like color, edge orientation, etc.
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FIGURE 1 | In this screenshot, NARS executes an operation indicating it recognizes an image of digit zero. The videos documenting the trials in the table are available

on YouTube (Binary Memorization; Digit Memorization; Binary Classification; Digit Classification).

The question of prioritizing feature subset selection is one of
attention allocation: (1) which features to attend, and (2) how
many features? In vision, the spotlight model of attention is
a theory of prioritizing feature selection where an attentional
spotlight, thought to be circular/oblong or square/rectangular,
jumps to especially salient features in the visual field and
sharply prioritizes the processing of features within the spotlight’s
bounds. This exact nature of this spotlight, how it moves, what is
its size / shape and how do those change, etc. is an active research
question in psychology (Cave and Bichot, 1999). We can focus
anywhere on the image like a spotlight by applying a 2D priority

mask with a configurable sharpness or focus ≥ 0 in a function
that elevates the relative priority of elements in the focused

area by suppressing the confidence / priority of elements in the
peripheral area. Specifically, the confidence of a visual feature at

relative pixel coordinate (x, y) ∈ [−1.0, 1.0]× [−1.0, 1.0] within a
spatial buffer from origin at (0, 0) may be defined by multiplying
a unit amount of evidence with a parameterized 2D Gaussian

function c(x, y) = 1
1+k

∗e−(focus2)(x2+y2), or priority can be defined
with the Gaussian alone.

In each working cycle, the system uses attention mechanisms
to extract a “patch” subset of spatially-near features from

the vision buffer, also in a spotlight-type manner, though in
practice any subset of features may be selected so long as their
combination tends to be recognized by the system. A high-
priority feature is selected probabilistically using bag (Wang,
1995), ranked according to its frequency and confidence (where
priority p = f ∗ c, so that very highly activated and confident
features, with values closer to one, are preferred for selection),
and a box of a configurable radius provides bounds for the spatial
subset selection. The selected subset of events are then combined

into a single compound term, a conjunction2; the selected feature
subset can be potentially very large, (in our case, maximally
28 ∗ 28 = 784 events) or very small (2 ∗ 2 = 4 events) depending
on the constraints of feature selection, but afterwards they may
be combined and treated as a singular whole. At this point
perhaps is where the lowest level of abstraction and classification
occurs in the system. Multiple events are represented using a
single compound term; this term names a specific concept in
memory. Therefore, an abstraction occurs as the system extracts
a subset and combines multiple smaller components into a single
representative term of some granularity; the compound is not an
arbitrary mapping, since it is directly composed of a subset of
modal events. This process in NARS also helps to resist noise
in the input, since fuzzy truth-value expectations for feature
detections are “rounded” to their purely positive or negative
form. A primitive classification occurs immediately as well, when
the constructed compound is processed by NARS and activates
its corresponding concept in memory. If the concept does not yet
exist, a new one must be created in the memory; although there
are an extremely large number of possible boolean feature map
activation patterns (for just the singular whole 28 × 28 image,
228∗28 = 2784 = 1.02 ∗ 10236), NARS only stores the smaller
positive feature subsets to which it actually attends, and deletes
old concepts which are rarely encountered or used (such as only
once or twice in the system’s lifetime) in the case that the system’s
memory is at capacity, ensuring the system’s memory size and
resource usage remains bounded at all times.

2Fint (Wang, 2013) was modified to use a version of extended Boolean function

and(x1, ..., xn) = (x1 ∗ ... ∗ xn)
1
n which works like geometric average, maintaining

higher confidence for conjunctions of even large quantities of events.
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After the NARS system was programmed with spatial buffer
and attention capabilities, the next step of supervised learning
involved teaching class labels for each training image. During
training, a label event (L) was input every few working cycles
while at the same time the corresponding image of the numeric
digit was shown to NARS. We can follow the inference process
that occurs when NARS encounters an image of Digit 1 in the
Training and Testing Phases.

During Training: For compactness, we will write each first-
order feature event using a single letter and index subscript, like
Ey,x = <{VisionSensor_y_x} → [bright]>
// NARS is drawn to select a salient feature near the top-center of
the visual field (location (7,15)), and extracts a 3x3 patch around
it.





¬E6,14 E6,15 ¬E6,16
¬E7,14 E7,15 ¬E7,16
¬E8,14 E8,15 ¬E8,16





// The positive feature activations are conjunctively combined
using a conditional composition inference rule:

V0 = <E6,15 ∧ E7,15 ∧ E8,15>. 〈1.0, 0.9〉
// NARS observes our label event for the current image (digit 1)

L0 = <digit1 → [seen]>. 〈1.0, 0.9〉
NARS creates temporal associations between its visual

extractions (V0) and the label event (L0) when they both enter
the system’s temporal module. As the system further analyzes the
visual image, more of these associative connections form.

// By temporal induction, NARS associates the two into a
predictive implication

{V0, L0} ⊢ P
= <<E6,15 ∧ E7,15 ∧ E8,15>/⇒ <digit1 → [seen]>>. 〈1.0, 0.45〉

During Testing, when the system extracts a familiar feature
compound and with which it has made a temporal association
with our label event, the system can infer the label from the
image.

// The same subset of visual features is selected within a slightly
shifted and scaled (5 rows x 3 columns) attention window, say from
a different image of digit 1 (at location (6,15)).













¬E4,14 ¬E4,15 ¬E4,16
¬E5,14 ¬E5,15 ¬E5,16
¬E6,14 E6,15 ¬E6,16
¬E7,14 E7,15 ¬E7,16
¬E8,14 E8,15 ¬E8,16













// The positive features are combined using conjunction,
resulting in the same compound as previously encountered.

V1 = <E6,15 ∧ E7,15 ∧ E8,15>. 〈1.0, 0.9〉
// After matching it to the concept, system finds a related premise

in memory, recovering the predictive implication created earlier,
and performing conditional deduction to derive the associated
label.

{V1, P} ⊢ L1 = <digit1 → [seen]> 〈1.0, 0.405〉
// Seed goals for NARS; NARSwants to press a digit button when

its corresponding digit is seen.
G0 = <<digit0 → [seen]>,⇑pressDigit0>! 〈1.0, 0.9〉
G1 = <<digit1 → [seen]>,⇑pressDigit1>! 〈1.0, 0.9〉

// When the label event is true, NARS can use it in deduction

with a seed goal.
{L1,G1} ⊢ G′ = ⇑pressDigit1! 〈1.0, 0.267〉

Finally, the derived operation goal has some expected
desirability (in our example d = 0.63 though in reality it depends
on the amount of evidence) which will accumulate with other
desires by the Revision Rule. Eventually, if enough evidence
is derived from these between the stimulus and the predictive
beliefs (“perceptual committees”), and the seed goals, a very
strong desire for the operation will be derived which exceeds
NARS’ Decision-Making Threshold, causing NARS to execute
the operation.

3.4.2. Experiment Methodology and Results
We evaluated NARS on four visual recognition tests. Firstly,
binary memorization: testing the system’s ability to memorize
images of bits, and recall the same images in the near future.
Second, digitmemorization: the same, but with ten different digits
(0 through 9). Thirdly, binary classification: testing the system’s
ability to identify new instances of the same class using only the
knowledge it learned from labeled training examples it has seen.
Finally, digit classification: the same as in binary, but with all ten
different digits.

The overall results for our NARS visual recognition
experiments are recorded in Table 1. Since NARS follows a
different paradigm than neural networks, a separate (but similar)
experimental methodology was developed. The experiment
is divided into the familiar training and testing phase with
unique random images from the dataset. NARS is exposed to
each training image for a certain number of working cycles
(recorded in the table), while the training example’s label event is
simultaneously provided as input. The training phase is followed
by the testing phase, where each test image is presented to NARS
(after a short priming period) until the system is confident
enough to make a guess. If NARS makes no guess by a certain
timeout period (here we used 3,000 working cycles), the example
is counted as incorrect.

There are many factors that impact the evaluation of
NARS, including the system’s specific design, and the system’s
configurable “personality parameters” which the user sets for
each individual instance of NARS, and just as no two humans
with different personalities would perform the same way on these
tests, neither will two NARS. Variable “personality” impacts the
control process and so the results of the evaluation, but this
can be used to the NARS user’s advantage since the user can
identify more or less optimal personality parameters for the task
at hand. Specifically for our digit recognition tests, we accounted
for cautiousness (T), evidential horizon (k), event and desire
confidence decay rates, as well as a visual focus which determines
the confidence / priority mask on the visual field, though in
future versions this value should dynamically change according
to sensory saliency and NARS’ motivation. In the case of the
NARS program, the perceptual principles were implemented as
described in this paper, with some restrictive modifications made
to the system to prevent extra inference that was not strictly
necessary to the test. We optimized configurable parameters (see
Table 2) for each test using a greedy walk function. The accuracy
values in the table are some initial results we achieved within our
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TABLE 1 | Accuracy results recorded for the NARS MNIST digit memorization and classification tests (3 trials).

Test name Number of train/test images Training cycles (per image) Trial 1 Trial 2 Trial 3 Overall avg. accuracy

Binary memorization [0, 1] 10, 5 per digit 150 100% 100% 100% 100%

Digit memorization [0− 9] 10, 1 per digit 1,500 100% 100% 100% 100%

Binary classification [0, 1] 30/90 750 97.78% 98.89% 96.67% 97.78%

Digit classification [0− 9] 300/100 125 48.0% 43.0% 40.0% 43.66%

TABLE 2 | Configurable NARS parameters (up to 3 decimal places) used during each test.

Test name Evidential horizon (k) Cautiousness (T) Priority mask focus Event time decay Desire time decay

Binary memorization [0, 1] 7 0.600 20.0 0.070 0.999

Digit memorization [0− 9] 22 0.582 0.159 0.560 0.999

Binary Classification [0, 1] 22 0.582 6.380 0.913 0.832

Digit classification [0− 9] 1 0.65 0.935 0.95 0.95

time frame for this research; they may serve as a baseline score to
beat for future versions of NARS.

NARS was able to achieve high accuracies on the first three
tests with the simple approach alone, however the “pixel-
perfect” approach was not performing as well with the more
complicated digit classification task, perhaps because although
feature subsets extracted from the training examples might also
be present in the test examples, the exact activation pattern
might be translated slightly (even just a single pixel), or there
might be variations in local regions of the image (in terms
of which specific features are activated), which means NARS
would categorize it as a new pattern. This is a known problem
in computer vision which can be remedied by “max pooling,”
a procedure performed on the image features to downsample
them into a more compact and robust representation (at the
cost of specificity and information) which introduces a small
local translation invariance in the feature representation. In
max pooling, small (2 × 2) patches of the image are selected
and summarized with one value, that is the maximum value
from the patch. We can achieve a similar max pooling effect in
Non-Axiomatic Logic using disjunction between features: if any
of the features in some decided pool have positive frequencies
(above 0.5), the frequency of their disjunction will be positive, so
create a spatial disjunction of all the statements. The disjunctive
“pool” is positive if any of its elements are positive, so is the
same value regardless of any feature activations shifting within
its bounds. If all of the features in the pool have negative
frequencies (below 0.5), then the frequency of their disjunction
will be negative, so they may be represented as a negated
disjunction of positive terms, or equivalently a conjunction of
negated terms.
Say we have a 4 x 4 feature map:









¬E13,14 E13,15 ¬E13,16 ¬E13,17
¬E14,14 E14,15 ¬E14,16 ¬E14,17
¬E15,14 E15,15 ¬E15,16 ¬E15,17
¬E16,14 E16,15 ¬E16,16 ¬E16,17









Nearby features can be combined disjunctively as a form of max
pooling (in this case, 2 x 2 pooling with stride 2, resulting in a

2 x 2 pooled feature map fromwhich elements can also be selected):

[

<E13,14 ∨ E13,15 ∨ E14,14 ∨ E14,15> ¬<E13,16 ∨ E13,17 ∨ E14,16 ∨ E14,17>

<E15,14 ∨ E15,15 ∨ E16,14 ∨ E16,15> ¬<E15,16 ∨ E15,17 ∨ E16,16 ∨ E16,17>

]

4. DISCUSSIONS OF KEY ISSUES

In the following, we compare the proposed perception
mechanism of NARS with the other approaches on how a
few key issues are handled.

4.1. Multi-Level Abstractions
Perception is widely regarded as a multi-level abstraction or
generalization, which gradually turns sensory signals or stimuli
into concepts and their relations. Though this opinion is shared
by almost every approach in artificial intelligence and cognitive
science, there have been many very different ways to carry out
the process (Marr, 1982; Zhu and Mumford, 2006; Stone et al.,
2017).

On this topic, the most successful model so far is Deep
Neural Networks (DNN) (LeCun et al., 2015). For the current
discussion, this model, in its typical form, can be characterized
as the following:

• The model is constructed as a network consisting of
multiple layers of processing units, or neurons. There are
predetermined links among the neurons, though the strength
or weight of each link is learned from training data.

• Each neuron is a parameterized function that carries out of a
certain mapping from input to output, which can be seen as
an abstraction or generalization, since the mapping is usually
many-to-one. In the wholemodel, there is only a small number
of neuron types, though for each type, there are typically a large
number of neurons.

• The learning process follows a predetermined algorithm,
which adjusts the parameters (mainly the weights) gradually to
approximate or optimize a target function that is exemplified
by the training data.
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• After learning (training), the model is used as a fixed mapping
from an input layer to an output layer, with multiple hidden
layers in between, those meaning usually cannot be explained
independent of their contribution to the overall mapping.

Whilemanymodels before DNNdepend on the human designers
to pick the features to be abstracted in each layer, DNN learns
them by considering the contribution of each candidate to
the overall function. Thanks to the universal approximation
power of this model, the huge among of training data, and the
great computational power of new hardware, this approach has
achieved great successes.

Compared to DNN, the approach we are promoting shares the
idea of feature learning, though it is carried out in a very different
way:

• The knowledge of NARS is organized in a network of
interconnected processing units, or concepts. Both the
topological structure and the network parameters are learned
from experience.

• A concept summarizes an ingredient or pattern in the system’s
experience in terms of its relations with other concepts, which
is what it means to the system. This meaning is obtained
and grounded in the system’s experience, which serves in the
system’s treatment to various task. A concept is neither a
function (mapping an input vector to an output vector) nor
a symbol (denoting an external object).

• In NARS, each concept provides a type of abstraction by
relating some other concepts in a specific way. This relation
can be temporal, spatial, compositional, or substitutable (in
meaning or truth-value). These relations are closer to the
relations among human concepts than the nonlinear version
of the weighted sum used in DNN. This makes NARS more
explainable, including when the system’s conclusion is wrong,
unlike when a DNNmeets its adversarial examples.

• In NARS the reasoning-learning process is data-driven and
selective, whereby only relevant conceptual relations are
updated by carrying out inference and revision. This feature
makes the system open to novel tasks, though no satisfied
solution is guaranteed to all of them. In NARS, the perception
process is usually not exactly repeated even for same input.
Though a certain level of repetition, especially for bottom-up
processes, might be achieved.

• In NARS, there is no distinction between training and
operating phases, as learning continues with every new
example presented, though of course it is possible to test the
system on new examples if desired. Consequently, NARS is not
restricted to stationary environments specified by the training
data, and new examples are not demanded or assumed to come
from the same sample space or population as in statistics.

• For DNN’s, overfitting can occur when the model is trained for
too long on examples of the training data and does not contain
information bottlenecks which make it unable to remember a
large number of specific inputs. Since NARS is not forced to
update a single model but can maintain competing hypotheses
with different evidential bases, it is less prone to overfitting,
though it can still happen when there is no space left for

more general hypotheses or not enough resource to build
them in the first place. Additionally, limits in memory sizes
act as a natural information bottleneck which make it usually
impossible for the system to remember every input.

A primary aspect of perception is identifying “high-level”
categories and concepts from a given “low-level” stimulus using
abstraction and generalization. By abstraction, we mean reducing
complexity using a single entity to represent a combination
of multiple smaller parts (e.g., viewing “the bigger picture”
and ignoring the minute details), and by generalization, we
mean identifying more general categories from more specific
categories. These processes go hand-in-hand, and are naturally
supported by NAL inference, which defines “category” or
“inheritance” as the basic relationship between concepts and
allows compounding. What happens in the system during
perceptual abstraction? If there are multiple items from a sensory
buffer or memory which are combined and treated singularly
such as in conjunction, an abstraction has occurred. In NARS
memory, each concept is related to some others according to
experience in a graded generalization hierarchy, where concepts
of all different abstraction and generalization levels exist and
may be activated during perception. With this in mind, we can
attempt to weakly delineate what is a “high-level” or “low-level”
concept, and how the two are bridged together with “mid-level”
perception (composition and categorical inferences).

There are no explicitly defined generalization or abstraction
levels in the NARS conceptual hierarchy except the extreme
terminals: properties which describe the most general category
and instances which describe most specific. Instead, concepts are
networked in such a way to form a gradient of generalization,
and multiple concepts can be represented within a single more
abstract concept. There is no hard distinction between high-level
and low-level concepts, but we can attempt to classify them based
on their historical origin and structure: (1) the perceptual process
begins with sensor detections at the point of interaction with the
environment, from which the system extracts organism-specific
“hardcoded” features from the sensory stimulus in parallel, which
can activate their corresponding low-level atomic concepts, (2)
a spatially-ordered map of these “pre-processed” activations is
presented or otherwise made available to the system’s top-down
control process, which uses factors like attention to select features
and compose them as a compound which may match with a
corresponding mid-level concept in memory, (3) finally, when
many low- and mid-level concepts have been created in the
memory and associated via reasoning, the system can further
combine and generalize those underlying concepts to construct
“perceptually grounded” high-level abstract concepts.

In summary, while sharing certain ideas with the other
approaches, in NARS the multi-level abstraction process in
perception is carried out in a very different way. While NARS
also accepts raw sensory data and generalizes / abstracts it
like the neural network, units of all specificities are treated
conceptually within the system from the lowest to the highest
levels of generalization and abstraction. Instead of combining
all low-level information at once with an algorithm of different
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synaptic weights to classify a more abstract object, the system
continuously, incrementally, and selectively extracts subsets of
sensations which it compares to its memories, helping to identify
contextually relevant actions and knowledge.

4.2. Perception as Inference
To consider perception as inference is not a new idea, though the
previous works mostly use this idea to explain human perception
(Rock, 1983; Hatfield, 2002; Hockema, 2004; Shanahan, 2005).

What we have been doing is to give this idea a constructive
proof by accomplishing perception in a reasoning system
implemented in a computer. Roughly speaking, in NARS

• disambiguation and contradiction resolving are typically done
by the revision rule and the choice rule,

• recognition and explanation are typically done by the
abduction rule and the revision rule,

• generalization and abstraction are typically done by the
induction rule and the revision rule,

• prediction and demonstration are typically done by the
deduction rule,

• concept creation is typically done by the term composition
rule.

In our view, the bridge between low-level signals and high-
level categories can be achieved by inference. Perception fits
naturally within a framework of inference processes, since
both seek to construct meaningful results from components
or premises. For example, a primary “perceptual inference” is
the process of categorization, where the system uses its many
concepts to guess a more abstract category of a subset of its
sensations. What the system perceives during its operation is the
experience of many combined inference results; these “perceptual
committees” (Wolfe et al., 2006) or internal schemata inform
the system’s perceptual beliefs, each chipping in their preferred
logical suggestions on how to interpret a stimulus. Inference
results and predictions will tend to complement when they agree,
say allowing the system to recognize an object partially occluded
by a tree. When inference results conflict, the more confident
results will tend to dominate the others, which becomes apparent
in the case of certain illusions where our minds are “tricked” by
our senses.

In order to help with constructing useful mid- or high-level
concepts or schemata as well as make categorization simpler,
the system has built-in bottom-up processes that automatically
extract useful low-level perceptual features in parallel from
an incoming stimulus. Which features are extracted impose
a constraint on what is possible for the system to perceive.
Extracted “atomic” features will activate their corresponding
concepts during the “pre-processing” of a sensation, which
helps guide the system’s top-down selections and comparisons
to other parts of memory. In this way, perception is very
context-dependent, its content relying heavily on both the signals
from the current environment as well as the system’s attention
and current memory structure. The reasoning process produces
compounds and/or predictive statements which constitute the
system’s mid-level and high-level concepts. Later, when the
system experiences many of the same low-level features again, it

can use the activated features together with the previously learned
associations to categorize the stimulus. Various factors decide the
exact concept and stimulus selections during perception, which
constitute the system’s attentional mechanisms. The system can
then use other top-down mechanisms such as prediction and
anticipation to confirm or disprove its categorical beliefs. The
system over time compiles evidence for and against relationships
between low-level features and higher-level concepts, ideally
optimizing the system’s knowledge in terms of helping it achieve
its goals.

Compared to the common algorithm-guided processes, rule-
based processes are more naturally justifiable and support real-
time responses (Wang and Li, 2016; Wang et al., 2020), though
NARS can also use problem-specific algorithms as tools or
“organs” (Hammer et al., 2021).

4.3. Realization of the Principles
The above description about NARS provides a concrete
framework for the principles of perception discussed at the
beginning of the article.

The perception process in NARS is subjective, mainly because
it is based on experience-grounded semantics. According to
this theory, the meaning of a concept is determined by what
the system knows about it, and the truth-value of a statement
is determined by how much (positive and negative) evidence
the system has about it. The above treatment is fully applied
to perception, where the concepts and beliefs are from the
system’s point of view. In particular, the system’s perception
produces beliefs similar to the sensorimotor contingency studied
in cognitive science, which describes the world or environment
in the form of “If I do A, I am going to see B,” which is completely
from the system’s perspective. Even so, we can also explain
how objectivity gradually comes into the system’s knowledge. As
soon as NARS starts to interact and communicate with other
cognitive systems, it may observe similar relations among events
and other’s actions. As a result, some egocentric beliefs will be
generalized, such as from “If I do A, I am going to see B”
to “If X does A, X is going to see B,” where X can be any
agent. Such a general belief can be shared via communication
and be strengthened by the positive feedback from the others,
and gradually become part of the common knowledge, or
“commonsense” of a society. Some of the knowledge may even be
projected to the world, like “A causes B,” as if it does not depend
on any agent or cognitive system. In this way, perception inNARS
is primarily and fundamentally subjective, though can gradually
include objective factors in it.

The perception process in NARS is active, since knowledge
is established relative to the system’s actions, and perceptual
information is selected attentively. Top-down operations are
normally invoked by the system to accomplish existing tasks,
though some can also be automatically triggered by strong
external stimuli. In NARS, sensors and actuators are handled
similarly, as both provide feedback to the system as input
information, though we can still say that the main job for a
sensor is to collect information, while for an actuator is to make
a change. Our future plan for vision is not analyzing static
images, but to use sensors to actively “scan” and navigate a
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whole environment. Naturally, complicated perceptive patterns
will be represented as scan trace (Wang and Hammer, 2018),
or compound terms with both sensory and motor components.
Active perception occurring within the system’s internal working
space means the system might be able to obtain self-awareness
and self-control via introspection, which raises the possibility of
consciousness, as analyzed in Wang (2020).

The perception process in NARS is unified, simply because
the same memory, control, and set of inference rules are used
for perception and cognition. Of course, perception still needs
special treatment, which is what we are still on, for several
reasons. First, the raw data coming into the system has different
formats. For example, vision typically gets input data from a
large number of light sensors, though the exact features of these
sensors may be different in different systems (both human and
computer), and likewise for other modalities. We need to find
efficient ways to represent features and to preprocess them, so
as to turn them into terms similar to those from other channels.
As far as inference is concerned, the challenge here is that
the inputs from a sensorimotor channel are mainly related by
spatial and temporal relations, rather than by compositional
(syntactic) and semantic relations, as knowledge from linguistic
channels. Even though the same set of inference rules are used,
special attention allocation policy is needed to efficiently select
the useful patterns and contingencies among the huge number
of candidates.

One important consequence of this unification of perception
and cognition is that the widely accepted distinction between
“symbolic” and “subsymbolic” disappears in NARS. As explained
previously, the concepts of NARS are not symbols representing
external objects and events, but directly grounded on the system’s
experience, they share many properties with the processing
units in connectionist networks (Smolensky, 1988), though they
are not like neurons. There are still concepts in NARS that
are directly associated with sensors and actuators, as well as
concepts that are only remotely related to sensorimotor, but
their difference is quantitative and relative, not qualitative and
absolute, as widely assumed. NARS does not integrate these two
paradigms into a hybrid “neuro-symbolic” model, though share
some ideas with both at different places.

5. CONCLUSIONS

Perception in NARS is still an ongoing endeavor with many open
problems. Even so, our progress so far shows the potential of
applying certain well-established principles reached in cognitive
science, namely taking perception as subjective, active, and
unified with cognition.

On the technical level, our work shows the potential of
carrying out perception as reasoning, especially in NARS, amodel
built on the foundation that intelligence and cognition can be
taken as adaptation with insufficient knowledge and resources.

We believe our lessons can contribute to better understand of
perception, as well as to general intelligence.
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