Abstract—Transactional memory allows the user to declare sequences of instructions as speculative transactions that can either commit or abort. If a transaction commits, it appears to be executed sequentially, so that the committed transactions constitute a correct sequential execution. If a transaction aborts, none of its instructions can affect other transactions.

The popular criterion of opacity requires that the views of aborted transactions must also be consistent with the global sequential order constituted by committed ones. This is believed to be important, since inconsistencies observed by an aborted transaction may cause a fatal irrecoverable error or waste of the system in an infinite loop. Intuitively, an opaque implementation must ensure that no intermediate view a transaction obtains before it commits or aborts can be affected by a transaction that has not started committing yet, so called deferred-update semantics.

In this paper, we intend to grasp this intuition formally. We propose a variant of opacity that explicitly requires the sequential order to respect the deferred-update semantics. Unlike opacity, our property also ensures that a serialization of a history implies serializations of its prefixes. Finally, we show that our property is equivalent to opacity if we assume that no two transactions commit identical values on the same variable, and present a counter-example for scenarios when the “unique-write” assumption does not hold.

I. INTRODUCTION

Resolving conflicts in an efficient and consistent manner is the most challenging task in concurrent software design. Transactional memory (TM) [11], [18] addresses this challenge by offering an interface in which sequences of shared-memory instructions can be declared as speculative transactions. The underlying idea, borrowed from databases, is to treat each transaction as an atomic event: a transaction may either commit in which case it appears as executed sequentially, or abort in which case none of its update instructions affect other transactions. The user can therefore design software having only sequential semantics in mind and let the memory take care of conflicts resulting from potentially concurrent executions.

In databases, a correct implementation of concurrency control should guarantee that committed transactions constitute a serial (or sequential) execution [9]. On the other hand, uncommitted transactions can be aborted without invalidating the correctness of committed ones. (In the literature on databases, the latter feature is called recoverability.)

In the TM context, intermediate states witnessed by an incomplete transaction may affect the application through the outcome of its read operations. If the intermediate state is not consistent with any sequential execution, the application may experience a fatal irrecoverable error or sink in an infinite loop. The correctness criterion of opacity [7], [8] addresses this issue by requiring the states observed by uncommitted transactions to be consistent with a global serial execution constituted by committed ones (a serialization).

An opaque TM implementation must, intuitively, ensure that no transaction can read from a transaction that has not started committing yet. This is usually referred to as the deferred-update semantics, and it was in fact explicitly required in some representations of opacity [6]. The motivation of this paper is to capture this intuition formally.

We present a new correctness criterion called du-opacity. Informally, a du-opaque (possibly, non-serial) execution must be indistinguishable from a totally-ordered execution, with respect to which no transaction reads from a transaction that has not started committing.

We further check if our correctness criterion is a safety property, as defined by Owicki and Lamport [17], Alpern and Schneider [2] and refined by Lynch [16]. We show that du-opacity is prefix-closed: every prefix of a du-opaque history is also du-opaque. We also show that du-opacity is, under certain restrictions, limit-closed. More precisely, assuming that, in an infinite execution, every transaction completes each of the operations it invoked (but possibly neither commits nor aborts), the infinite limit of any sequence of ever extending du-opaque histories is also du-opaque. To prove that such an
implementation is du-opaque, it is thus sufficient to prove that all its finite histories are du-opaque. To the best of our knowledge, this paper contains the first non-trivial proof of limit-closure for a TM correctness property. We further show that any du-opaque serialization of a history implies a serialization of any of its prefixes that maintains the original read-from relations, which is instrumental in the comparison of du-opacity with opacity.

Opacity, as defined in [8], reduces correctness of an infinite history to correctness of all its prefixes, and thus is limit-closed by definition. In fact, we show that extending opacity to infinite histories in a non-trivial way (i.e., requiring that even infinite histories should have proper serializations), does not result in a limit-closed property. We observe that opacity does not preclude scenarios in which a transaction reads from a future transaction (cf. example in Figure 4), and, thus, our criterion is strictly stronger than opacity. Surprisingly, this is true even if we assume that all transactional operations are atomic, which somewhat attenuates earlier attempts to forcefully introduce the deferred-update in the definition of opacity for atomic operations [6]. However, we show that opacity and du-opacity are equivalent if we assume that no two transactions try to commit identical values on the same data item.

We believe that these results improve our understanding of the very notion of correctness in transactional memory. Our correctness criterion explicitly declares that a transaction is not allowed to read from a transaction that has not started committing yet, and we conjecture that it is simpler to verify. We present the first non-trivial proof for both limit- and prefix-closure of TM histories, which is quite interesting in its own right, for it enables reasoning about possible serializations of an infinite TM history based on serializations of its prefixes.

The paper is organized as follows. In Section II, we introduce our basic model definitions and recall the notion of safety [2], [16], [17]. In Section III, we define our criterion of du-opacity and show that it is prefix-closed and under certain restrictions, a limit-closed property. In Section IV, we prove that du-opacity is a proper subset of the original notion of opacity [8], and that it coincides with du-opacity under the “unique-writes” condition.

II. Model

A transactional memory (in short, TM) supports atomic transactions for reading and writing on a set of transactional objects (in short, t-objects). A transaction is a sequence of accesses (reads or writes) to t-objects; each transaction T_k has a unique identifier k.

A transaction T_k may contain the following t-operations, each being a matching pair of invocation and response events:

1) $read_k(X)$ returns a value in some domain V or a special value $A_k \notin V$ (abort);
2) $write_k(X,v)$, for a value $v \in V$, returns ok_k or A_k;
3) $tryC_k$ returns $C_k \notin V$ (commit) or A_k; and
4) $tryA_k$ returns A_k.

The read set (resp., the write set) of a transaction T_k, denoted $Rset(T_k)$, is the set of t-objects that T_k reads in H; the write set of T_k, denoted $Wset(T_k)$, is the set of t-objects T_k writes to in H.

We consider an asynchronous shared-memory system in which processes communicate via transactions. A TM implementation provides processes with algorithms for implementing $read_k$, $write_k$, $tryC_k()$ and $tryA_k()$ of a transaction T_k.

A history of a TM implementation is a (possibly infinite) sequence of invocation and response events of t-operations.

For every transaction identifier k, $H|k$ denotes the subsequence of H restricted to events of transaction T_k. If $H|k$ is non-empty, we say that T_k participates in H, and let $txns(H)$ denote the set of transactions that participate in H. In an infinite history H, we assume that each $T_k \in txns(H)$, $H|k$ is finite; i.e., transactions do not issue an infinite number of t-operations.

Two histories H and H' are equivalent if $txns(H) = txns(H')$ and for every transaction $T_k \in txns(H)$, $H|k = H'|k$.

A history H is sequential if every invocation of a t-operation is either the last event in H or is immediately followed by a matching response.

A history is well-formed if for all T_k, $H|k$ is sequential and has no events after A_k or C_k. We assume that all histories are well-formed, i.e., the client of the transactional memory never invokes a t-operation before receiving a response from the previous one and does not invoke any t-operation op_k after receiving C_k or A_k.

We also assume, for simplicity, that the client invokes a $read_k(X)$ at most once within a transaction T_k. This assumption incurs no loss of generality, since a repeated read can be assigned to return a previously returned value without affecting the history’s correctness.

A transaction $T_k \in txns(H)$ is complete in H if $H|k$ ends with a response event. The history H is complete if all transactions in $txns(H)$ are complete in H.

A transaction $T_k \in txns(H)$ is t-complete if $H|k$ ends with A_k or C_k; otherwise, T_k is t-incomplete. T_k is committed (resp., aborted) in H if the last event of T_k
is C_k (resp., A_k). The history H is t-complete if all transactions in $\text{txns}(H)$ are t-complete.

For t-operations op_k, op_j, we say that op_k precedes op_j in the real-time order of H, denoted $op_k \prec_{\text{RT}}^H op_j$, if the response of op_k precedes the invocation of op_j.

Similarly, for transactions $T_k, T_m \in \text{txns}(H)$, we say that T_k precedes T_m in the real-time order of H, denoted $T_k \prec_{\text{RT}}^H T_m$, if T_k is t-complete in H and the last event of T_k precedes the first event of T_m in H. If neither $T_k \prec_{\text{RT}}^H T_m$ nor $T_m \prec_{\text{RT}}^H T_k$, then T_k and T_m overlap in H. A history H is t-sequential if there are no overlapping transactions in H.

For simplicity of presentation, we assume that each history H begins with an “imaginary” transaction T_0 that writes initial values to all t-objects and commits before any other operation begins in H.

Let H be a t-sequential history. For every operation $\text{read}_k(X)$ in H, we define the latest written value of X as follows:

1) If T_k contains a $\text{write}_k(X, v)$ preceding $\text{read}_k(X)$, then the latest written value of X is the value of the latest such write to X.
2) Otherwise, if H contains a $\text{write}_m(X, v)$, T_m precedes T_k, and T_m commits in H, then the latest written value of X is the value of the latest such write to X in H. (This write is well-defined since H starts with T_0 writing to all t-objects.)

We say that $\text{read}_k(X)$ is legal in a t-sequential history H if it returns the latest written value of X, and H is legal if every $\text{read}_k(X)$ in H that does not return A_k is legal in H.

Definition 1 ([2], [16]). A property \mathcal{P} is a set of (transactional) histories. A property \mathcal{P} is a safety property if it satisfies:

1) Prefix-closure: every prefix H' of a history $H \in \mathcal{P}$ is also in \mathcal{P} and
2) Limit-closure: for any infinite sequence of finite histories H^0, H^1, \ldots, such that for all i, $H^i \in \mathcal{P}$ and H^i is a prefix of H^{i+1}, the infinite history that is the limit of the sequence is also in \mathcal{P}.

Notice that the set of histories produced by a TM implementation M is prefix-closed. Therefore, every infinite history of M is the limit of an infinite sequence of ever-extending finite histories of M. Thus, to prove that M satisfies a safety property P, it is enough to show that all finite histories of M are in P. Indeed, limit-closure of P then implies that every infinite history of M is also in P.

III. DU-Opaqueness

In this section, we introduce our correctness criterion, du-opaqueness, and prove that a restriction of it is a limit-closed property.

Definition 2. Let H be any history. A completion of H, denoted \overline{H}, is a history derived from H as follows:

- for every incomplete t-operation op_k of $T_k \in \text{txns}(H)$ in H, if $op_k = \text{read}_k \lor \text{write}_k \lor \text{tryC}_k()$, insert A_k somewhere after the invocation of op_k;
- otherwise, if $op_k = \text{tryC}_k()$, insert C_k or A_k somewhere after the last event of T_k.

For every complete transaction $T_k \in \text{txns}(H)$ that is not t-complete, insert $\text{tryC}_k \cdot A_k$ after the last event of transaction T_k.

Let H be any history and S be a legal t-complete t-sequential history that is equivalent to some completion of H. Let $<_S$ be the total order on transactions in S.

For any $\text{read}_k(X)$ that does not return A_k, let $S^{k, X}_H$ denote the prefix of S up to the response of $\text{read}_k(X)$ and $H^{k, X}_H$ denotes the prefix of H up to the response of $\text{read}_k(X)$. Let $S^{k, X}_{H, S}$ denote the subsequence of $S^{k, X}_H$ derived by removing from $S^{k, X}_H$ the events of all transactions $T_m \in \text{txns}(H)$ such that $H^{k, X}_H$ does not contain an invocation of $\text{tryC}_m()$. We refer to $S^{k, X}_{H, S}$ as the local serialization for $\text{read}_k(X)$ with respect to H and S.

We are now ready to present our correctness condition, du-opaqueness.

Definition 3. A history H is du-opaque if there is a legal t-complete t-sequential history S such that

1) there exists a completion of H that is equivalent to S, and
2) for every pair of transactions $T_k, T_m \in \text{txns}(H)$, if $T_k \prec_{\text{RT}}^H T_m$, then $T_k <_S T_m$, i.e., S respects the real-time ordering of transactions in H, and
3) each $\text{read}_k(X)$ in S that does not return A_k is legal in $S^{k, X}_{H, S}$.

We then say that S is a (du-opaque) serialization of H. Let $\text{seq}(S)$ denote the sequence of transactions in S and $\text{seq}(S)[k]$ denote the k^{th} transaction in this sequence.

Informally, a history H is du-opaque if there exists a legal t-sequential history S that is equivalent to H, respects the real-time ordering of transactions in H and every t-read is legal in its local serialization with respect to H and S. The third condition reflects the implementation’s deferred-update semantics, i.e., the legality of a t-read in a serialization does not depend on transactions that start committing after the response of the t-read.

An example of a du-opaque history H is presented in Figure 1. Let S be the t-complete t-sequential history
such that \(\text{seq}(S) = T_2, T_3, T_1, T_4 \) and \(S \) is equivalent to \(H \) (\(H \) is its own completion). It is easy to see that \(S \) is legal and respects the real-time order of transactions in \(H \). We now need to prove that each t-read performed in \(S \) has a local serialization with respect to \(H \) in \(S \) that is legal. Consider \(\text{read}_1(X) \) in \(S \); since \(T_2 \) is t-complete in \(H^1.x \), it follows that \(\text{read}_1(X) \) is legal in \(T_2 \cdot \text{read}_1(X) \) (local serialization for \(\text{read}_1(X) \) with respect to \(H \) and \(S \)). Similarly, since \(T_1, T_2, T_3 \) are t-complete in \(H^1.x \), \(\text{read}_1(X) \) is legal in \(T_2 \cdot T_3 \cdot T_1 \cdot \text{read}_4(X) \) (local serialization for \(\text{read}_4(X) \) with respect to \(H \) and \(S \)). Thus, \(S \) is a du-opaque serialization of \(H \).

For a history \(H \), let \(H^i \) be the finite prefix of \(H \) of length \(i \), i.e., consisting of the first \(i \) events of \(H \). Now we show a property of du-opaque histories that is going to be instrumental in the rest of the paper.

Lemma 1. Let \(H \) be a du-opaque history and \(S \) be a serialization of \(H \). For any \(i \in \mathbb{N} \), there exists a serialization \(S^i \) of \(H^i \) such that \(\text{seq}(S^i) \) is a subsequence of \(\text{seq}(S) \).

Proof: Given \(H \), \(S \) and \(H^i \), we construct a t-complete t-sequential history \(S^i \) as follows:

- for every transaction \(T_k \) that is t-complete in \(H^i \), \(S^i[k] = S[k] \).
- for every transaction \(T_i \) that is complete but not t-complete in \(H^i \), \(S^i[k] \) consists of the sequence of events in \(H^i[k] \), immediately followed by \(\text{try}C_k() \) · \(A_k \).
- for every transaction \(T_k \) with an incomplete t-operation \(\text{op}_k = \text{read}_k \lor \text{write}_k \lor \text{try}A_k() \) in \(H^i \), \(S^i[k] \) is the sequence of events in \(S[k] \) up to the invocation of \(\text{op}_k \), immediately followed by \(A_k \).
- for every transaction \(T_k \in \text{txn}(H^i) \) with an incomplete t-operation \(\text{op}_k = \text{try}C_k() \), \(S^i[k] = S[k] \).

By the above construction, \(S^i \) is indeed a t-complete history and every transaction that appears in \(S^i \) also appears in \(S \). Now we order transactions in \(S^i \) so that \(\text{seq}(S^i) \) is a subsequence of \(\text{seq}(S) \).

Note that \(S^i \) is derived from events contained in some completion \(H \) of \(H \) that is equivalent to \(S \). Since \(S^i \) contains events from every complete t-operation in \(H^i \) and other events included are borrowed from \(H \), there exists a completion of \(H^i \) that is equivalent to \(S^i \).

We now prove that \(S^i \) is a serialization of \(H^i \). First we observe that \(S^i \) respects the real-time order of \(H^i \). Indeed, if \(T_j \prec_{RT} T_k \), then \(T_j \prec_{RT} T_k \) and \(T_j \prec_{S} T_k \). Since \(\text{seq}(S^i) \) is a subsequence of \(\text{seq}(S) \), we have \(T_j \prec_{S} T_k \).

To show that \(S^i \) is legal, suppose, by way of contradiction, that there is some \(\text{read}_k(X) \) that returns \(v \neq A_k \) in \(H^i \) such that \(v \) is not the latest written value of \(X \) in \(S^i \). If \(T_k \) contains a \(\text{write}_k(X, v') \) preceding \(\text{read}_k(X) \) such that \(v \neq v' \) and \(v \) is not the latest written value for \(\text{read}_k(X) \) in \(S^i \), it is also not the latest written value for \(\text{read}_k(X) \) in \(S \), which is a contradiction. Thus, the only case to consider is when \(\text{read}_k(X) \) should return a value written by another transaction.

Since \(S \) is a serialization of \(H \), there exists a committed transaction \(T_m \) that performs the last \(\text{write}_m(X, v) \) that precedes \(\text{read}_k(X) \) in \(T_k \) in \(S \). Moreover, since \(\text{read}_k(X) \) is legal in the local serialization for \(\text{read}_k(X) \) in \(H \) with respect to \(S \), the prefix of \(H \) up to the response of \(\text{read}_k(X) \) must contain an invocation of \(\text{try}C_m() \). Thus, \(\text{read}_k(X) \neq_{RT} \text{try}C_m() \) and \(T_m \in \text{txn}(H^i) \). By construction of \(S^i \), \(T_m \in \text{txn}(S^i) \) and \(T_m \) is committed in \(S^i \).

We have assumed, towards a contradiction, that \(v \) is not the latest written value for \(\text{read}_k(X) \) in \(S^i \). Hence, there exists a committed transaction \(T_j \) that performs \(\text{write}_j(X, v'); v' \neq v \) in \(S^i \) such that \(T_m \prec_{S} T_j \prec_{S} T_k \). But this is not possible since \(\text{seq}(S^i) \) is a subsequence of \(\text{seq}(S) \).

Thus, \(S^i \) is a legal t-complete t-sequential history equivalent to some completion of \(H^i \). Now, by the construction of \(S^i \), for every \(\text{read}_k(X) \) that does not return \(A_k \) in \(S^i \), we have \(S^i[k] = S[k] \). Indeed, the transactions that appear before \(T_k \) in \(S^i[k] \) are those with a \(\text{try}C \) event before the response of \(\text{read}_k(X) \) in \(H \) and are committed in \(S \). Since \(\text{seq}(S^i) \) is a subsequence of \(\text{seq}(S) \), we have \(S^i[k] = S[k] \). Thus, \(\text{read}_k(X) \) is legal in \(S^i[k] \).
Lemma 1 implies that every prefix of a du-opaque history has a du-opaque serialization and thus:

Corollary 2.

DU-Opacity is a prefix-closed property.

We show, however, that du-opacity is, in general, not limit-closed. We present an infinite history that is not du-opaque, but every its prefix is.

Proposition 1.

DU-Opacity is not a limit-closed property.

Proof: Let H^j denote a finite prefix of H of length j. Consider an infinite history H that is the limit of the histories H^j defined as follows (see Figure 2):

- Transaction T_1 performs a $\text{write}_1(X, 1)$ and then invokes $\text{try}C_1()$ that is incomplete in H.
- Transaction T_2 performs a $\text{read}_2(X)$ that overlaps with $\text{try}C_1()$ and returns 1.
- There are infinitely many transactions T_i, $i \geq 3$, each of which performing a single $\text{read}_i(X)$ that returns 0 such that each T_i overlaps with both T_1 and T_2.

A t-complete t-sequential history S^j is derived from the sequence $T_3, \ldots, T_j, T_0, T_1$ in which (1) $\text{try}C_1()$ is completed by inserting C_1 immediately after its invocation and (2) any incomplete $\text{read}_j(X)$ is completed by inserting A_j immediately after its invocation. It is easy to observe that $\forall i \geq 3, T_i$ must precede T_j in any serialization (by legality), which is a contradiction.

We next prove that du-opacity is limit-closed if we assume that, in an infinite history, every transaction eventually completes (but not necessarily t-completes).

The proof uses König’s Path Lemma on a rooted directed graph, G. Let v_0 be the root vertex of G. We say that v_k, a vertex of G, is \textit{reachable} from v_0, if there is a sequence of vertices v_0, \ldots, v_k such that for each i, there exists an edge from v_i to v_{i+1}. G is \textit{connected} if every vertex in G is reachable from v_0. G is \textit{finitely branching} if every vertex in G has a finite out-degree. G is \textit{infinite} if the set of vertices in G is not finite.

Lemma 3 (König’s Path Lemma [13]). If G is an infinite connected finitely branching rooted directed graph, then G contains an infinite sequence of vertices v_0, v_1, \ldots such that v_0 is the root, for every $i \geq 0$, there is an edge from v_i to v_{i+1}, and for every $i \neq j, v_i \neq v_j$.

We first prove the following lemma concerning du-opaque serializations.

For a transaction $T \in \text{txns}(H)$, we define the \textit{live set} of T in H, denoted $\text{Lset}_H(T)$ (T included) as follows: every transaction $T' \in \text{txns}(H)$ such that neither the last event of T' precedes the first event of T in H nor the last event of T precedes the first event of T' in H is contained in $\text{Lset}_H(T)$. We say that transaction $T' \in \text{txns}(H)$ \textit{succeeds} the live set of T and we write $T <_{LS} T'$ if in H, for all $T'' \in \text{Lset}_H(T)$, T'' is complete and the last event of T'' precedes the first event of T'.

Lemma 4. Let H be a finite du-opaque history and assume $T_k \in \text{txns}(H)$ be a complete transaction in H such that every transaction in $\text{Lset}_H(T_k)$ is complete in H. Then there exists a serialization S of H such that for all $T_k, T_m \in \text{txns}(H)$: $T_k <_{LS} T_m$, we have $T_k < T_m$.

Proof: Since H is du-opaque, there exists a serialization S of H.

Let S be a t-complete t-sequential history such that $\text{txns}(\hat{S}) = \text{txns}(S)$, and $\forall T_i \in \text{txns}(\hat{S}) : S|i = \hat{S}|i$. We now perform the following procedure iteratively to derive $\text{seq}(S)$ from $\text{seq}(\hat{S})$. Initially $\text{seq}(S) = \text{seq}(\hat{S})$.

For each $T_k \in \text{txns}(H)$, let $T_k \in \text{txns}(H)$ denote the earliest transaction in \hat{S} such that $T_k <_{LS} T_\ell$. If $T_k <_{LS} T_\ell$ (implying T_k is not t-complete), then move T_k to immediately precede T_ℓ in $\text{seq}(S)$.

By construction, S is equivalent to \hat{S} and for all $T_k, T_m \in \text{txns}(H)$: $T_k <_{LS} T_m, T_k < T_m$ We claim that S is a serialization of H. Observe that any two transactions that are complete in H, but not t-complete, are not related by real-time order in H. By construction of S, for any transaction $T_k \in \text{txns}(H)$, the set of
transactions that preceed T_k in \tilde{S}, but succeed T_k in S are not related to T_k by real-time order. Since \tilde{S} respects the real-time order in H, this holds also for S.

We now show that S is legal. Consider any $read_k(X)$ performed by some transaction T_k that returns $v \in V$ in S and let $T_\ell \in trans(H)$ be the earliest transaction in \tilde{S} such that $T_k \prec_{\tilde{S}} T_\ell$. Suppose, by contradiction, that $read_k(X)$ is not legal in S. Thus, there exists a committed transaction T_m that performs $write_m(X,v)$ in \tilde{S} such that $T_m = T_\ell$ or $T_k <_\tilde{S} T_m \prec_\tilde{S} T_k$. Note that, by our assumption, $read_k(X) \prec_H tryC_i()$. Since $read_k(X)$ must be legal in the local serialization of \tilde{S} with respect to H, $read_k(X) \not\prec_H tryC_i()$. Thus, $T_m \in Lset_H(T_k)$. Therefore $T_m \neq T_\ell$. Moreover, T_m is complete, and since it commits in \tilde{S}, it is also t-complete in H and the last event of T_m precedes the first event of T_ℓ in H, i.e., $T_m \prec_{H} T_\ell$. Hence, T_ℓ cannot precede T_m, in \tilde{S}—a contradiction.

Observe also that since T_k is complete in H but not t-complete, H does not contain an invocation of $tryC_k()$. Thus, the legality of any other transaction is unaffected by moving T_k to precede T_ℓ in S. Thus, S is a legal t-complete sequential-history equivalent to some completion of H. The above arguments also prove that every t-read in S is legal in its local serialization with respect to H and S and, thus, S is a serialization of H.

Theorem 5. Under the restriction that in any infinite history H, every transaction $T_k \in trans(H)$ is complete, du-opacity is a limit-closed property.

Proof: We are given an infinite sequence of finite ever-extending du-opaque histories, let H be the corresponding infinite limit history. We want to show that H is also du-opaque. By Corollary 2, every prefix of H is du-opaque. Therefore, we can assume the sequence of du-opaque histories to be H^0, H^1, H^2, H^3, ..., where each H^i is the prefix of H of length i.

We construct a rooted directed graph G_H as follows:

1. Each non-root vertex of G_H is a tuple (H^i, S^i), where S^i is a du-opaque serialization of H^i that satisfies the condition specified in Lemma 4: for all $T_k, T_m \in trans(H)$, $T_k \prec_{H} T_m, T_k \prec_{H} T_m$. Note that there exist several possible serializations for any H^i. For succinctness, in the rest of this proof, when we refer to a specific S^i, it is understood to be associated with the prefix H^i of H.

2. We say that a transaction T is complete in H^i with respect to H, where H is any extension of H^i if last step of T in H is a response event and it is contained in H^i.

Let $cseq_i(S^i)$, $j \geq i$, denote the subsequence of $seq(S^i)$ reduced to transactions that are complete in H^i with respect to H. For every pair of vertices $v = (H^i, S^i)$ and $v' = (H^{i+1}, S^{i+1})$ in G_H, there is an edge from v to v' if $cseq_i(S^i) = cseq_i(S^{i+1})$.

The out-degree of a vertex $v = (H^i, S^i)$ in G_H is defined by the number of possible serializations of H^{i+1}, bounded by the number of possible permutations of the set $trans(S^{i+1})$, implying that G_H is finitely branching.

By Lemma 1, given any serialization S^{i+1} of H^{i+1}, there exists a serialization S' of H' such that $seq(S')$ is a subsequence of $seq(S^{i+1})$. Indeed, the serialization S' of H' also respects the restriction specified in Lemma 4. Since $seq(S^{i+1})$ contains every complete transaction that takes its last step in H in H^i, $cseq_i(S^i) = cseq_i(S^{i+1})$. Therefore, for every vertex (H^{i+1}, S^i), there is a vertex (H', S') such that $cseq_i(S^i) = cseq_i(S^{i+1})$. Thus, we can iteratively construct a path from (H^0, S^0) to every vertex (H', S') in G_H, implying that G_H is connected.

We now apply König’s Path Lemma to G_H. Since G_H is an infinite connected finitely branching rooted directed graph, we can derive an infinite sequence of non-repeating vertices

$$\mathcal{L} = (H^0, S^0), (H^1, S^1), \ldots, (H^i, S^i), \ldots$$

such that $cseq_i(S^i) = cseq_i(S^{i+1})$.

The rest of the proof explains how to use \mathcal{L} to construct a serialization of H. We begin with the following claim concerning \mathcal{L}.

Claim 6. For any $j > i$, $cseq_i(S^i) = cseq_i(S^j)$.

Proof: Recall that $cseq_i(S^i)$ is a prefix of $cseq_i(S^{i+1})$, and $cseq_{i+1}(S^{i+1})$ is a prefix of $cseq_{i+1}(S^{i+2})$. Also, $cseq_i(S^{i+1})$ is a subsequence of $cseq_{i+1}(S^{i+1})$. Hence, $cseq_i(S^i)$ is a subsequence of $cseq_{i+1}(S^{i+2})$. But, $cseq_{i+1}(S^{i+2})$ is a subsequence of $cseq_{i+2}(S^{i+2})$. Thus, $cseq_i(S^i)$ is a subsequence of $cseq_{i+2}(S^{i+2})$. Inductively, for any $j > i$, $cseq_i(S^i)$ is a subsequence of $cseq_{i+j}(S^i)$. But $cseq_i(S^i)$ is the subsequence of $cseq_{i+j}(S^i)$ reduced to transactions that are complete in H^i with respect to H. Thus, $cseq_i(S^i)$ is indeed equal to $cseq_i(S^i)$.

Let $f : \mathbb{N} \rightarrow trans(H)$ be defined as follows: $f(1) = T_0$. For every integer $k > 1$, let

$$i_k = \min \{ \ell \in \mathbb{N} | \forall j > \ell : cseq_{i_k}(S^i)[k] = cseq_{i_k}(S^i)[k] \}$$

Thus, $f(k) = cseq_{i_k}(S^i)[k]$.

606
Claim 7. The function f is total and bijective.

Proof: (Totality and surjectivity)

Since each transaction $T \in \text{txns}(H)$ is complete in some prefix H' of H, for each $h \in \mathbb{N}$, there exists $i \in \mathbb{N}$ such that $cseq_i(S')[k] = T$. By Claim 6, for any $j > i$, $cseq_j(S') = cseq_i(S')$. Since a transaction that is complete in H' w.r.t. H is also complete in H^j w.r.t. H, it follows that for every $j > i$, $cseq_j(S')[k'] = T$, with $k' \geq k$. By construction of G_H and the assumption that each transaction is complete in H, there exists $i \in \mathbb{N}$ such that each $T \in Lset_H(T)$ is complete in H^i with respect to H and T precedes in S' every transaction whose first event succeeds the last event of each $T'' \in Lset_H(T)$ in H^i. Indeed, this implies that for each $k \in \mathbb{N}$, there exists $i \in \mathbb{N}$ such that $cseq_i(S')[k] = T; \forall j > i : cseq_j(S')[k] = T$.

This shows that for every $T \in \text{txns}(H)$, there are $i, k \in \mathbb{N}; cseq_i(S')[k] = T$, such that for every $j > i$, $cseq_j(S')[k] = T$. Thus, for every $T \in \text{txns}(H)$, there is k such that $f(k) = T$.

(Injectivity)

If $f(k)$ and $f(m)$ are transactions at indices k, m of the same $cseq_i(S')$, then clearly $f(k) = f(m)$ implies $k = m$. Suppose $f(k)$ is the transaction at index k in some $cseq_i(S')$ and $f(m)$ is the transaction at index m in some $cseq_i(S')$. For every $\ell > i$ and $k < m$, if $cseq_i(S')[k] = T$, then $cseq_i(S')[m] = T$ since $cseq_i(S') = cseq_i(S')$. If $\ell > i$ and $k > m$, it follows from the definition that $f(k) \neq f(m)$. Similar arguments for the case when $\ell < i$ prove that if $f(k) = f(m)$, then $k = m$.

By Claim 7, $F = f(1), f(2), \ldots, f(i), \ldots$ is an infinite sequence of transactions. Let S be a t-complete t-sequential history such that $seq(S) = F$ and for each t-complete transaction T_k in H, $S[k] = H[k]$; and for transaction that is complete, but not t-complete in H, $S[k]$ consists of the sequence of events in $H[k]$, immediately followed by $\text{tryA_k}(\cdot) \cdot A_k$. Clearly, there exists a completion of H that is equivalent to S.

Let F^i_1 be the prefix of F of length i, and S^i_1 be the prefix of S such that $seq(S^i_1) = F^i_1$.

Claim 8. Let \tilde{H}^j_1 be a subsequence of H^j reduced to transactions in S' such that each $T_k \in \text{txns}(\tilde{S}^i_1)$ is complete in H^j with respect to H. Then, for every i, there is j such that \tilde{S}^i_1 is a serialization of \tilde{H}^j_1.

Proof: Let H^j_1 be the shortest prefix of H (from L) such that for each $T \in \text{txns}(S')$, if $seq(S')[k] = T$, then for every $j' > j$, $seq(S')[k] = T$. From the construction of F, such j and k exist. Also, we observe that $\text{txns}(\tilde{S}^i_1) \subseteq \text{txns}(S')$ and F^i_1 is a subsequence of $seq(S')$. Using arguments similar to the proof of Lemma 1, it follows that \tilde{S}^i_1 is indeed a serialization of \tilde{H}^j_1.

Since H is complete, there is exactly one completion of H, where each transaction T_k that is not t-complete in H is completed with $\text{tryA_k}(\cdot) \cdot A_k$ after its last event. By Claim 8, the limit t-sequential t-complete history is equivalent to this completion, is legal, respects the real-time order of H, and ensures that every read is legal in the corresponding local serialization. Thus, S is a serialization of H.

From Theorem 5, it follows that:

Corollary 9. Let M be any TM implementation that ensures that in every infinite history H of M, each transaction $T \in \text{txns}(H)$ is complete in H. Then, M is du-opaque iff every finite history of M is du-opaque.

IV. COMPARISON WITH OTHER TM CONSISTENCY DEFINITIONS

A. Relation to Opacity

In this section, we relate du-opacity with opacity, as defined by Guerraoui and Kapalka [8]. Note that the definition presented in [8] applies to any object with a sequential specification. For the sake of comparison, we restrict it here to TMs with read-write semantics.

Definition 4 (Guerraoui and Kapalka [7], [8]). A finite history H is final-state opaque if there is a legal t-complete t-sequential history S, such that

1. for any two transactions $T_k, T_m \in \text{txns}(H)$, if $T_k <^H T_m$, then $T_k <_S T_m$, and
2. S is equivalent to a completion of H (cf. Definition 2).

We say that S is a final-state serialization of H.

Figure 3 presents a t-complete sequential history H, demonstrating that final-state opacity is not a prefix-closed property. H is final-state opaque, with $T_1 \cdot T_2$ being a legal t-complete t-sequential history equivalent to H. Let $H' = \text{write}_1(X,1), \text{read}_2(X)$ be a prefix of H in which T_1 and T_2 are t-incomplete. By Definition 2,
3) Consider the finite history H depicted in Figure 4. To prove that H is opaque, we proceed by examining every prefix of H.

1) Each prefix up to the invocation of $\text{read}_2(X)$ is trivially final-state opaque.

2) Consider the prefix, H' of H where the ith event is the response of $\text{read}_2(X)$. Let S' be a t-complete t-sequential history derived from the sequence T_1, T_2 by inserting C_i immediately after the invocation of $\text{try}_C()$. It is easy to see that S' is a final-state serialization of H'. Since H and every (proper) prefix of it are final-state opaque, H is opaque.

Proper T-Sequential History

T_i (i = 1, 2) is completed by inserting $\text{try}_C \cdot A_i$ immediately after the last event of T_i in H. Observe that neither $T_1 \cdot T_2$ nor $T_2 \cdot T_3$ are sequences that allow us to derive a serialization of H' (we assume that the initial value of X is 0).

A restriction of final-state opacity, which we refer to as opacity, was presented in [8] by filtering out histories that are not prefix-closed.

Definition 5 (Guerraoui and Kapalka [8]). A history H is opaque if and only if every finite prefix H' of H (including H itself if it is finite) is final-state opaque.

It can be easily seen that opacity is prefix and limit-closed, and, thus, opacity is a safety property.

Proposition 2. There is an opaque history that is not du-opaque.

Proof: Consider the finite history H depicted in Figure 4. To prove that H is opaque, we proceed by examining every prefix of H.

1) Each prefix up to the invocation of $\text{read}_2(X)$ is trivially final-state opaque.

2) Consider the prefix, H' of H where the ith event is the response of $\text{read}_2(X)$. Let S' be a t-complete t-sequential history derived from the sequence T_1, T_2 by inserting C_i immediately after the invocation of $\text{try}_C()$. It is easy to see that S' is a final-state serialization of H'.

3) Consider the t-complete t-sequential history S derived from the sequence T_1, T_3, T_2 in which each transaction is t-complete in H. Clearly, S is a final-state serialization of H.

Since H and every (proper) prefix of it are final-state opaque, H is opaque.

Clearly, the only final-state serialization S of H is specified by $\text{seq}(S) = T_1, T_2$. Consider $\text{read}_2(X)$ in S; since $H^{2,X}$, the prefix of H up to the response of $\text{read}_2(X)$ does not contain an invocation of $\text{try}_C()$, the local serialization for $\text{read}_2(X)$ with respect to H and S, $S^{2,X}_H$ is $T_1 \cdot \text{read}_2(X)$. But $\text{read}_2(X)$ is not legal in $S^{2,X}_H$, contradiction. Thus, H is not du-opaque.

Theorem 10. DU-Opacity \subseteq Opacity.

Proof: We first claim that every finite du-opaque history is opaque. Let H be a finite du-opaque history. By definition, there exists a final-state serialization S of H. Since du-opacity is a prefix-closed property, every prefix of H is final-state opaque. Thus, H is opaque.

Again, since every prefix of a du-opaque history is also du-opaque, by Definition 5, every infinite du-opaque history is also opaque.

Proposition 2 now establishes that du-opacity is indeed a restriction of opacity.

We now show that du-opacity is equivalent to opacity assuming that no two transactions write identical values to the same t-object ("unique-write" assumption).

Let $\text{Opacity}_{ut} \subseteq \text{Opacity}$, be a property defined as follows:

1) an infinite opaque history $H \in \text{Opacity}_{ut}$ iff every transaction $T \in \text{txns}(H)$ is complete in H, and

2) an opaque history $H \in \text{Opacity}_{ut}$ iff for any two transactions $T_k, T_m \in \text{txns}(H)$ that perform $\text{write}_k(X, v)$ and $\text{write}_m(X, v')$ respectively, $v \neq v'$.

Theorem 11. $\text{Opacity}_{ut} = \text{DU-Opacity}$.

Proof: We show first that every finite history $H \in \text{Opacity}_{ut}$ is also du-opaque. Let H be any finite opaque history such that for any two transactions $T_k, T_m \in \text{txns}(H)$ that perform $\text{write}_k(X, v)$ and $\text{write}_m(X, v)$ respectively, $v \neq v'$.

Since H is opaque, there exists a final-state serialization S of H. Suppose by contradiction that H is not du-opaque. Thus, there exists a $\text{read}_k(X)$ that returns a value $v \in V$ in S that is not legal in $S^{k,X}_H$, the local serialization for $\text{read}_k(X)$ with respect to H and S. Let $H^{k,X}$ and $S^{k,X}$ denote the prefixes of H and S resp. up to the response of $\text{read}_k(X)$ in H and S resp., Recall that the local serialization for $\text{read}_k(X)$ with respect to H and S, $S^{k,X}_H$ is defined as the subsequence of $S^{k,X}$ that does not contain events of any transaction $T_i \in \text{txns}(H)$ if $H^{k,X}$ does not contain an invocation of $\text{try}_C()$.

Since $\text{read}_k(X)$ is legal in S, there exists a committed transaction $T_m \in \text{txns}(H)$ that performs $\text{write}_m(X, v)$ that is the latest such write in S that precedes T_k. Thus, if $\text{read}_k(X)$ is not legal in $S^{k,X}_H$, the only possibility is that $\text{read}_k(X) \not\sim RT \text{try}_C()$. Under the assumption of unique writes, there does not exist any other transaction $T_j \in \text{txns}(H)$ that performs $\text{write}_j(X, v)$. Consequently, there does not exist any $H^{k,X}$ (some completion of $H^{k,X}$) and (t-complete t-sequential history) S' such that S' is equivalent to $H^{k,X}$ and S' contains any committed transaction that writes v to X i.e. $H^{k,X}$ is not final-state.
opaque. However, since H is opaque, every prefix of H must be final-state opaque—contradiction.

By Definition 5, an infinite history H is opaque if every finite prefix of H is final-state opaque. Theorem 5 now implies that Opacity$_{ut} \subseteq$ DU-Opacity.

By Definition 5 and Corollary 2, it follows that DU-Opacity \subseteq Opacity$_{ut}$. $

B. Relation with Other definitions

Explicitly using the deferred-update semantics in an opacity definition was first proposed by Guerraoui et al. [6] and later adopted by Kuznetsov and Ravi [14]. In both papers, opacity is only defined on sequential histories, where every invocation of a t-operation is immediately followed by a matching response. In particular, these definitions require the final-state serialization to respect the read-commit order: H is opaque by their definition if there exists a final-state serialization S of H such that if a t-read of a t-object X by a transaction T_k precedes the tryC of a transaction T_m that commits on X in H, then T_k precedes T_m in S. But we observe that this definition is not equivalent to opacity even for sequential histories. In fact, the property defined in [6] is strictly stronger than du-opacity: the sequential history in Figure 5 is du-opaque (and consequently opaque by Theorem 10). We can derive a du-opaque serialization S for this history such that $seq(S) = T_1, T_3, T_2$. In fact, this is the only final-state serialization for H. However, by the above definition, T_2 must precede T_3 in any serialization of this history since the response of $read_2(X)$ precedes the invocation of $tryC_3()$. Thus, H is not opaque by the definition in [6].

The recently introduced TMS2 correctness condition [5], [15] is another attempt to clarify opacity. Two transactions are said to conflict in a given history if they access the same t-object and at least one of them successfully commits to it. Informally, for each history H in TMS2, there exists a final-state serialization S of H such that if two transactions T_1 and T_2 conflict on t-object X in H, where $X \in Wset(T_1) \cap Rset(T_2)$ and tryC of T_1 precedes the tryC of T_2, then T_1 must precede T_2 in S. We conjecture that every history in TMS2 is du-opaque, but not vice-versa. Figure 6 depicts a history H that is du-opaque, but not TMS2. Indeed, there exists a du-opaque serialization S of H such that $seq(S) = T_2, T_1$. On the other hand, T_1 and T_2 are in conflict, T_1 commits before T_2, but there does not exist any final-state serialization of H in which T_1 precedes T_2.

V. Discussion

It is widely accepted that a correctness condition on a set of histories should be a safety property, i.e., should be prefix- and limit-closed. The definition of opacity proposed in [8] forcefully achieves prefix-closure by restricting final-state opacity to prefix-closed histories, and trivially achieves limit-closure by reducing correctness of an infinite history to correctness of its prefixes.

This paper proposes a correctness criterion that explicitly disallows reading from an uncommitted transaction, which ensures prefix-closure and (under the restriction that every transaction eventually completes every operation it invokes, but not necessarily commits or aborts) limit-closure. We believe that this constructive definition is useful to TM practitioners, since it streamlines possible implementations of t-read and tryC operations. Moreover, it seems that du-opacity already captures the sets of histories exported by most existing opaque TM implementations [3], [4], [10]. In contrast, the recent pessimistic STM implementation [1], in which no transaction aborts, does not intend to provide the deferred-update semantics and, thus, is not in the focus of this paper. Technically, the pessimistic STM of [1] is not opaque, and certainly, not du-opaque.
To the best of our knowledge, there is no prior work proving that any TM correctness property is a safety property in the formal sense. The argumentation in the proof of Theorem 5 is inspired by the proof sketch in [16] of the safety of linearizability [12], but turns out to be trickier due to the more complicated definition of du-opacity.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for insightful comments on the previous versions of this paper, and Victor Luchangco for interesting discussions.

This work was supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement Number 238639, ITN project TRANSFORM, and grant agreement Number 248465, the S(o)OS project.

REFERENCES