
A reasoning based model for anomaly detection
in the Smart City domain

Patrick Hammer1, Tony Lofthouse2, Enzo Fenoglio3, and Hugo Latapie4

1 Department of Computer & Information Sciences
College of Science and Technology

Temple University
Philadelphia PA 19122, USA
patrick.hammer@temple.edu

2 Reasoning Systems Ltd.
tony lofthouse@btinternet.com

3 Cisco Systems Inc.
efenogli@cisco.com
4 Cisco Systems Inc.
hlatapie@cisco.com

Abstract. Using a proprietary visual scene object tracker and the Open-
NARS reasoning system we demonstrate how to predict and detect var-
ious anomaly classes. The approach combines an object tracker with a
base ontology and the OpenNARS reasoning system to learn to classify
scene regions based on accumulating evidence from typical entity class
(tracked object) behaviours. The system can autonomously satisfy goals
related to anomaly detection and respond to user Q&A in real time. The
system learns directly from experience with no initial training required
(one-shot). The solution is a fusion of sub-symbolic (object tracker) and
symbolic (ontology and reasoning).

1 Introduction and similar work

Supervised Deep Learning has generated a lot of success in image classifica-
tion, object detection and tracking. Combining this technology with a reasoning-
learning system opens up new possibilities for anomaly prediction and detection.
Our approach uses a Non-Axiomatic Reasoning System (NARS) which consumes
tracklets provided by a Multi-Class Multi-Object Tracking (MC-MOT) system
in real-time. The system infers spatial and temporal relations between events,
describing their relative position and predicted path.

The multi-class and multi-object tracker was developed by Cisco Systems
Inc, and the reasoning-learning component by OpenNARS [1]. We tested our
approach on a publicly available dataset, ’Street Scene’, which is a typical scene
from a Smart City domain. The dataset is video data obtained by a street cam
mounted on a building. We show the system learning to classify scene regions,
such as street or sidewalk, from the typical ’behaviour’ of the tracked objects
belonging to three classes, such as car, pedestrian, and bike. The system is shown

2 P. Hammer et al.

to autonomously satisfy a range of goals to detect and inform the user of certain
anomaly types. An anomaly ontology supports various anomaly classes; location
based, relational based, velocity based, or vector based. From this anomaly on-
tology a range of specific anomalies can be detected; jaywalking, pedestrian in
danger, cyclist in danger, traffic entity too fast, traffic stopped, pedestrian loiter-
ing, vehicle against flow of traffic, etc. The current implementation supports the
detection of ’street’ and ’sidewalk’ regions along with pedestrian in danger and
jaywalking anomalies. The system learns in real-time and is capable of detecting
anomalies after a cold start of few seconds of operation with no prior training.
As well as the autonomous goal satisfying the system can also respond to user
questions in real-time.

The effectiveness of learning mappings for question-answering has been demon-
strated by [3], at least for simple domains. However, their approach requires
(image, question, answer) triples, essentially requiring questions to be provided
at training time. This is not feasible in cases where novel questions are input by
an operator at any time and require a real-time response. Also their model has
no time-dependence and no way to make use of background knowledge, while the
system we introduce has a notion of time and has the ability to use background
knowledge, allowing it to identify user-relevant situations, and to make predic-
tions about the future situation. The prediction capability allows the system
to identify potential anomalies before they occur rather than simply detecting
them after the event occurs.

2 Architecture

Multi-Class Multi-object Tracker is the main component of a distributed
asynchronous real-time architecture used to produce highly scalable applications.
The overall system is made up of highly decoupled, single-purpose event process-
ing components that asynchronously receive and process events. In particular,
a video streamer based on GStreamer video pipelines that receives multi-source
streaming protocols (HLS, DASH, RTSP, etc.) and distributes video frames in
compressed or raw formats, a multi-object Deep Neural network (DNN) detector
based on YOLOv3 [8], and a multi-class tracker (MC-MOT) [7]. The outputs
of the of MC-MOT together with the input video frames are eventually merged
and sent in sync to the openNARS-based visual reasoner for further processing.
Interprocess communication and data exchange within the different components
is done using Redis R© an in-memory data structure store configured as LRU
cache for reliable online operations.

The tracking problem is about how to recognize individual objects in such
a way, that they keep their ID while moving continuously in time. We used a
tracking-by-detection approach for multi-objects (MOT) that has become in-
creasingly popular in recent years, driven by the progress in object detection
and convolutional neural network (CNN). These systems perform predictions
(Kalman filter) and linear data association (Hungarian algorithm) linking mul-
tiple object detections (YOLOv3) belonging to the same class within a video

A reasoning based model for anomaly detection in the Smart City domain 3

sequence. The multi-class multi-object tracker extends this concept to track-
ing for objects belonging to multiple classes (MC-MOT) by forking a MOT
for each class of interest that in this project we limit to three classes: Person,
Bike, and Car. The CNN multi-object detector publishes the objects detection
positions in pixel coordinates (x, y, w, h), while the three MOTs subscribe to
a specific object Class and receives only the corresponding objects detection.
The output of each MOT is represented by a segment of trajectory or tracklets,
each having a class ID, instance ID, and a sequence of n previous detections
(x1, y1, t1, w1, h1), ..., (xn, yn, tn, wn, hn), where xi, yi represents the location in
pixel units on the X- and Y-axis, ti the timestamp of the detection and wi, hi

the width and height of the corresponding object bounding box. On average, it
takes 30ms for the objects detection on an NVIDIA R© Tesla R© P100 board, and
15ms for tracking. Thus, we can safely provide tracklets and frames at 15fps
including system latency to the openNARS visual reasoner, that is fair enough
for real-time applications.

OpenNARS is an implementation of Non-Axiomatic Reasoning System
(NARS). NARS is a general-purpose reasoning system that works under the
Assumption of Insufficient Knowledge and Resources. It operates using an infer-
ence cycle that applies all matching Non-Axiomatic Logic-based inference rules
that apply to the selected premises (see [5]). The selection happens in a prob-
abilistic way, following an Attention-based control strategy. The details of the
memory and control mechanism are outside of the scope of the paper (see [1] for
it), but the knowledge representation will be needed to understand the following
sections.

Knowledge representation 5 As a reasoning system, NARS uses a formal
language called “Narsese” for knowledge representation, which is defined by a
formal grammar given in [5]. To fully specify and explain this language is beyond
the scope of this article, so in the following only the directly relevant part is
introduced informally and described briefly.

The logic used in NARS belongs to a tradition of logic called “term logic”,
where the smallest component of the representation language is a “term”, and the
simplest statement has a “subject-copula-predicate” format, where the subject
and the predicate are both terms.

The basic form of statement in Narsese is inheritance statement which has
a format “S → P”, where S is the subject term, and P is the predicate term,
the “→” is the inheritance copula, which is defined as a reflexive and transitive
relation from one term to another term. The intuitive meaning of “S → P” is
“S is a special case of P” and “P is a general case of S”. For example, statement
“robin→ bird” intuitively means “Robin is a type of bird”.

We define the extension of a given term T to contain all of its known special
cases, and its intension to contain all of its known general cases. Therefore,
“S → P” is equivalent to “S is included in the extension of P”, and “P is
included in the intension of S”.

5 This subsection was adapted from [6] to make the paper self-contained.

4 P. Hammer et al.

The simplest, or “atomic”, form of a term is a word, that is, a string of char-
acters from a finite alphabet. In this article, typical terms are common English
nouns like bird an animal, or mixed by English letters, digits 0 to 9, and a few
special signs, such as hyphen(‘-’) and underscore (‘ ’), but the system can also
use other alphabets, or use terms that are meaningless to human beings, such
as “drib” and “aminal”.

Beside atomic terms, Narsese also includes compound terms of various types.
A compound term (con,C1, C2, ..., Cn) is formed by a term connector, con, and
one or more component terms (C1, C2, ..., Cn). The term connector is a logical
constant with pre-defined meaning in the system. Major types of compound
terms in Narsese includes:

– Sets: Term {Tom, Jerry} is an extensional set specified by enumerating its
instances; term [small, yellow] is an intensional set specified by enumerating
its properties.

– Intersections and differences: Term (bird ∩ swimmer) represents “birds
that can swim”; term (bird−swimmer) represents “birds that cannot swim”.

– Products and images: The relation “John is the uncle of Zack” is rep-
resented as “({John} × {Zack}) → uncle-of”, “{John} → (uncle-of / �
{Zack})”, and “{Zack} → (uncle-of / {John} �)”, equivalently.6 Here, �
is a placeholder which indicates the position in the uncle-of relation the
subject term belongs to.

– Statement: “John knows soccer balls are round” can be represented as a
higher-order statement “{John} → (know / � {soccer-ball → [round]})”,
where the statement “soccer-ball→ [round]” is used as a term.

– Compound statements: Statements can be combined using term con-
nectors for disjunction(‘∨’), conjunction(‘∧’), and negation(‘¬’), which are
intuitively similar to those in propositional logic, but not defined using truth-
tables.7

Several term connectors can be extended to take more than two component
terms, and the connector is often written before the components rather than
between them, such as (×{John} {Zack}).

Beside the inheritance copula (‘→’, “is a type of”), Narsese also has three
other basic copulas: similarity (‘↔’, “is similar to”), implication (‘⇒’, “if-then”),
and equivalence (‘⇔’, “if-and-only-if”), and the last two are used between state-
ments.

In NARS, an event is a statement with temporal attributes. Based on their
occurrence order, two events E1 and E2 may have one of the following basic
temporal relations:

6 This treatment is similar to the set-theoretic definition of “relation” as set of tuples,
where it is also possible to define what is related to a given element in the relation
as a set. For detailed discussions, see [5].

7 The definitions of disjunction and conjunction in propositional logic do not require
the components to be related in content, which lead to various issues under AIKR.
In NARS, such a compound is formed only when the components are related seman-
tically, temporally, or spatially. See [5] for details.

A reasoning based model for anomaly detection in the Smart City domain 5

– E1 happens before E2

– E1 happens after E2

– E1 happens when E2 happen

More complicated temporal relations can be expressed by taking about the sub-
events of the events.

Temporal statements are formed by combining the above basic temporal
relations with the logical relations indicated by the term connectors and copulas.
For example, implication statement “E1 ⇒ E2” has three temporal versions,
corresponding to the above three temporal orders, respectively:8

– E1 /⇒ E2

– E1 \⇒ E2

– E1 |⇒ E2

Conjunction statement “E1 ∧E2” has two temporal versions, corresponding
to two of the above three temporal orders, respectively:

– (E1, E2) (forward)
– (E1;E2) (parallel)

All the previous statements can be seen as Narsese describing things or events
from a third-person view. Narsese can also describe the actions of the system
itself with a special kind of event called operation. An operation is an event
directly realizable by the system itself via executing the associated code or com-
mand.

Formally, an operation is an application of an operator on a list of ar-
guments, written as op(a1, . . . , an) where op is the operator, and a1, ..., an is
a list of arguments. Such an operation is interpreted logically as statement
“(×{SELF} {a1} . . . {an}) → op”, where SELF is a special term indicating
the system itself, and op is an operator that has a procedural interpretation. For
instance, if we want to describe an event “The system is holding key 001”, the
statement can be expressed as “(×{SELF} {key 001})→ hold”.

Overall, there are three types of sentences defined in Narsese:

– A judgment is a statement with a truth-value, and represents a piece
of new knowledge that system needs to learn or consider. For example,
“robin → bird 〈f, c〉”, where the truth-value 〈f, c〉 will be introduced in
the next section.

– A question: is a statement without a truth-value, and represents a question
to be answered according to the system’s beliefs. For example, if the system
has a belief “robin → bird” (with a truth-value), it can be used to answer
question “robin→ bird?” by reporting the truth-value, as well as to answer
the question “robin → ?” by reporting the truth-value together with the

8 Here the direction of the arrowhead is the direction of the implication relation, while
the direction of the slash is the direction of the temporal order. In principle, copulas
like ‘/⇐’ can also be defined, but they will be redundant. For more discussion on
this topic, see [5].

6 P. Hammer et al.

term bird, as it is in the intension of robin. Similarly, the same belief can
also be used to answer question “? → bird” by reporting the truth-value
together with the term robin.

– A goal is statement without a truth-value, and represents a statement to
be realized by executing some operations, according to the system’s beliefs.
For example, “(×{SELF} {door 001})→ open!” means the system has the
goal to open the door 001 or to make sure that door 001 is opened. Each
goal has a “desire-value”, indicating the extent to which the system hopes
for a situation where the statement is true.

Tracklets to Narsese To map tracklets to NARS events, the numeric infor-
mation encoded in each tracklet is discretized. This can happen in many ways.
We used a fixed-sized grid that maps every detection tuple to the rectangle it
belongs to, as shown in Figure 1:

Fig. 1: Spatial discretization by a grid

Also for each detection, a Angle term is built based on a discretization of the
overall tracklet direction, which can be

– 11 = left up
– 10 = left down
– 01 = right up
– 00 = right down

(To be expanded to 8 compass points)

Additionally the class and instance ID is provided, which (currently) can be Car,
Cycle or Pedestrian. Now using the above, the following events can be built:

– Indicating the class of an instance:
{InstanceID} → Class

– Indicating the direction of an instance:
({InstanceID} × {Angle})→ directed

– Indicating the position of an instance:
({InstanceID} × {RectangleID})→ positioned

A reasoning based model for anomaly detection in the Smart City domain 7

– To reduce the amount of input events, also combinations are possible:
({InstanceID} × {RectangleID} × {Angle} × {Class})→ Tracklet

– Additionally, the system learns to assign street and sidewalk labels to the
scene, based on the car and pedestrian activity. This is achieved through the
use of an implication statement
(({#1} → Car); ({#1} × {$2})→ positioned) /⇒ ({$2} → street). and
(({#1} → Pedestrian); ({#1}×{$2})→ positioned) /⇒ ({$2} → sidewalk).
Whenever the consequence is derived, it will be revised up, and the choice
rule will select the candidate of highest truth expectation (either street or
sidewalk) to answer the question {specificPosition} →?X

– In addition, relative location relations R are provided by the system, includ-
ing leftOf , rightOf , topOf , belowOf and closeTo. These are encoded by
({InstanceID1} × {InstanceID2})→ R
Please note that the closeTo relation is only input when the distance is
smaller than some threshold defined by the system operator.

3 Smart City Results

Street Scene (see [4]) is a dataset for anomaly detection in video data. It is data
collected from a camera mounted on a building, watching a street. The dataset
includes unusual cases that should be detected, such as jaywalking pedestrians,
cars driving on the sidewalk, or other atypical situations. The tracker applied
to the video dataset, outputs tracklets as introduced previously, which are then
encoded into Narsese as described. NARS then can use the input information
to make predictions, satisfy goals, or to answer queries in real time. Also NARS
can detect anomalies and classify them with a background ontology.

Initially we developed a street scene simulator, Crossing, simulating a real
street. This allowed us to simulate the traffic and pedestrians on a street and
generate situations/anomalies that we did not have real data for. We then tested
our system on the following tasks:

Prediction First we tested OpenNARS’s prediction ability with the Crossing
simulator (see [2], and Figure 3).

Fig. 2: Prediction performance in the Crossing simulator

8 P. Hammer et al.

After initial fluctuation (see Figure 2) due to small sample size, after a short
time, the system reaches a stable prediction success ratio, while the total amount
of predictions made increases. While the overall tendency is clear, the exact
convergence ratio depends on the penalties given to differences between predicted
and occurred location, where less penalty results in higher success percentage.
These results are initial, and show the system’s stability. Setting a higher truth
expectation threshold increases the prediction accuracy, but in the future the
percentages will be improved for a fixed threshold.

Fig. 3: Car predictions in the Crossing simulator shown in magenta

Reasoning-based annotation In the Street Scene dataset, our system is
able to label a location as street based on the tracklet activity of pedestrians
and cars. This usually happens in an one-shot way, but will be overridden or
strengthened by further evidence.

Question Answering Also in Street Scene, we tested the system’s ability
to answer questions about the current situation, in real time, demonstrating
situational awareness about the current state of the street. Questions included
(({?1} → Class); ({?1} × {LocationLabel}) → located)? where ?1 is a variable
queried for, essentially asking for an instance of a specific class at a specific
location such as lane1, which the system returns immediately when perceived,
allowing a user, for instance, to ask for jaywalking pedestrians.

Anomaly Detection Often a system should not operate passively (answer
queries), but automatically inform the user when specific cases occur. Our ap-
proach allows the usage of background knowledge to classify unusual situations,
and to drop the user a message, if desired.

For instance, consider the case of a moving car getting too close to a pedes-
trian, putting the person in danger. This can easily be expressed in Narsese, using
the previously mentioned relative spatial relations the system receives. Further-
more, it can be linked to a goal, such that the system will inform the user when-
ever it happens: ((({#1} → Car); (({#2} → Pedestrian))({#1} × {#2}) →
closeTo), say(#2, is in danger)) /⇒ ({SELF} → [informative]). which will

A reasoning based model for anomaly detection in the Smart City domain 9

let the system inform the user assuming the goal ({SELF} → [informative])!
was given to the system. An example can be seen in Figure 4.

Fig. 4: A pedestrian in danger due to close proximity to a moving car

Also jaywalking pedestrians can be specified similarly, using
((({#1} → Pedestrian)); ({#1} × {street})→ at)), say(#2, is jaywalking))
/⇒ ({SELF} → [informative]). An example can be seen in Figure 5.

Fig. 5: An example of Jaywalking

In our tests, the system had no issue identifying these cases whenever they
occurred through all the examples existing in the Street Scene dataset.

10 P. Hammer et al.

4 Conclusion

Our system demonstrates predictive capabilities using Non-Axiomatic Reason-
ing, based on tracklet representations of objects provided by the multi-class
multi-object tracker (MC-MOT), which are converted to Narsese as we described.

Also, the relative and absolute location information given to the system,
together with object instances, object categories and other attributes, allows for
a rich set of questions to be asked and answered by the system. Here, the system
has proven to be able to label streets and sidewalks automatically, and has shown
to be capable of answering conjunctive queries with variables in real time, while
the scene is changing, and to detect anomalies using a simple ontology.

Additionally, we have shown the ability to let the system work autonomously,
informing the user in situations of interest, guided by background knowledge and
a goal driven system to inform the user. Future work will include extending the
system to support the full anomaly ontology mentioned previously along with a
wider range of tracked entity classes, along with improvements to the prediction
accuracy.

References

1. Hammer, P., Lofthouse, T., & Wang, P. (2016, July). The OpenNARS implementa-
tion of the non-axiomatic reasoning system. In International conference on artificial
general intelligence (pp. 160-170). Springer, Cham.

2. OpenNARS applications https://github.com/opennars/opennars-applications, last
accessed: June 25, 2019.

3. Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic
concept learner: Interpreting scenes, words, and sentences from natural supervision.
arXiv preprint arXiv:1904.12584.

4. Ramachandra, B., & Jones, M. (2019). Street Scene: A new dataset and evaluation
protocol for video anomaly detection. arXiv preprint arXiv:1902.05872.

5. Wang, P. (2013). Non-axiomatic logic: A model of intelligent reasoning. World Sci-
entific.

6. Wang, P., Li, X., & Hammer, P. (2018). Self in NARS, an AGI System. Frontiers
in Robotics and AI, 5, 20.

7. KangUn Jo, JungHyuk Im, Jingu Kim and Dae-Shik Kim (2017). A real-time multi-
class multi-object tracker using YOLOv2. International Conference on Signal and
Image Processing Applications, 2017, Kuching, Malaysia.

8. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

