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At the current stage, NARS vision requires a pre-processing module, e.g., 
convolutional neural network, to detect high-level objects (e.g., “cardinal”) 
from low-level pixels (the image on the left).

Once NARS has the high-level “abstract” concepts, they can be used in high-
level logical reasoning:
e.g., deduction: 
{<cardinal→bird>., <bird→animal>.} 
⊢ <cardinal→animal>.

But what about raw sensor data (e.g., the pixels of an image)? Can the 
system do logical reasoning with sensations to build abstract concepts on its 
own? After all, NARS can natively compute abstractions and generalizations
of high-level concepts, why not with sensor data? 

Research Question: Can NARS make actionable predictions by natively 
composing high-level concepts (e.g., compounds) from low-level sensations, 
without the need for a separate vision module?

Male Northern Cardinal (state bird of Ohio, USA)
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Perception through Reasoning?
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Human Sensation & 
Perception

• Humans have more than 5 sensory modalities (e.g., vision, touch, hearing, 
etc.). For each modality, there are neurons which detect specific physical 
signals from the world (e.g., red photoreceptor, mechanical pressure receptor, 
high pitch, etc.). 

• Sensory neurons can be activated strongly, weakly, or not at all, depending on 
the stimulus pattern. These “sensations” are the nervous system’s “inputs”. 

• Each neuron is located at a unique location in space. Sensory neurons connect 
to the brain in a way that preserves their relative spatial layout, also called a 
topographic mapping (see [Wolfe et. al, 2006], and images to left)

• The brain apparently uses topographic maps to understand the spatial layout 
of its sensations. If NARS is analogous to the brain, can we modify NARS to 
accept sensory topographic maps, then test NARS performance? That’s what 
this experiment is about.

Somatotopic (Touch) Map
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Tonotopic (Hearing) Map



Info about the 
MNIST Digit Dataset

• MNIST digit recognition is a famous test for computer vision; 
system succeeds by correctly identifying the digit in the 
image (for example, see right)

• Dataset containing labeled images of handwritten digits (0-9)
• 28 pixels x 28 pixels = 784 pixels

• MNIST is a decent test for NARS perception. We treat each 
image like a topographic map of 784 “low-level” sensory
photoreceptor activations, from which NARS can infer the 
“high-level” object class (the digit’s label).
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MNIST Image of digit 3



NARS
Modifications
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Topographic Mapping in 
NARS using “Spatial Buffer”

• Treat each pixel as a vision sensor instance (e.g, like a single photoreceptor). The 
instance inherits a certain property (the property the sensor detects, e.g., 
“bright”, “red”, “green”, “vertical edge”, etc.).  

• Here we use [BRIGHT] property to indicate the pixel’s brightness / intensity.

• Encode each sensor’s activation level as an atomic Narsese Event, where:

• frequency = intensity of the sensation (0 = no activation, 1 = full activation)

• confidence = unit amount of evidence = 
1

1+𝑘
, where k is the evidential horizon

• e.g., <{Pixel_x14_y06} → [BRIGHT]>. :|: <0.95, 0.5>

• Change to NARS architecture: store the events in a 2D “Spatial Buffer”, which 
retains the spatial layout of the input events, so they can be grouped by 
location. Also stores a reference to them in a Bag using the event’s truth 
expectation as the item’s priority so they can be randomly selected (i.e., items 
near expectation=1.0 are more likely to be selected).
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Spatial Buffer and “the Spotlight”
• First, NARS probabilistically selects an atomic event from the Bag; this is the “pivot” event

• Then, since spatially near events are more likely to be related than spatially distant events, 
NARS can group events using a spatial window around the pivot event

• In psychological literature, this is called the Spotlight model of attention; some argue the 
spotlight can vary in size according to certain factors, in the Zoom-Lens Model of Attention (see 
[Eriksen and St. James, 1986], [Cave and Bichot, 1999] for further reading)

• Multiple events selected in the window are combined into a higher-order statement using 
conjunction (AND):

E.g., 2 events:

<({Pixel_x14_y06} → [BRIGHT]>  <({Pixel_x15_y05}  → [BRIGHT]>. :|:

This statement is equivalent to the first-order intensional intersection 
(aka extensional union):

= <({Pixel_x14_y06}  {Pixel_x15_y05}) → [BRIGHT]>.  :|:

=  <({Pixel_x14_y06, Pixel_x15_y05}) → [BRIGHT]>.  :|:

Spotlight of attention
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e.g., a 5x5 window, would compose up 
to 25 atomic events into a single 

compound event

Temple University

https://link.springer.com/content/pdf/10.3758/BF03211502.pdf
https://link.springer.com/content/pdf/10.3758/BF03212327.pdf


Experiment
Methodology
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Experimental Test Method
• IDEA: NARS will accumulate evidence as it scans the image and composes visual features. NARS 

will continuously make predictions of image class based on the features it sees; these predictions 
accumulate in memory.

• HYPOTHESIS: When the predictions for a digit accumulate strongly, NARS derives executes an 
operation to guess that digit. By grouping multiple events into compounds, the compound is 
specific enough to predict the digit’s class, but generic enough to recognize variations of the digit 
(compared to a single pixel which is too generic, or an entire image which is too specific).

• SETUP: Each experimental trial is divided into Training Phase & Testing Phase. First, the system is 
shown labeled images in the Training Phase. Then, its knowledge is tested in the Testing Phase

• In Training Phase: NARS is simply let to observe the training image for some number T of 
cycles, and input with a “label event” informing NARS which digit it is seeing (e.g., <Digit5
→ [seen]>. :|:). 
During this phase, NARS temporally associates visual features with the digit label event 
using induction:
(e.g., <<{Pixel_x14_y06} → [BRIGHT]> =/> <Digit5 → [seen]>. )

• In Testing Phase: NARS is given seed goals to “execute operation for digit X if digit X is 
seen” (e.g.,. G5= <<Digit5 → [seen]>,^pressDigit5>!) for all 10 digits. 
Therefore, when NARS predicts event E = <Digit5 → [seen]>, NARS can use deduction to 
derive evidence for operation goal:
{G5, E} ⊢ ^pressDigit5!

• SUCCESS CRITERIA: NARS gets one chance to answer for each image. It answers by executing an 
operation (e.g., ^pressDigit3), and the answer is then recorded as “correct” or “incorrect”. 

• TIMEOUT: If the system does not recognize the image features, it might not execute any 
operation at all, in which case NARS was marked “incorrect” after a timeout period of 
3000 working cycles.

In this screenshot, NARS correctly executes a ‘3’ operation, 
indicating that it recognizes the digit ‘3’ in the image based on 

the image’s features
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Experiment video
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Results & Analysis
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Accuracy
Results

Personality
Parameters
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Important Results

• Results:

• NARS performed memorization perfectly. 

• It could classify never-before-seen images of binary digits about 98% of the 
time

• Digit Classification - the hardest test, identify new images of digits 0 to 
9. On 1 trial, out of a test set of 100 images, NARS correctly classified 
48% of images:

• NARS classified almost half of all images correct. Much better than random 
chance (10%), so the method shows promise

• NARS simply used composition, induction, and deduction rules

• Personality parameters:

• 0.95 decay rate for both events and goals

• Evidential horizon was standard, k = 1

• Decision-making threshold was moderate, T = 0.65
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Analysis of Results
• The spatial grouping of visual features for compositional inference allowed NARS to correctly predict the class of novel 

images

• The system achieved higher accuracies when modified to:

• Use static-sized attention windows (5x5), rather than variable randomly-sized attention window. In the future, attention window 
should be guided by top-down predictions

• Given access to select disjunctions of events from a Spatial Buffer, as a form of “max-pooling” for robustness to small local 
translations:

• E.g,
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Limitations
and

Future Improvements
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Limitations and Future Directions
• The system could not choose its own attention window, rather it was randomly sized. Especially it would be useful if NARS could use predictions 

using the existing concepts in memory (e.g., NARS see a red pixel, so NARS predicts it will see a cardinal and should look for beak features to 
confirm)

• The only feature map available to NARS was an “intensity” map. Humans have neurons which detect specific edge orientations (e.g., vertical, 
horizontal, 30o,45o ,etc.) across the visual field, which could also be represented as an activation map, though which exactly which visual features 
to support must be investigated.

• Related question: How can NARS detect complex features from an RGB image? e.g., human brains have “vertical edge detectors”, can NARS detect 
vertical edges using Boolean operators?

• The explicit spatial window used here might be a naïve approach, vs. implicit and parallel spatial composition which could be achieved using e.g., 
neural networks. Still, these results show the promise of spatial grouping and evidence-based reasoning for sensory understanding.

• Further research directions: Here NARS was trained and tested in a passive image classification task. Future tests could take place in an active 
context by testing NARS goal performance in a real-time interactive environment.
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Image Sources

• Cardinal: 
https://en.wikipedia.org/wiki/Northern_cardinal#/media/File:Male_
Northern_Cardinal_in_Hudson,_Ohio.jpg

• Homunculus:
https://en.wikipedia.org/wiki/Cortical_homunculus

• Tonotopy: 
https://www.researchgate.net/publication/257775085_Sound_qualit
y_analysis_of_a_passenger_car_based_on_electroencephalography/f
igures?lo=1
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