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ABSTRACT
Arterial blood pressure (ABP) monitoring using wearables has
emerged as a promising approach to empower users with self-
monitoring for effective diagnosis and control of hypertension.
However, existing schemes mainly monitor ABP at discrete time
intervals, involve some form of user effort, have insufficient ac-
curacy, and require collecting sufficient training data for model
development. To tackle these problems, we propose Crisp-BP, a
novel ABP monitoring system leveraging the PPG sensor available
in commercial wrist-worn devices (e.g., smartwatches or fitness
trackers). It enables continuous, accurate, user-independent ABP
monitoring and requires no behavior changes during collecting
PPG data. The basic idea is to illuminate a skin/tissue, measure
the light absorption, and characterize ABP-related blood volume
change in the artery. To obtain accurate measurements and relieve
the pain of training data collection, we use an arterial pulse extrac-
tion method that removes interference caused by capillary pulses.
Moreover, we design a contact pressure estimation method to com-
bat the deficiency of PPG waveform being sensitive to the contact
pressure between the sensor and the skin. In addition, we leverage
the great power of Bidirectional Long Short TermMemory and design
a hybrid neural network model to enable user-independent ABP
monitoring, so that users do not have to provide training data for
model development. Furthermore, we propose a transfer learning
method that first extracts general knowledge from online PPG data,
then use it to improve the learning of a new model on our target
problem. Extensive experiments with 35 participants demonstrate
that Crisp-BP obtains the average estimation error of 0.86 mmHg
and 1.67 mmHg and the standard deviation error of 6.55 mmHg and
7.31 mmHg for diastolic pressure and systolic pressure, respectively.
These errors are within the acceptable range regulated by the FDA’s
AAMI protocol, which allows average errors of up to 5 mmHg and
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a standard deviation of up to 8 mmHg. Our results demonstrate that
Crisp-BP is promising for improving the diagnosis and control of
hypertension as it provides continuousness, comfort, convenience,
and accuracy.
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puting systems and tools.
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1 INTRODUCTION
Hypertension has become a global health issue, and it is a major
cause of premature death and disability [36]. Specifically, global
estimates suggest that upwards of one in four men and one in
five women have hypertension, and the prevalence is expected to
increase owing to the aging of the population. What was worse,
hypertension rarely has symptoms (like a silent killer), whichmakes
it difficult for early prevention and diagnosis unless accurate blood
pressure is obtained. Recently, many efforts have been made for
accurate ABP monitoring (e.g., auscultation [54], oscillations [44],
volume clamp [42], tonometry [43], and ultrasound [13]). However,
these technologies usually need to compress the vessel during ABP
measuring procedure, which makes them uncomfortable and brings
tissue hypoxia risks [23]. Besides, these technologies are difficult
to be widely adopted in daily life due to the requirement of special
equipment (high price, large size, and complex operation).

The popularity of wearable devices makes it possible to en-
able portable ABP measurements in daily life. For example, Heart-
Guide [8] and eBP [14] enable oscillometric measurements of ABP
in wristwatch and in-ear wearable, respectively. These schemes
will block the user’s blood vessels for a long time, which makes
them uncomfortable.
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Figure 1: An illustration of RWTT estimation with a single
PPG sensor.

Afterward, the electrocardiography (ECG) and photoplethys-
mography (PPG) sensors are utilized for wristband ABP measuring
(e.g., Apple Watch [6] and VivoWatch [2]), which target to reduce
the discomfort. The corresponding technologies mainly rely on the
close correlation between the ABP and the interval time between
ECG and PPG (defined as pulse arrival time (PAT) [19, 28] and pulse
transit time (PTT) [38, 40] in the medical field). However, users are
still burdened due to the necessary user effort (i.e., users need to
cover the ECG pad with their fingers) throughout data collection.
Thus, wearable ABP monitors without requiring user effort are pro-
posed, such as glasses [25] and compression shorts [16]. However,
they are restricted to limited scenarios (i.e., works in daytime and
night, respectively) and their performance is always influenced by
many factors (e.g., season effects, time of day, and temperature).
Besides, machine learning algorithms are also adopted to improve
the accuracy by extracting features from ECG and PPG [21, 47, 58].
However, collecting sufficient training data is inconvenient and
usually takes a lot of effort.

These limitations motivate us to design and implement Crisp-
BP , a Continuous Wrist PPG-based Blood Pressure monitoring sys-
tem. The design is inspired by our observation that ABP values can
be estimated from the reflected wave transit time (RWTT) with only
a single PPG sensor available in commercial wrist-worn devices
(e.g., smartwatches or fitness trackers). Specifically, blood encoun-
ters a change in resistance when traveling at the bifurcations in the
arterial tree, causing part of the blood flow to travel backward (as
shown in Fig. 1). Then, RWTT represents the transit time between
the forward blood flow and the backward blood flow at the same
position and can be used for ABP estimation [51, 57]. Besides, the
forward blood flow and backward blood flow successively induce
volume changes in the artery. The volume changes cause light ab-
sorption changes that can be captured with a PPG sensor. Therefore,
Crisp-BP estimates the RWTT through profiling the changing pat-
tern of blood volume with the captured light reflection intensity.
Then, the continuous ABP is obtained.

Despite this simple idea, three major challenges underlie the
design:

• To obtain accurate RWTT,we characterize the volume changes
in the artery based on PPG data. However, the collected PPG
data are inevitably interfered with volume changes in the
superficial capillary bed, which arrives at a different time
from the volume changes in the artery. Such a phenome-
non causes errors in RWTT estimates. To address this, we
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(b) Vessel wall movement and pressure gradients

Figure 2: An example of pulse wave, and vessel wall move-
ments [46].

associate the wavelength-dependent PPG with the skin vas-
culatures and remove capillary interference based on the
modified Beer-Lambert law.

• PPG waveform is highly sensitive to the contact pressure
between the sensor and human skin, making it extremely
hard to extract reliable PPG data for ABP monitoring. To
address contact pressure artifact, we design a Least-Squares
Support Vector Machine (LSSVM)-based method to estimate
contact pressure, then assist users in adjusting the wearable
tight or loose and maintain a proper contact pressure during
data collection.

• Existing approaches require collecting sufficient data from
each user for developing user-specific models. However, it
is inconvenient and usually takes a lot of effort. In contrast,
we propose a user-independent ABP monitoring model with
a hybrid network based on Bidirectional Long Short Term
Memory (BLSTM). Furthermore, we design a transfer learn-
ing method to improve the ABP measurement accuracy.

Our major contributions are summarized as follows:
• We demonstrate that a single commodity PPG sensor avail-
able in wrist-worn devices can be used to measure RWTT
and produce measurements of ABP. We develop Crisp-BP,
which is the first to present an accurate and user-independent
ABP monitoring system. It is low-cost, comfortable, conve-
nient, and supports long-term monitoring, which makes it
suitable to be adopted widely.

• We design a set of techniques, including an arterial pulse
extraction method and a contact pressure estimation algo-
rithm that overcomes the capillary interference and contact-
pressure-sensitive deficiency in PPG signals. In addition, we
design a BLSTM-based hybrid network for user-independent
ABP monitoring. Furthermore, we propose a transfer learn-
ing method that extracts general knowledge from online
PPG data, then use it to improve the learning of the model
of our problem.

• We implement Crisp-BP and evaluate it with 35 participants
under various parameters and scenarios. The results show
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Figure 3: An illustration of a reflective PPGwaveform, show-
ing mirrored rule due to reflective measurement.

that Crisp-BP obtains the estimation error of 0.86 ± 6.55
mmHg and 1.67 ± 7.31 mmHg for diastolic blood pressure
(DBP) and systolic blood pressure (SBP), respectively.

The rest of this paper is organized as follows: Section 2 introduces
the background knowledge. Section 3 presents the system overview,
followed by the detailed system designs in Section 4 and Section 5.
Evaluation and discussion are presented in Section 7 and Section 8,
respectively. Section 9 reviews the related work. Finally, we draw
our conclusion in Section 10.

2 BACKGROUND
2.1 Basic of Pulse Wave
The pulse wave is affected by the forward blood flow and the back-
ward blood flow. Considering the blood vessel as an elastic tube,
the inner volumes and vessel diameter is varied by the pressure
difference of the input (Pi ), measurement spot (Pm ), and output
(Po ). As shown in Fig. 2, a pulse starts with the systole (phase A).
Then, the blood volume rapidly increases because the pressure dif-
ference is large between Pi and Pm (phase B). Such an increase is
rapidly reduced subsequently by the diminishing of the pressure
gradients. In the early-diastole, the pressure gradient between Pm
and Po increases, and rapid outflow occurs (phase C). While in the
late-diastole, the outflow is diminished with the decreasing of the
pressure gradient between Pm and Po (phase D). After the back-
ward blood flow occurs, Po increases, resulting in decreased output
pressure gradients. This change suppresses outflow, causing the
blood volume to increase at the measuring position (phase A′ and
phase B′). Successively arrived multiple backward blood flow cause
fluctuation of Po and blood volume (phase C ′ and phase D ′).

2.2 Basic of Photoplethysmography (PPG)
PPG is a simple and inexpensive optical technique that detects the
blood volume by illuminating a skin/tissue and measuring the light
absorption. In recent years, wrist-worn devices equipped with PPG
sensors have grown dramatically. These PPG sensors are mainly
designed to collect pulse waves and monitor heart rates in routine
health care applications. With the fast pace of technological ad-
vancement, more and more devices use the combination of infrared
and green light as light sources, such as Apple Watch [6], Huawei
Watch [4], Honor Band [3], and Xiaomi Band [5].

Fig. 3 shows a typical waveform of a reflective PPG signal ob-
tained at the wrist, showing mirrored rule due to reflective mea-
surement principle. The PPG waveform shows the vessel extension
caused by the change of blood volume, which has a similar appear-
ance with blood pressure wave [22]. The PPG signal consists of an
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Figure 4: An illustration of reflective PPG and APG.

alternating component (AC) and a direct current (DC) component.
The AC component is attributed to the changes in the blood vol-
ume with each heartbeat [10]. Whereas the DC component is based
on reflected and scattered light from the venous and tissue layers,
which are the components without a pulsatile signal [11].

2.3 Intuition of Measuring RWTT using
Acceleration Photoplethysmography

The second derivative of the PPG signal, referred to as accelera-
tion photoplethysmography (APG), is a popular technique for pulse
wave analysis. Previous researches demonstrate that the APG ampli-
fies higher frequencies and allows more precise temporal analysis
than the original PPG.

When the forward blood flow and backward blood flow succes-
sively travel through the artery, blood volume undergoes delicate
changes. The blood volume V can be expressed as the product of a
sectional area S in the vessel and the length L of a blood-contained
portion: V = S · L. The quadratic differentiation of V at time t can
be written as [41]:

d2V

dt2 = 2 ·
dS

dt
·
dL

dt
+ L ·

d2S

dt2 + S ·
d2L

dt2 .
(1)

The terms on the right side represent (1) the product of blood
flow speed and the expansion speed of the vessel, (2) the product
of the expansion acceleration of the vessel and the length of the
said portion, and (3) the product of the blood flow acceleration
and the sectional area of the blood contained portion. Because
the blood pressure influences the blood flow speed and blood flow
acceleration, the quadratic differentiation of V implies the change
in blood speed produced in response to a delicate change in artery
pressure. APG is considered the quadratic differentiation of V as
it shows the change in acceleration of blood volume in the artery.
Therefore, we derive the RWTT from APG. Specifically, as shown in
Fig. 4, APG waveform characteristically exhibits five fiducial points.
RWTT is defined as the time delay between the forward blood flow
and the backward blood flow at the same position. In this work,
RWTT is measured as the interval between the systolic slope (a)
and the arrival of the backward blood flow at the augmentation
point (e).

3 SYSTEM OVERVIEW
Crisp-BP captures the RWTT-related blood volume change in the
artery using a commodity two-wavelength PPG sensor. As illus-
trated in Fig. 5, Crisp-BP is mainly comprised of four models: Two-
Wavelength Light Sensing, Device State Identification, Arterial Pulse
Profiling, and Continuous ABP Monitoring.

In Two-Wavelength Light Sensing, the PPG sensor switches green
and infrared light on for 0.4 ms in turn with a 0.1 ms interval
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Figure 5: Crisp-BP framework.

in which all LEDs are turned off. Meanwhile, the light reflection
is captured by the PPG sensor and will be input into the next
component.

Then, Crisp-BP performs Device State Identification to determine
whether the contact pressure between the PPG sensor and skin
is qualified. For that, Crisp-BP selects two features to represent
the changes in vascular elasticity and vascular resistance under
different contact pressures. Then, the contact pressure is estimated
using the Least-Squares Support Vector Machine (LSSVM). After
that, Crisp-BP guides the user to tight or loose the wristband so
that the contact pressure is close to the optimal contact pressure.

Then, the obtained PPG data are served to Arterial Pulse Profiling.
In Arterial Pulse Profiling, Crisp-BP first removes noises in the PPG
data in Noise Reduction, then extracts arterial pulse based on the
modified Beer-Lambert law in Arterial Pulse Extraction.

After that, Crisp-BP conducts Continuous ABP Monitoring. We
first detect fiducial points by locating extremes of APG signal to
measure RWTT. To enable accurate and user-independent ABP
monitoring, Crisp-BP extracts RWTT and supplement features (per-
sonal information and vascular characteristics) and constructs a
hybrid neural network based on Bidirectional Long Short Term
Memory (BLSTM). Furthermore, to boost Crisp-BP and alleviate
the pain of collecting sufficient training data from all ages and gen-
ders, we propose a transfer learning method. The transfer learning
method can extract general knowledge from online PPG data then
transfer it to a new model in Crisp-BP’s domain. We next introduce
the details of Device State Identification, Arterial Pulse Profiling, and
Continuous ABP Monitoring.

4 DEVICE STATE IDENTIFICATION
4.1 Impact of Contact Pressure
The PPG waveform is highly sensitive to the contact pressure be-
tween the sensor and human skin [18]. On the one hand, when
the PPG sensor contacts the skin loosely, the inappropriate contact
pressure introduces noise data related to the motion artifacts. On
the other hand, when the PPG sensor contacts the skin too tightly,
the changes in the blood volume are difficult to be detected due to
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Figure 6: An illustration of the relationship between contact
pressure and PPG pulsation waveform.

vessel occlusion. Therefore, keeping appropriate contact pressure
is vital in Crisp-BP for accurate ABP measuring.

Fig. 6 illustrates the relationship between diverse contact pres-
sures and the corresponding PPG pulsation waveforms (AC compo-
nent) collected at thewrist.We can observe that pulsationwaveform
amplitude increases and then decreases with the increasing contact
pressure. Similar conclusions can be drawn in studies of contact
pressure applied to the finger [18, 26].

4.2 Contact Pressure Estimation
4.2.1 Feature Extraction. When the PPG sensor applies pressure
to the skin, deformations are introduced to the blood vessels and
skin tissues, which affects the recovery of blood vessels and the
blood flow resistance. These changes can be described by features
related to vascular elasticity and vascular resistance, such as pulse
widths, the ratio of time interval between systolic phase and diastolic
phase, pulse propagation time, the ratio of diastolic area to systolic
area, the ratio of the amplitude of systolic peak to that of diastolic
peak,and total areal of a pulse, etc.

To avoids the unreliable results caused by extracting plenty of
features, we detect the multicollinearity between these features by
comparing the Variance Inflation Factor (VIF). Thus, two significant
features with the lowest VIF are selected (i.e., F1: the ratio of the time
interval between systolic phase and diastolic phase, and F2: the ratio
of the amplitude of systolic peak to that of diastolic peak). Specifically,
F1 is measured as the ratio of the interval from the start point and b
to the interval from b and the end point in APG data. F2 is measured
as the ratio of the amplitude of PPG signal at the time when a and
b in APG signal occur.

4.2.2 LSSVM-Based Contact Pressure Estimation. Contact pressure
estimation is a major challenge since the influence of the extracted
features on contact pressure is still rather vague. Due to the fact that
least-squares support vector machine (LSSVM) is capable of dealing
with an ill-posed problem caused by a few training data [50, 52],
LSSVM is adopted to train a fitting function that describes the
relationship between contact pressure and extracted features. The
training procedure is offline. Specifically, LSSVM is a statistical
learning technique that adopts a least-squares linear system as a
loss function. By using the quadratic cost function, the optimization
problem is reduced to solve a set of linear equations. Then, when
a user accesses to Crisp-BP, we extract features as described in
Section 4.2.1, and estimate beat-to-beat contact pressure using the
pre-trained LSSVM.
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4.2.3 Contact Pressure Qualification. Through experiments (pre-
sented in Section 7.4.1), we find that the system achieves the best
performance under the optimal contact pressure (OCP), which man-
ifests in the form of the highest amplitude of the AC component
(shown in Fig. 6). Therefore, users are encouraged to collect PPG
data at or near the OCP, which are considered qualified contact
pressures. However, the OCP varies greatly from the individual in-
volved. Besides, the changes in the human body (e.g., losing weight,
sweating) and different measuring positions can lead to different
OCPs. It is difficult for users without professional knowledge to
determine whether the wristband should be adjusted tight or loose
according to contact pressure values. Thus, a calibration procedure
is introduced to help determine the OCP. Every time the user puts
on the smartwatch, we ask him/her to slowly press the wrist-worn
device, increase contact pressure until the PPG AC component com-
pletely disappears, then slowly release the device, reduce contact
pressure until the PPG sensor loose contact with the skin. We use
the trained LSSVM to estimate the pressure at the highest ampli-
tude of the AC component, i.e., OCP. When the current contact
pressure is greater than the OCP, Crisp-BP guides the user to tight
the wristband and otherwise would guide the user to loose the
wristband. Overall, Crisp-BP achieves effectiveness in contact pres-
sure estimation, which is demonstrated through experiments in
Section 7.4.1.

5 ARTERIAL PULSE PROFILING
5.1 Noise Reduction
Human heart rate generally ranges from 60 to 100 beats per minute.
We first apply a fourth-order Butterworth filter with cutoff fre-
quencies of [0.5-8] Hz to remove interference caused by baseband
drift and power-line. Then, we roughly segment the beat-to-beat
sequence using the filter of intervals between successive normal
complexes. After that, we use the percentage change method [33] to
remove motion artifacts and other outlier pulses, which is defined
as having an interbeat interval deviating more than 30% from the
mean of the four previous accepted intervals.

5.2 Arterial Pulse Extraction
Intuition: Crisp-BP performs ABP measuring with an accurate
RWTT, which is estimated through profiling the changing pattern
of blood volume with a single PPG sensor. However, the collected
PPG data are inevitably interfered with volume changes in the
superficial capillary bed, which reduces the accuracy of RWTT
estimation. To address this, we associate the wavelength-dependent

PPG with the skin vasculatures and remove capillary interference
based on the modified Beer-Lambert law [12]. Specifically, a typical
PPG sensor on wearables employs green and infrared light emitters
and a photodetector. Green light can reach the superficial capillaries.
Infrared light can penetrate through the skin and reach the arteries
in the subcutaneous tissue. Therefore, PPG data collected in green
light (denoted as green PPG) carry capillary pulses while PPG
collected in infrared light (denoted as IR PPG) carry a complex result
of concurrent pulses of capillary and arterial, as shown in Fig. 7.
Arterioles are small branches of the artery leading into capillaries,
and arteriole pulses are negligible in this work. To associate the
wavelength-dependent light penetration depth in the skin with
skin vasculatures, we adopt the modified Beer-Lambert law. The
modified Beer-Lambert law is reported useful in relating changes
in the optical density to changes in tissue absorption.

Optical Density Modeling: During cardiac cycles, the blood
volume changes introduce changes in the reflected optical density
(∆OD) captured by the PPG sensor. The general expression for
homogeneous tissue is defined as the negative logarithm of the
ratio between the detected light intensity I (t) and the incident light
intensity I0 [12]:

∆OD(t) = −log
(
I (t)

I0

)
≈ ⟨L⟩ ∆µa (t) +

(
µ0
a

µ
′0
s

)
⟨L⟩ ∆µ ′s (t)

≈ ⟨L⟩ ∆µa (t),

(2)

where ⟨L⟩ ≡ ∂OD0/∂µa is the differential path length, OD0 is
the baseline optical density. µ0

a and µ
′0
s are baseline absorption

coefficient and scattering coefficient, respectively. ∆µa (t) is the
differential changes in absorption, which is modeled by ∆µa (t) =
ε · ∆C(t), where ∆C(t) is the change of the volume faction of blood
, ε is the absorption coefficient of the turbid tissue. The tissue
scattering changes ∆µ ′s (t) that typically accompany hemodynamic
concentration variations are often negligible.

We simplify the cutaneous vasculature and tissues as two layers
of homogeneous medium. The incident green light at wavelength
λд can reach the first layer (capillary), and the incident infrared
light at wavelength λI R can travel through the first layer and the
second layer (arteriole and artery). The change in optical density
can be expressed as:

∆ODλд (t) =
〈
L
λд
1

〉
· ε

λд
1 · ∆C1(t)

∆ODλI R (t) =
〈
LλI R1

〉
· ελI R1 · ∆C1(t)

+
〈
LλI R2

〉
· ελI R2 · ∆C2(t),

(3)

where subscripts 1 and 2 represent the coefficient at the first and
second layer, respectively.

Arterial Pulse Modeling: arterial pulse ∆C2(t) can be derived
using:

∆C2(t) =

∆ODλI R (t) −

〈
LλIR1

〉
·ελIR1〈

L
λд
1

〉
·ε
λд
1

∆ODλд (t)〈
LλI R2

〉
· ελI R2

. (4)
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change along different β .

We rewrite Equ. 4 to the following expression:

∆C2(t) =
∆ODλI R (t) − β · ∆ODλд (t)

α
. (5)

We consider α as the scaling coefficient. Since we are interested in
the time reference of arterial pulse to measure RWTT, we focus on
identifying the value of β . By defining:

∆d(β, t) = ∆ODλI R (t) − β · ∆ODλд (t)

= [

〈
LλI R1

〉
· ελI R1 − β

〈
L
λд
1

〉
· ε

λд
1 ] · ∆C1(t)

+
〈
LλI R2

〉
· ελI R2 · ∆C2(t),

(6)

we turn the problem of estimating β into finding the correct value
of β where ∆d(β , t) is dominated by ∆C2(t).

Problem Solving: in practice, since the vessels are distributed
in a layer with certain thickness, there is a subrange of β within [β1,
β2] where ∆C2(t) dominates ∆d(β, t) [31], which is characterized
by ∆d(β, t) does not vary much with β . When β is outside this
range, ∆C1(t) and ∆C2(t) jointly dominate ∆d(β , t), and the value
of ∆d(β, t) varies with β .

Intuitively, we can determine this range by comparing the differ-
ences of ∆d(β, t) with different β . The difference function should
be carefully selected, and it should show significant differences
with different β . In this paper, we use the beat-to-beat duration
correlation [30] to calculate the distance, which is defined as the
Pearson’s correlation coefficient (denoted as P ) of the beat-to-beat
duration sequence of ∆d(β , t) and the original green PPG data.

As shown in Fig. 8, the P versus β curve first decreases with the
increasing β since the proportion of ∆C1(t) in ∆d(β, t) is reduced.
When ∆C1(t) and ∆C2(t) equally dominate ∆d(β, t), P reaches the
lowest. As the proportion of ∆C2(t) in ∆d(β, t) gradually increases,
P rises until it remains stable. Within this stable range, ∆C2(t) is
considered to dominate ∆d(β, t). When β continuous to increase,
the proportion of ∆C1(t) in ∆d(β , t) recovers, and P increases. All
the values in the stable range are candidates for β of Equ. 5. In
our case, we determine it by finding the midpoint of the range. A
detailed discussion about the impact of arterial pulse extraction on
the system is presented in Section 8.5.

6 CONTINUOUS ABP MONITORING
In this subsection, we will discuss how to achieve accurate and
user-independent ABP monitoring with the obtained arterial pulse.
The core steps contain the basic model of ABP monitoring, user-
independent ABP monitoring, and boosting the ABP monitoring.

Table 1: Supplement Features.

Feature Description
ta,b The time interval between a and b
tb,a+1 The time interval between b and a+1
HR Heat rate

Ae,a+1/Aa,e
Area ratio of e to a+1 and a to e under the
PPG pulse

Ha,b The amplitude difference between a and b
Ha,e The amplitude difference between a and e

a, b, e , and a+1 are fiducial points of APG waveform.
α of Equ. 5 is set to 1.

6.1 Basic Model
RWTTestimation: to extract RWTT from the processed PPG data,
we first segment the APG as the cardiac cycles based on the fact
that onset points manifest in the form of maximum points of PPG.
Intuitively, we can apply the sliding window method combined
with a threshold to detect onset points. However, PPG waveform
amplitude varies from time to time and across people. Finding a
threshold suitable for everyone is extremely difficult. Hence, we use
the AutomaticMultiscale-based PeakDetection (AMPD) [45], which
has been reported useful for peak detection of periodic and quasi-
periodic signals. AMPD determines the window size by search-
ing from a window that results in the maximum number of local
maxima from 0.5 s to 2 s. Such a method avoids selecting a fixed
threshold for cardiac cycle segmentation.

After segment beat-to-beat sequence from PPG data, we calculate
beat-to-beat APG data to detect fiducial points. Specifically, we
detectb by finding the point at which APG has the largest amplitude.
Then, e is determined as the minimum point after b. Similarly, a is
identified by locating the minimum point before b. Finally, c and d
are located by detecting extremes of APG signal between b and e .

ABP estimation: as discussed in Section 2.3, RWTT is measured
as the time interval between a and e in APG waveform. As RWTT
is inversely related to pulse wave velocity (PWV), it has a strong
correlation with ABP. Thus, we can initially calculate the ABP as
below equation [35]:

ABP = γ · PWV + η, (7)

where constants γ and η are user-specific parameters .

6.2 User-Independent ABP Monitoring
The above basic ABP estimation model depends on the individual
characteristics. Thus, the corresponding parameters generally need
to be learned through calibration procedures. However, collect-
ing sufficient data from each user for calibration is troublesome,
which limits the development and application of such methodology.
In addition, these mechanism ignores season effects, time of day,
and other factors, therefore the accuracy is less than international
standards. Thus, researchers have enforced elaborated calibration
procedures, which mainly extract vascular correlation features and
use machine learning algorithms.

Inspired by these works, we carefully survey plenty of features
for ABP monitoring and design a Bidirectional Long Short Term
Memory (BLSTM)-based Hybrid Neural Network (HNN) to enable
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Figure 9: Structure of the designed HNN model.

user-independent ABP monitoring. Specifically, we compare the
multicollinearity between candidate features and their Pearson
correlation coefficient with the reference ABP. We select 6 kinds
of extractable features, which are summarized in Table 1. These
features are the most significant ABP features and avoid collinearity
that leads to unreliable machine learning models.

Thus, these selected features are input into the BLSTM-based
HNN to enable user-independent ABP monitoring. BLSTM is a pop-
ular scheme for modeling time sequence data, and it has been suc-
cessfully applied to physiological signal estimation [1, 29]. However,
simple stacked BLSTMs only obtain a limited accuracy in estima-
tion takes. Thus, we design the HNN, which incorporates BLSTM
and several advanced techniques. HNN combines the advantages of
each layer of the network model, which allows for achieving high
estimation accuracy. Fig. 9 shows the designed network structure,
which consists of three parts, the input layer, the hidden layer, and
the output layer. The input layer takes beat-to-beat RWTT and
six vascular characteristic features as input. Before being fed to
the network, features are normalized by min-max-scaling. In the
hidden layer, forward LSTM and backward LSTM work together to
derive the hidden information of the input feature sequences and
build up a progressively higher-level representation of features. We
develop two BLSTMs in the hidden layer since using two layers
provides the optimum balance between complexity and accuracy.
Section 7.4.2 shows details of network structure.

Since ABP changes with many physiological factors, we add a
layer after the BLSTM to calibrate ABP. At the i-th timestep, the
output of this layer is calculated as

Oi
s =WP · PI +Oi

BLSTM , (8)

whereWP is the weights, Oi
BLSTM is the output of BLSTMs. PI is

the personal information, which we define as PI=[gender, age]T
because these data are available in the training dataset. However,
biometrics such as weight, height, BMI, cardiac output, etc., can be
integrated into the personal information vector PI if available.

Besides, there are two fully connected layers in the output layer.
They are used to learn the calibration function. Given the inputOi

s ,
the output y=[DBP, SBP]T is defined by

y =WFC ·Oi
s + bFC , (9)

whereWFC is the weight andbFC is the bias. The network is trained
to minimize the difference between predicted ABP and reference
ABP.
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Figure 10: Improved HNN model structure and transfer
learning process.

6.3 Boosting the ABP Monitoring
The above User-Independent ABP monitoring model requires collect-
ing data from different gender and age to accommodate variations
of ABP for different individual. However, it is hard and takes a lot of
effort to collect sufficient data. To relieve the pain of data collection,
we propose to use the transfer learning technique. The idea is to
find a related source domain to learn general knowledge and use
it to improve the learning of a model on our target domain. Data
from the source domain can compensate for the scarcity of data on
the target domain. Specifically, we obtain the source domain from
an online dataset MIMIC III [27].

The MIMIC III database contains physiologic signals and time
series of vital signs captured from ICU patients. It contains 67, 830
record sets from 30, 000 patients aged 16 or above. The median age
of these patients is 65.8 years, 55.8% of patients are male, and 44.1%
are female. We use the subset of patients with high-quality fingertip
PPG and ABP for training the hybrid neural network. Each record
has different lengths, most are a few days in duration, but some are
shorter, and others are several weeks long.

Fig. 10 shows the transfer learning strategy and the improved
structure of the BLSTM-base model. We add an adaptation layer af-
ter each fully connected layer to perform domain shift. During train-
ing, we use data from the source domain to train a well-performed
model that minimizes the difference between associated ABP values
and the predicted results. Then, we initialize a new network with
weights and bias of model learned on source domain. After that, we
freeze the hidden layer and personal information calibration layer.
By fine-tuning weights of the fully connected layers in the output
layer, we obtain the final model on Crisp-BP’s domain.

Domain loss (DL) is the key parameter in the adaptation layer,
which is defined as

DL =
∑

MAEh · θh , (10)

where θh is the weight of the h-th adaptation layer in domain loss
function, which is the output by a softmax layer.MAEh represents
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Figure 11: Crisp-BP prototype.

the mean absolute value of the error between the MIMIC III feature
series and the Crisp-BP feature set.

The loss of Crisp-BP consists of two parts: DL, and the sum of
the Mean Square Error (MSE) of diastolic blood pressure (DBP) and
systolic blood pressure (SBP), expressed as

Loss = DL +
1
n

n∑
i=1

[(SBPpi − SBPli )
2 + (DBPpi − DBPli )

2], (11)

where n is the length of input sequence. SBPpi and DBPpi denote
the predicted ABP results, SBPli and DBPli are true value of ABP
records. Overall, Crisp-BP achieves the mean estimation error of
0.86 mmHg and 1.67 mmHg for diastolic blood pressure (DBP) and
systolic blood pressure (SBP), respectively. Experiment details are
presented in Section 7.3.

7 EVALUATION
In this section, we present the implementation, experiment set-up,
and evaluation results of Crisp-BP.

7.1 Implementation
7.1.1 Sensing Prototype. We notice that existing manufacturers
only provide heart rate readings but do not provide direct access to
raw PPG data. We implement Crisp-BP with a proof-of-concept pro-
totype as shown in Fig. 11. The prototype consists of a commodity
PPG sensor, an adjustable wrist band, and an embedded evaluation
board for PPG sensor. The PPG sensor and embedded evaluation
board are tied together as an alternative to smartwatches.

7.1.2 Machine Learning Pipeline. We develop the neural network
model use TensorFlow, Keras, and Sklearn. For the neural network
models, we use a hidden layer with 2 BLSTM layers, 14 neurons
per layer, embedding dropout 0.2, and batch size 32. In the training
phase, we use adaptive moment estimation (Adam) optimizer with
a standard setting.

7.2 Setup and Methodology
7.2.1 Data Collection. There is no state-of-art dataset that simulta-
neously monitors ABP and two-wavelength wrist PPG. Therefore,
we collect the dataset to implement and evaluate Crisp-BP. All data
are collected following an experimental protocol approved by the
ethical review board of the institute. During four months, 35 partic-
ipants (17 male and 18 female aging between 19 to 50) are recruited
in this study. All participants are selected from students and faculty
of the institute. They have no known medical conditions related
to our evaluation. Experiments are conducted in a quiet labora-
tory at a comfortable temperature. The ground truth of ABP is

Table 2: Evaluation Measurements.

Measurement Formula
Mean Error ME =

∑n
i=1(pi−ri )

n

Standard Deviation STD =

√∑n
i=1(pi−ri−ME)2

n
Sample Pearson’s
Correlation Coefficient P =

∑n
i=1(ri−r̄ )(pi−p̄)√∑n

i=1(ri−r̄ )2
√∑n

i=1(pi−p̄)2

provided by an FDA-approved, arm-cuff ABP measurement device
Omron U30 [7]. Following the standard validation procedure [48],
all participants sit with back supported, legs uncrossed, and arm-
cuff is held at heart level to obtain accurate ground truth. ABP
measurements are alternated between the cuff device and the Crisp-
BP implemented wearable band, and measurements are performed
with 60 seconds intervals. The process takes about ten minutes. To
accommodate slight sensor position differences, we encourage par-
ticipants to wear the band 1-3 finger-widths above their wrist bone.
Specifically, we collect at least ten sessions from each participant
in four months. Between each session, the participants are asked
to take a 10 minutes break.

To validate Crisp-BP’s effectiveness for continuous monitoring,
we conduct a 24-hour experiment that compares the ambulatory
ABP ground truth with the estimated results. Besides, we conduct
experiments with different PPG sensors and sampling frequencies
to evaluate Crisp-BP against various issues. Furthermore, to under-
stand the performance of key algorithms, we ask participants to
collect data with various contact pressures and network structures.
Overall, we collect more than 51, 750 minutes of PPG recordings
for evaluation.

7.2.2 Evaluation Methodology. Three measurements, including
mean error (ME), standard deviation of mean error (STD), and
sample Pearson’s correlation coefficient (P ) are used in this paper
to measure the accuracy of the proposed method. Formulas for
these measurements are shown in Table 2, where ri is the reference
value of ABP from ground truth recordings,pi is the predicted value
of Crisp-BP, r̄ and p̄ are mean of reference ABP and predicted ABP,
respectively, and n is the number of samples.

7.3 Overall Performance
To understand the performance of the designed system for user-
independent ABP monitoring, we evaluate Crisp-BP by conducting
leave-one-participant-out validation, where we use data from one
participant for testing and data from the remaining participants for
training. Fig. 12 shows the Bland-Altman plots for the estimated
SBP and DBP. The results are from all combinations of training
and testing data. The x-axis is the average reference ABP of all
participants, and the y-axis is the estimation error. The mean errors
of DBP and SBP are 0.86 mmHg and 1.67 mmHg, the standard devia-
tion of mean error of DBP and SBP are 6.55 mmHg and 7.31 mmHg,
respectively. The result confirms that Crisp-BP is accurate for user-
independent ABP monitoring. Besides, the red line indicates the
mean error, and the black lines indicate the limits of agreement
(ME ±1.96 × STD). More than 95% of the points lie within the limit
of agreement in SBP and DBP, which ensures great accuracy in
practical usage.
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Figure 12: Bland–Altman diagram of DBP and SBP.
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Figure 13: Correlation diagram of DBP and SBP.

Fig. 13 shows the correlation diagram of the estimated results and
the reference value. The x-axis represents the reference BP value
from ground truth records, and the y-axis represents the estimated
results. Points on the red line have identical values, and the distance
to the red line is proportional to the error. We can observe that
points are clustered around the red line, which suggests a close
correlation. Specifically, the Pearson’s correlation coefficients for
SBP and DBP are 0.88 and 0.82, respectively.

Table 3 compares our results with the requirement for the As-
sociation for the Advancement of Medical Instruments (AAMI)
standard [48], Crisp-BP satisfies the recommended error bound-
ary as defined by the AAMI. Table 4 compares our results with
the requirement for the Britain Hypertension Society (BHS) stan-
dard [39]. We have achieved grade A for DBP and SBP. The results
demonstrate high estimation accuracies for SBP and DBP.

7.3.1 24-Hour Performance. Because accurate ground truth of ABP
should be measured under controlled circumstances (e.g., sit with
back supported and feet on the floor, arm supported at heart level),
it is not feasible to conduct a beat-to-beat evaluation throughout
24 hours. Therefore, to collect the continuous PPG data and corre-
sponding ground truth, we ask each volunteer to alternately wear
our prototype and an arm-cuff ABP measurement device (Omron
U30) every 30 minutes during the day and every hour at night.
Fig. 14 shows the 24-hour estimation error for DBP and SBP. We
can observe that Crisp-BP performs better during the day, and the
estimation error of DBP and SBP fluctuates below 3.2 mmHg, which
confirms the effectiveness of Crisp-BP. Moreover, DBP estimates
from 3 o’clock to 5 o’clock receive relatively high errors. We care-
fully check the results of different participants and find that four
participants contribute the most to the error during 3-5 AM. They
report that being interrupted during sleeping and no enough sleep

Table 3: Comparison of Crisp-BP with AAMI standard.

ME
(mmHg)

STD
(mmHg)

Crisp-BP
DBP 0.86 6.55
SBP 1.67 7.31

AAMI SBP and DBP ⩽5 ⩽8

Table 4: Comparison of Crisp-BP with BHS standard.

Cumulative Error Percentage
⩽5 mmHg ⩽10 mmHg ⩽15 mmHg

Crisp-BP
DBP 76.73% 91.43% 97.96%
SBP 65.66% 87.17% 96.23%

BHS
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%
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Figure 14: 24-hour performance.

affect their emotion and heart rate. The study of those cases is left
as future work.

7.4 Key Algorithm Performance
7.4.1 Effectiveness of Contact Pressure Estimation. As declaration
in Section. 4.1, the PPG waveform is highly sensitive to the contact
pressure between the sensor and human skin, which will impact the
accuracy of ABP estimation. Therefore, Crisp-BP proposes a contact
pressure estimation method to assist users in adjusting the wearable
tight or loose and maintain a proper contact pressure during data
collection. In this subsection, we will first study the impact of
different contact pressure and then evaluate the performance of the
proposed contact pressure estimation method.

We first evaluate the ABP estimation performance under three
types of contact pressure (i.e., lower than optimal contact pressure
(OCP), equal to OCP, and higher than OCP). The OCP is the pressure
associates with the highest amplitude of the AC component. The
ABP estimation error between each type of contract pressure and
ground truth is shown in Fig. 15. We can find that the case of equal
to OCP achieves the lowest error for both DBP and SBP. The case
of lower than OCP has higher errors than other cases. The reason
may rely on the relative motions between the PPG sensor and skin,
which introduce more noise in the PPG data. This result further
demonstrates the necessity of contact pressure control.
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Table 5: System performance without transfer learning vs.
with transfer learning.

ME
(mmHg)

STD
(mmHg)

Without
Transfer Learning

DBP 4.88 12.24
SBP 7.30 18.59

With
Transfer Learning

DBP 0.86 6.55
SBP 1.67 7.31

Then, to validate the effectiveness of our contact pressure esti-
mation method, we attach a 7.6 mm round head thin film pressure
sensor alongside the PPG sensor to obtain the ground truth of con-
tact pressure. Overall, the proposed method receives a mean error
of 6.12 g, a standard deviation of 11.63 g, and a Pearson’s corre-
lation coefficient of 0.65. When contact pressure is divided into
three classes of lower than OCP, equal to OCP, and higher than
OCP, 96.81% samples are correctly classified. As the results implied,
our system can effectively estimate contact pressure and provide a
basis for Crisp-BP.

7.4.2 Impact of ABP Monitoring Model Structure. The proposed
hybrid neural network model is based on BLSTM. The number
of BLSTM layers, the memory cell at each layer, and batch size
significantly impact the ABP estimation accuracy. Exploiting more
BLSTM layers and more memory cells can better derive the hidden
relationship between ABP and RWTT and other features but lead
to higher computational costs. Besides, convergence may not be
found when using too many BLSTM layers. We compare different
combinations of model parameters, including neural cells, batch
size, and the number of BLSTM layers. We find that 2 layer, 14
neurons per layer, embedding dropout 0.2, and batch size 32 provide
the optimum balance between complexity and accuracy. Therefore,
we chose the above parameters as our default network through
empirical studies. Detailed results are ignored due to the space limit.

7.4.3 Effectiveness of Transfer Learning Method. The goal of devel-
oping the transfer learning method is to boost user-independent
ABP monitoring when only limited training data is obtained. We
compare our method with transfer learning to the same method
without transfer learning. Table 5 shows the comparison. Clearly,
the proposed transfer learning can significantly reduce the estima-
tion error for both DBP and SBP. This validates the effectiveness of
transfer learning.

7.5 System Robustness
7.5.1 Impact of Sensor Diversity. Implementation on different de-
vices is a critical aspect of ABP monitoring algorithms. Therefore,
we conduct experiments with data collected by three commod-
ity PPG sensors, including the MAX30105 (denoted as device 1),
MAX30101 (denoted as device 2), and AS7026GG (denoted as device
3), which differ in size and optical hardware. We use data collected
from one device for testing and data from the remaining devices for
training. Besides, we conduct five-fold cross-validation by training
a network model with 75% mixed data from all devices and testing
the model with the reminding 25% data (denoted as mixed). Fig. 16
shows the mean error of APB estimation under different types of
PPG sensors. We can observe that sensor diversity only has a slight
impact on the system performance. After careful analysis, we find
that the sensor diversity mainly affects the amplitude and area-
related vascular characteristic features, while time interval-related
features and time-resolved RWTT have high quality. The proposed
network effectively harnesses the variation of features, leading to a
mean error of less than 5 mmHg. This result indicates that Crisp-BP
works well across devices.

7.5.2 Impact of Sampling Frequency. On the one hand, a higher
sampling frequency enables more samples to be collected, which
benefits the analysis of artery volume change. However, it certainly
will lead to higher computational costs. On the other hand, insuf-
ficient sampling leads to errors in RWTT estimation and further
reduces the ABP monitoring accuracy. As off-the-shelf wearables
only support a limited sampling frequency, we study the impact of
sampling frequency by varying the frequency from 50 Hz to 200
Hz. Fig. 17 shows the box-and-whisker plot of SBP and DBP with
different sampling frequencies. The lowest point is the minimum
of the estimation error, and the highest point is the maximum of
the estimation error. The box is drawn from Q1 (the median of
the lower half of the dataset) to Q3 (the median of the upper half
of the dataset) with a horizontal red line drawn in the middle to
denote the median. We can observe that error decrease with the
increase of sampling frequency, and DBP receives better estimation
performance than SBP. Off-the-shelf smartwatch and fitness can
flash their LED lights hundreds of times per second [6], which can
obtain acceptable results based on the experiment. Therefore, Crisp-
BP is compatible with the device that supports various sampling
frequencies.
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Table 6: Comparisons of Crisp-BP with typical works on portable ABP measuring via PPG signal.

Comparison items Glabella [25] SeismoWatch [17] Seismo [55] Naptics [16] eBP [14] Crisp-BP
Method PTT PTT PTT PTT CPA RWTT
Subject 4 13 9 6 35 35
Device type Glasses Wristband Phone Shorts In-Ear Wristband
Auxiliary tools None Accel Accel Accel+elec+oxi Balloon None
Passive sensing Yes No No Yes No Yes
Scenario Daytime Instant Instant Night Instant Daytime+Night
Comfort level High Middle Middle Middle Middle High
SBP ME/STD (mmHg) ±10 4.8 N/A N/A 1.8/7.2 1.67/7.31
DBP ME/STD (mmHg) N/A 2.9 1.3/6.9 N/A -3.1/7.9 0.86/6.55

* PTT, CPA stand for pulse transit times, change of pulse amplitude, respectively. Accel, elec, and oxi represent accelerometer, electrodes, and oximeter,
respectively.

7.6 Comparison with Typical Related Works
Table 6 shows the comparison results between Crisp-BP and other
typical works on portable ABP measuring via PPG signal in terms
of the used method, subject number, the type of portable device,
auxiliary sensors/tools, passive or participatory sensing, working
scenario, comfort level, and the reported accuracy of APB estima-
tion (i.e., the mean error/standard deviation of SBP and DBP).

These typical works exploit the Change of Pulse Amplitude
(CPA) [14] or Pulse Transit Times (PTT) [16, 17, 25, 55] to estimate
the ABP. To change the artery volume, the former work requires a
balloon to press the artery. This procedure needs to be triggered
manually by the user. Therefore, this method only works in an
instant manner. Besides, the ear will be stuffed by the inflation
balloon, which reduces the user’s comfort certainly. In contrast,
Crisp-BP canwork on awristband device in a passivemanner, which
has less impact on the user comfort.

Meanwhile, the later works based on PTT can be embedded on
the glasses, wristband, phone, and shorts, respectively. To calculate
the PPT, SeismoWatch [17], Seismo [55], and Naptics [16] also need
the cooperation from additional sensors (e.g., accelerometer, oxime-
ter). Among these works, Glabella [25] and Naptics [16] support
long-term working scenarios (i.e., during the daytime and night,
respectively). Comparing with them, Crisp-BP can work during
both daytime and night without any additional sensors or tools.

8 DISCUSSION
8.1 Impact of Lighting Condition
PPG is an optical technique that detects blood flow by illuminating
the skin and measuring light absorption. The PPG sensor may pick
up ambient light, which significantly affects the PPG waveform.
This can be addressed by capturing the light level when LEDs are
off and subtracting it from the collected data.

8.2 Impact of Skin Tone
Variations in human skin tone affect the absorption of light, and
different skin tones have different impacts on the green-light-PPG
and infrared-light-PPG. For example, darker skin absorbs more
green light than light skin. This impairs the extraction of arterial
pulse and might limit the scope of application. Yellow light with
a longer wavelength than green light can reach deeper tissue of

the skin. The combination of yellow and infrared light not only
retains depth-resolved information but also reduces the impact of
skin color. Future manufacturers can use yellow light instead of
green light to reduce the impact of skin tones.

8.3 Impact of Wrist Position
Crisp-BP obtains the APB value mainly rely on the accurate RWTT
estimation. However, the relative position between the wrist and
the heart will influence the RWTT estimation since the velocity of
blood flow will change. For example, when users raise their wrists
above their heart level, the velocity of blood flow on the wrist will
be reduced. To achieve an accurate ABP estimation, we suggest
users to place his/her wrist close to the heart level when sitting or
standing. Besides, when the user is lying flat (e.g., take a rest or
sleeping), he/she should lay his/her wrist flat too.

8.4 Impact of Body Movement
Wrist-worn devices are usually associated with body movements
from activities of daily living. The impact of body movement can
deform the PPG signal, which leads to errors in the ABP estimation
results. Luckily, a lot of research efforts have been made to suppress
and reduce the noise caused by body movement, such as analyze
the difference between green PPG and infrared PPG, and apply
the semi-blind source separation method [15]. Such a method can
effectively cancel the impact of body movement in PPG signal.

8.5 Impact of Arterial Pulse Extraction
The proposed arterial pulse extraction method aims to remove the
capillary pulse and obtain the artery pulse. Then, we measure the
RWTT from the extracted arterial pulse. The algorithm parameter
β only needs to meet the conditions mentioned in Sec. 5.2 because
different values of β mainly affect the waveform amplitude. While
RWTT is a time-interval descriptor, Crisp-BP can measure accurate
RWTT despite there is a small error in waveform amplitude.

9 RELATEDWORK
To detect or monitor medical problems, many efforts have been
made to obtain vital signs [20]. Arterial blood pressure (ABP) is
one of the main vital signs for routine monitoring. Previous studies
on ABP monitoring vary in sensing modalities and sensor place-
ment. The most commonly used clinical ABP monitoring method
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is to block arterial blood flow with a cuff and determine the ABP
based on Korotkoff sounds [54] or oscillometric method [44] in
the discharge process. However, environmental noise can interfere
with the Korotokff sounds, which makes the results inaccurate. In
contrast, volume clamp [42], tonometry [43], and ultrasonic [13]
are proposed to monitor the blood waveform. Although they pro-
vide continuous and non-invasive monitoring results, using special
equipment makes them difficult to be adopted widely. Moreover,
these methods involve a vessel compression process. Study [23]
has revealed risks of tissue hypoxia on the distal side that applied
pressure.

As wearable devices are increasingly pervasive and common
in our daily lives, advancements in research have been leading to
increased innovation in health care applications. HeartGuide [8] and
eBP [14] enable oscillometric measurements of ABP in wristwatch
and in-ear wearable, respectively. Using oscillometric measurement
is accurate, but these methods are still limited to measuring ABP a
few times per day as repeated cuff inflation is uncomfortable.

To reduce discomfort, research efforts have been made to de-
velop cuffless technologies [24, 34] for ABP monitoring. The most
commonly used are based on the time delay of a blood pulse at
two different sites, i.e., pulse transit time (PTT) [38, 40] and pulse
arrival time (PAT) [19, 28]. These parameters can be obtained by
measuring the time interval between ECG and PPG, or between
two PPG signals, collected simultaneously from two positions. For
example, VivoWatch [2] and Apple Watch [6] incorporate ECG and
PPG sensors into the smartwatch. ABP can be tracked by measuring
PTT and PAT from the time interval between ECG and PPG. How-
ever, they require users to press fingers on the ECG pad throughout
data collection. SeismoWatch [17] and Seismo [55] measure the
vibration of the heart valve and the pulse at the limbs using a watch
and a smartphone, respectively. They require the user to press the
measuring device on the sternum. Sugita et al. [49] estimate ABP
using video captured at different heights from the heart, but they
require users to sit in a fixed position in front of the camera. A
common limitation of these methods is the need for user effort,
which is inconvenient and degrades user experience.

To minimize such impact, approaches that require no user effort
have been proposed. Glabella [25] adopts PPG sensors and con-
structs a pair of glasses to measure PTT from different sites on the
user’s face. However, Glabella is limited to daytime systolic ABP
monitoring. For night-time monitoring, Naptics [16] incorporates
a series of physiological sensors and develops a PTT-based system
woven into compression shorts. Vahdani-Manaf [53] uses a ring-
shaped PPG sensor for collecting PPG with infrared, red, green,
and blue LEDs. Liu et al. [30, 32] develop a multi-wavelength PPG
sensor to record PPG signals with infrared, yellow, green, and blue
LEDs. They mainly extract time differences (TD) between separate
pairs of PPG signal with different wavelengths and apply the modi-
fied PTT-based method to monitor ABP. The calculated TD is about
a few tens of milliseconds, which is energy-consuming to obtain
accurate values. In addition to limited usage scopes, they rely on
prototypes unavailable to consumers. Moreover, these methods are
affected by season effects, time of day, and other factors. Therefore,
the accuracy is less than international standards.

Extracting features from PPG, ECG [21, 47, 58] and using ma-
chine learning methods usually achieve enhanced accuracy and

more consistent output. Nevertheless, these approaches have defi-
ciencies in model training. The training dataset must be sufficiently
big and cover different gender and age to accommodate variations
of ABP for each individual, which is inconvenient and usually takes
much effort.

From another perspective, reflected wave transit time (RWTT)
provides a new opportunity for ABP monitoring. RWTT is defined
as the transit time between the forward blood flow and the back-
ward blood flow at the same position, which can be measured from
blood flow acceleration [51, 57]. However, measuring blood flow
acceleration requires mounting special accelerometers around the
artery, which is invasive. Besides, Wang et al. [56] and Mitchell
et al. [37] respectively investigate using non-invasive pulse wave
tonometer to measure RWTT for arterial stiffness assessment. How-
ever, continuous measurement is not accurate due to variations in
force and angle when manually holding the sensing device against
the measurement site as well as other issues [9].

Compared with existing efforts, our design only employs a single
commodity PPG sensor available inwrist-worn devices.While using
our system, the users naturally wear a smartwatch or fitness tracker,
which fosters continuousness, comfort, and convenience. By profil-
ing the blood volume change and constructing an effective hybrid
neural network model, our design can measure accurate RWTT
and generate accurate ABP values. More importantly, Crisp-BP is
user-independent, which can be generalized to new users without
acquiring their training data. Therefore, Crisp-BP is promising for
practical usage.

10 CONCLUSION
This paper presents Crisp-BP, which is the first ABP monitoring
system that fosters continuousness, comfort, convenience, accuracy,
and user-independence. Crisp-BP utilizes a single PPG sensor avail-
able in wrist-worn devices (e.g., smartwatches and fitness trackers).
It works by profiling volume change with the captured light re-
flection intensity and measuring RWTT to produce accurate ABP.
Specifically, we propose a set of algorithms to remove capillary in-
terference in arterial pulse and compact contact pressure-sensitive
deficiency. After extracting RWTT and supplement features from
PPG data, a BLSTM-based hybrid neural network is developed. To
address data scarcity, we propose a transfer learning method that
extracts general knowledge from a large amount of online PPG
data. Then we transfer it to a new model in Crisp-BP’s domain.
Extensive experiments involving 35 participants demonstrate that
Crisp-BP successfully takes one step forward to provide accurate
ABP monitoring with the estimation error of 0.86 ± 6.55 mmHg
and 1.67 ± 7.31 mmHg for DBP and SBP, respectively. These errors
are within the acceptable range regulated by the AAMI protocol.
We believe that Crisp-BP has the great potential to improve the
diagnosis and control of hypertension and increase the utility of
wrist-worn devices.
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