
NARS-Python v0.3 — Technical Overview

Christian G. Hahm

Temple AGI Team
Department of Computer & Information Sciences

Temple University
Philadelphia, PA, USA

christian.hahm@temple.edu

Abstract. NARS-Python is an open-source implementation of a Non-Axiomatic
Reasoning System (NARS) programmed in Python. This paper describes the
overall architecture, control mechanism, and functionalities of NARS-Python v0.3,
as well as some ideas for future work.

Open-source system (Python): https://github.com/ccrock4t/NARS-Python

1 Introduction and Relevant Works

NARS-Python is a Python implementation of a Non-Axiomatic Reasoning System (NARS),
as based on NARS theory as proposed by Dr. Pei Wang [3]. This NARS project started
in October 2020, and its design is inspired by the two most mature NARS projects
OpenNARS [5] and OpenNARS for Applications (ONA) [1]. NARS systems all share a
common element, which is their use of Non-Axiomatic Logic1 (NAL). However, these
systems can be quite intricate and there is room for subjective design decisions, meaning
every NARS implementation will have its own unique architecture, control mechanism,
and behavior. The programming language used is more or less unimportant when it
comes to NARS functioning, although every language has its own strengths and weak-
nesses. In this case, Python was chosen for its strengths: modern, readable, easy to im-
port libraries (if needed). Python is weak in some aspects, such as speed and memory
efficiency. However, the hardware of current modern computers is already quite capable
of running a NARS-Python instance. Additionally, issues regarding slow computation
will become less relevant in the coming years as computing hardware improves2.

The NARS-Python v0.3 alpha implements many critical aspects of NAL 1-5, and
some aspects of NAL-7 (events) and NAL-8 (goals). At this point in the system’s de-
velopment, it is simply equipped to accept inputs, parse Narsese grammar, and use
some basic NAL inference rules (syllogistic rules, compositional rules, immediate rules,
etc.). The grammar code enforces the use of valid Narsese, and the code defining cus-
tom NARS objects enforces the use of standard components (such as buffer, Task, etc.)
throughout the project. The system has a functioning bag memory structure (see [3,4]),

1 Read the NAL book[4] for a fantastic in-depth tutorial into the logic and theory behind NARS.
2 Of course, we should still always strive for the most efficient code!

https://github.com/ccrock4t/NARS-Python


2

handles real-time knowledge inputs (e.g. judgments, events, goals) and performs logi-
cal inference. Most importantly, v0.3 introduces the ability for the system to derive new
goals and execute desired operations (i.e. actions), making it capable of autonomous in-
teraction with its environment. While the v0.3 system does accept / reason with goals,
it still lacks any useful level of autonomy since it is not good at constructing or refining
useful procedural knowledge and has no sense of anticipation or timing. The system’s
temporal inference and timing mechanisms need improvement in future versions.

2 Architecture

Fig. 1: The system architecture. The Control Mechanism works across all components.

Figure 1 shows the system architecture. The system operates every component during
each working cycle. While the system architecture is modularized into separate compo-
nents for clarity and organization, the system’s Control Mechanism works across all the
modules in a unified fashion. That is, data transfer between components is not strictly
enforced or timed as in the case of an integrated system, since by necessity the compo-
nents must interact often and intimately. It is the job of the central Control Mechanism
to harmoniously use the architecture components together.

2.1 Input Channel and System Buffers

There is a single FIFO Input Channel, which is currently the only way to give external
inputs to NARS; these inputs are strings and must represent valid Narsese syntax. Input
strings are parsed into sentences and then processed into Tasks, which are containers



3

for sentences that exist outside the main memory. Events are fed into the Event Buffer,
a queue which maintains the temporal order of events so that they may be used in
temporal inference. The contents of the Event Buffer, along with their combinations by
temporal inference are dumped into the Global Buffer whenever the buffer contains
two events. Eternal knowledge bypasses the Event Buffer and is instead sent directly
to the Global Buffer. The Global Buffer is a standard priority queue, sorted by highest
priority and where the highest priority object is selected when retrieving from the queue.

Experimental: Visual inputs The Input Channel can accept visual images as raw pixel
inputs, by first typing vision: followed by a 2D array of pixel intensity, or a 3D
array of pixel RGB. These are converted by the Input Channel into Narsese sensations,
which are recursively implemented Narsese arrays (using @ to denote array). Arrays
can be standalone terms (e.g. @S, which is a term that contains an array of terms) or
array sentences (e.g. <{@S} → P>., a judgment which contains array terms and is
also an array itself). Narsese arrays are still highly theoretical and experimental; they
are subject to change, but may be useful for native NARS perception in the future.

2.2 Memory

Fig. 2: Example showing the struc-
ture of a concept.

Fig. 3: A graph depicting how concepts
are linked within NARS memory.

NARS Memory is where the system stores its experience and premises to use during
inference. It consists of a standard bag data structure. The bag is a probabilitistic priority
queue, which means its objects are probabilistically selected weighted according to each
object’s priority, relative to the other objects’ priorities. The Memory should have a



4

large capacity, since it stores all of the system’s concepts (and by extension, knowledge)
during the system’s lifetime.

Each concept (see Figure 2) within the Memory is named by a unique term. A con-
cept contains useful beliefs and desires which stored respectively in Belief and Desire
Tables. A table is a minmaxheap sorted by highest sentence confidence.

A concept also stores links to other concepts within the memory (see Figures 2,3).
Concept links are useful for finding semantically similar concepts, such as to use them
in reasoning. In the current version, every concept has 3 bags of links: term links (to
subterms and superterms), prediction links (to concepts predicted by this concept) and
explanation links (to concepts which explain this concept). Term links are used by the
system to find inference premises that share a term. Prediction and explanation links are
created when processing a newly encountered implication statement; links to the overall
implication statement are created within the concepts named by the precondition and
postcondition terms. These links are not used in the current version, but will be useful
for goal reasoning and anticipation in future versions.

2.3 Inference Engine

The Inference Engine performs inference on given premises, then outputs the results.
The Engine can accept a single premise (for immediate inference), two semantically
related premises (for syllogistic inference), or two temporally-near events (for temporal
inference). Once the premises are provided into the engine, it identifies the relationship
between them and performs the relevant inference rule computation; it also stamps each
inference result with standard information (similarly as defined in [2]) like evidential
base, creation time, occurrence time, sentence ID, etc.

3 Control Mechanism and Working Cycle

The system runs an infinite loop of working cycles. In a given working cycle, the system
1.) processes a pending sentence from the Input Channel, 2.) processes events from the
Event Buffer into the Global Buffer, and 3.) either Observes a Task from the Global
Buffer or Considers a concept from Memory; the selection ratio of Observe to Consider
is probabilistic, thresholded according to a new system parameter called mindfulness.

A NARS system working in a real-time application must try to prevent its buffers
from flooding by quickly processing its Tasks. When NARS Observes, it consumes the
highest priority Task out of the Global Buffer. The contents of the Task are integrated
into memory. The sentence is added to the relevant (belief or desire) Table, and new
concepts / links are created as necessary. Finally, the concept associated with the Task
has its priority raised since it is relevant to the current context.

The NARS cannot only consume new information from the outside world, but must
also reason about, or consider, what it currently knows. When NARS Considers, it first
probabilistically selects a “primary” concept from Memory, selects a belief or desire,
then uses a concept link to find a related belief. Then, the system performs inference be-
tween the two selected sentences, putting the results into the Global Buffer. Finally, the
initially selected concept has its priority decayed since it has been partially processed
and received its fair share of the system’s time and resources.



5

References

1. Hammer, P., Lofthouse, T.: ‘opennars for applications’: Architecture and control. In: Goertzel,
B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) Proceedings of the Thirteenth Conference
on Artificial General Intelligence. pp. 193–204. Springer (2020)

2. Hammer, P., Lofthouse, T., Wang, P.: The opennars implementation of the non-axiomatic rea-
soning system. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) Proceedings of the Ninth
Conference on Artificial General Intelligence. pp. 160–170. Springer (2016)

3. Wang, P.: Non-Axiomatic Reasoning System: Exploring the Essence of Intelligence. Ph.D.
thesis, Indiana University (1995)

4. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific, Singa-
pore (2013)

5. Wang, P., Hammer, P., Isaev, P., Li, X.: The conceptual design of opennars 3.1.0 (2020)


	NARS-Python v0.3 — Technical Overview
	Introduction and Relevant Works
	Architecture
	Input Channel and System Buffers
	Memory
	Inference Engine

	Control Mechanism and Working Cycle


