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ABSTRACT

With the advances of sensing, wireless communication, and mobile computing, mobile crowdsourcing has become a new
paradigm for data collection and retrieval that has attracted considerable attention. This paper addresses the fundamental
research issue in mobile crowdsourcing: Which participants should be selected as winners in each time slot with the aim
of maximizing the total utility of the service provider in the long term? First, a double-sided combinatorial auction model
is introduced to describe the relationships between the mobile users and requesters from the perspective of supply and de-
mand at a given time. Then, the coupling between the utility values of the system in different time slots is investigated.
Based on the aforementioned analyses, this paper proposes a context-aware participant recruitment mechanism, in which
the mobile crowdsourcing system dynamically adjusts the participant recruitment mechanism depending on the ratio be-
tween the numbers of mobile users and requesters. Context-aware participant recruitment consists of two main components:
(1) a heuristic algorithm based on the greedy strategy to determine the winning participants and (2) a critical payment
scheme, which guarantees the rationality of the proposed mechanism. Finally, extensive simulations demonstrate that the
proposed mechanism achieves high system utility in the long term. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND RELATED
WORK

The ubiquity of sensor-equipped mobile phones and the
development of wireless communication technology have
enabled mobile users to collect and share information about
their surroundings, for example, individuals, human society,
and environments. Empowered by these capabilities, mobile
users have shifted from being data consumers to being data
providers, offering a new service model for mobile cloud
computing, that is, mobile crowdsourcing (MC) [1,2]. By
integrating mobile computing and crowdsourcing, MC
provides requesters with real-time data regarding points of
interest (POIs). It offers a number of advantages (e.g., low
deployment cost, high spatiotemporal coverage and easy to
update) over traditional sensor networks [3–6], which entails
deploying a large number of static wireless sensor devices.

An MC system typically involves three main actors: the
mobile users that contribute the sensor data (the workers),
Copyright © 2016 John Wiley & Sons, Ltd.
the service provider (SP) that processes the collected data,
and the end users that subscribe to the service (the re-
questers). The requesters and the mobile workers are collec-
tively called the participants. An example is illustrated in
Figure 1. A requester who desires information regarding
antigovernment demonstrations in various locations of a city
issues a query to the SP. Subsequently, the SP outsources the
data collection task to the well-suited mobile users, who can
perform data sensing using their sensor-equipped mobile de-
vices. Then, the selected mobile users physically travel to the
designated locations and upload sensing data (e.g., pictures,
video, or audio) to the SP through wireless connection.
Finally, the SP processes the collected data to generate the
query result for the requester. A common challenge for the
system is to identify the participants (both the requesters
and mobile workers) who can contribute more value to the
system and motivate their participation in the system.

Although many MC systems have been proposed, most
of them (e.g., [1,2,7,8]) have simply assumed that the



Figure 1. Example of a mobile crowdsourcing system: (1) a requester issues a query, (2) the service provider (SP) assigns the task to
mobile users, (3) the selected mobile users (workers) upload their sensing data to the SP, and (4) the SP returns the query result to the

requester.
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workers voluntarily participate in the system to perform
sensing tasks. However, mobile users may not be willing
to join an MC system unless they will receive adequate
reward. As is well known, some costs (e.g., time, bat-
tery, and wireless communication expenses) are incurred
by the mobile users who perform these MC tasks. More-
over, the sensing data may include personal information,
such as the users’ locations, and thus, sharing these
data poses potential privacy threats to the participating
users. All of these bring the reward-based MC system to
the fore.

Many approaches (e.g., [9–22]) have been proposed in
recent years to address the participant recruitment issue in
reward-based MC. According to the different purpose of
employing these strategies, the existing work can be
roughly divided into the following categories: (1) user-
centric approach: This approach argues that the cost of
the participants is rationally reflected in the fees that the
users claim and attempts to minimize the side effects to
the participants during the data collection, such as travel
costs (e.g., [9]), energy consumption (e.g., [10,11]), and
privacy leaks (e.g., [12–16]); (2) platform-centric
approach: This approach focuses on how to evaluate the
participants’ contributions and improve the information
gain achieved by the platform. Most platform-centric ap-
proaches (e.g., [17–22]) used an auction or reverse auction
mechanism to reduce the overall cost of the platform.
However, these studies have some limitations, which mo-
tivated our work. First, they always focused on “atomic
query” and assumed that all queries are independent.
However, in reality, there could be cases in which the
SP may need to recruit several mobile users in different lo-
cations to collectively fulfill a complex query, which will
be accomplished if and only if all of the spatial sub-tasks
are accomplished. Second, they focused on “single-shot”
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
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scenarios and assumed that the SP always has a sufficient
number of workers to handle all queries. However, an MC
system consists of dynamic participants who can join or
leave at any time. Therefore, such an assumption is not
viable. To the best of the authors’ knowledge, [17] and
[22] are the only studies that explicitly addressed the
long-term participation incentive mechanism in MC. In
[17], Lee et al. introduced a virtual credit to low the bids
of users who lost in the previous auction round and are
participating in the current auction round, hence increas-
ing their probabilities of winning. In [22], Gao et al. intro-
duced a virtual queue to store candidate users that will
exit the system and studied the queue stability based on
the Lyapunov drift [23]. However, these authors did not
consider the dynamic nature of MC, namely, the ratio
between the mobile users and workers is dynamically
changing. To address the issues identified previously, a
new participant recruitment strategy for MC must
be developed.

This paper addressed the fundamental research issue in
participant recruitment: Which participants (both re-
questers and workers) should be selected as winners in
each time slot with the aim of maximizing the total utility
of the SP in the long term? This problem is challenging
for several reasons. First, the competition among the
participants makes them partially in conflict with one
another. Different requesters may compete for the same
worker, and different workers may compete for the same
query. In addition, a requester’s query will be satisfied if
and only if all of the necessary spatial sub-tasks are
accomplished. Second, the system dynamics couples the
utility values of the SP in different time slots. The
workers participating in the MC system may suffer cer-
tain indirect costs even when they are not performing
sensing tasks (such as periodically reporting their
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locations to the SP). Thus, if a worker is rarely selected as
a participant, that worker may become frustrated with the
SP and decide to exit the system. A decline in the number
of workers participating in the system may affect the
future utility of the SP.

To address this problem, this paper first studies the rela-
tionship between the requesters and workers and then in-
troduces a double-sided combinatorial auction model to
describe the interactions between the numbers of the re-
questers and workers from the perspective of supply and
demand. Then, the paper introduces and investigates the
context-aware participant recruitment (CAPR) problem,
in which the ratio between the requesters and workers is
not constant and isolated along the temporal dimension.
Next, the problem is transformed into how to achieve a
good balance between the workload and the utility at each
point, with the aim of maximizing the long-term system
utility. On the basis of the aforementioned analyses, this
paper presents the design of the CAPR mechanism that
consists of two main components. In the first component,
a novel metric called “bid density” is introduced to evalu-
ate the value of the requesters’ query, and a heuristic algo-
rithm based on the greedy strategy is then proposed to
determine the winning participants within a suitable time
frame. The second component is a critical payment
scheme, which guarantees the rationality of the proposed
mechanism.

The contributions of this paper are summarized as
follows:

(1) A double-sided combinatorial model is introduced
that, for the first time, describes the interactions be-
tween the workers and requesters from the perspec-
tive of supply and demand. The model is suitable
for the spatially complex queries.

(2) A CAPR mechanism is introduced and investigated,
in which the ratio between the requesters and
workers is not constant and isolated along the tem-
poral dimension.

(3) A novel metric called “bid density” is introduced to
evaluate the value of the requesters’ queries, and a
heuristic algorithm based on the greedy strategy is
then designed to determine the winning partici-
pants. Moreover, a critical payment is presented that
guarantees the rationality of the proposed
mechanism.

(4) The proposed algorithms are evaluated by means of
extensive simulations to shed light on how the
CAPR mechanism improves the utility of the SP
in the long term.

The remainder of this paper is organized as follows.
Section 2 introduces the system framework and formulates
the problem. The process of deriving the workload
constraint is presented in Section 3. Section 4 describes
the details of the proposed scheme. Section 5 presents
performance evaluation results. Finally, conclusions are
drawn in Section 6.
2. SYSTEM MODEL AND PROBLEM
FORMULATION

This section first presents the motivation and the basic idea
of the proposed solution, and then a formal description of
the problem is provided.

2.1. Motivation and basic idea
Most existing approaches utilize the Vickrey–Clarke–Groves
(VCG) mechanism and its variants to recruit participants with
the aim of minimizing the total payment of the SP. These stud-
ies have some limitations, which motivated our work.

First, they always focused on “atomic query” and
assumed that all queries are independent. However, this as-
sumption is inadequate for real-world applications. An exam-
ple is illustrated in Figure 1: A requester issues the query “Is
there a suitable park for a picnic within a 10-minute drive?”
to the SP. To answer this question, the SP must determine
the following: (1) the air quality of nearby arks and (2) the de-
gree of traffic congestion. The requester’s query will be satis-
fied if and only if all of the sub-tasks are successfully
completed. The traditional auction mechanism, in which
the requester bids on the two queried resources in two se-
quential, independent auctions, is inefficient in the situation.

Second, they focused on a “single-shot” scenario and
assumed that the SP always has a sufficient number of
workers to handle all queries. However, an MC system
consists of dynamic participants who can log in or out at
any time; thus, that assumption may not be valid. In addi-
tion, the workers participating in the MC system may suf-
fer certain indirect costs (such as periodically reporting
their locations to the SP) even when they are not
performing sensing tasks. Thus, if a worker is rarely se-
lected as a winner, that worker may become frustrated with
the SP and decide to exit the system. Therefore, the partic-
ipant recruitment mechanism determines the remaining
workers in the system, which is closely related to the utility
of the SP in the future. Thus, the utility of the SP in differ-
ent time slots is coupled. The system utility must therefore
be considered from a long-term perspective.

For the first problem, the approach taken in this paper is
to study the interactions between the requesters and
workers from the perspective of supply and demand in
the economy. To this end, a double-sided combinatorial
auction model is introduced in which the requesters are
the buyers (buying the queried resources) and the workers
are the sellers (selling the queried resources). An example
is illustrated in Figure 2. There are three requesters and five
workers in the MC system. User 1 seeks to buy queried re-
sources r1 and r2 with a bidding of $5, user 2 bids $8 for
queried resources r1, r2, and r3, and user 3 bids $5 for que-
ried resource r2. All of these users submit their bids to the
online auction platform. Five workers are participants in
the auction, and all of these workers also submit their bids
to the platform. At the end of the bidding period, the win-
ner determination module computes the winners and prices
for the auction. Then, the results are announced to the re-
questers and workers.
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
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Figure 2. A participant recruitment scenario consisting of three requesters and five mobile workers distributed across three different
grids. Each query from a requester may require several grid resources.

Table I. Symbols used in this paper

SymbolsMeaning

qi The query from requester i
bi The bid price of requester i
sj The bid request of worker j
r(j) Worker j possesses the grid resource r(j).
cj The claimed cost of worker j
Qi

k The set of k grid resources required to complete query
qi

S(ri) The set of workers that possess the grid resource ri
Q(ri) The set of queries that require grid resource ri
Q The set of all queries
τ(j) The drop threshold of worker j
ε The drop rate
γi The bid density of requester i
p(sj) The critical payment of worker j
p(qi) The critical payment of requester i
τ The competitive ratio
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For a mobile user who required two queried resources,
bidding for two items in one combinatorial auction is more
efficient than in two sequential auctions separately. More-
over, double auction allows requesters and workers to bid
simultaneously in one auction, which also improves sys-
tem efficiency. However, in the combinational auction,
one requester may require several resources, and different
requesters may compete for the same resource, while dif-
ferent workers may possess the same resource and may
compete for the same query. Thus, determining how to se-
lect the winners is a challenge.

For the second problem, the CAPR problem is intro-
duced and investigated. In this scenario, the ratio be-
tween the requesters and workers is not constant and
isolated along the temporal dimension. The basic idea
of CAPR is that the SP should offer the capability to
dynamically adjust the participant recruitment mecha-
nism depending on the ratio between the requesters
and workers. This paper argues that the SP should place
a greater emphasis on load balance (increasing the
amount of the workers remaining in the system) when
there is a high ratio of requesters to workers. Otherwise,
the SP should place more value on the system utility
(maximizing the system utility at a given moment).
Then, the problem is formalized as a problem striking
a good balance between workload and utility. However,
it is not easy to determine the appropriate balance be-
tween workload and utility at the present moment with
the aim of maximizing the long-term system utility.
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
2.2. Problem formulation
The symbols used throughout the paper are defined in
Table I. This paper considers an MC system to include
an SP and many participants. As shown in Figure 1, it is as-
sumed that the SP decomposes the spatial space into a set
R= {r1, r2, …, rl} of l grids. The MC system provides
users with real-time data. Thus, the service coverage of
a worker is associated with that worker’s location. There-
fore, it is assumed that each worker in the same grid cell
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provides the SP with the same sensing capability. This
paper considers the system utility in a long period to con-
sist of a set T= {1, 2,…, T1} of T1 time slots. There arem
requesters and n workers in the system at time t. The set
of requesters is denoted byM(t) = {1, 2,…,m}, and the set
of workers is denoted by N(t) = {1, 2, …, n}. At the begin-
ning of each time slot, the interactions between the SP
and the participants are described as follows; an example
scenario is also illustrated in Figure 2.

(1) Each requester i issues a query qi= {query (i), bi} to
the SP, where query (i) denotes the content of the
requester’s query and bi is the bid price, which rep-
resents the value of the query to the requester. Note
that a requester’s query may consist of several sub-
tasks corresponding to different locations.

(2) Each worker j issues a bid sj = {loc(j), cj} to the SP,
where loc(j) denotes the worker’s location and cj is
the worker’s claimed cost at time t.

(3) When the SP receives a query from a requester, the
SP establishes a mapping relationship between
query (i) and the grids. Thus, the query is expressed
as qi = {Qi

k, bi}, where Qi
k denotes the set of k grid

resources required to complete query qi. As shown
in Figure 2, q1 = {{r1, r2}, bi}.

(4) When the SP receives a bid from the worker, the
SP establishes a mapping relationship between
loc(j) and the grid. Thus, the bid is expressed as
sj = {r (j), cj}, where r(j) denotes that worker j is
located in grid r(j), namely, j possesses grid resource
r(j) at time t. As shown in Figure 2, s1 = {r1, cj}.

(5) The SP determines whether each participant is win-
ning and then informs the participants of the auction
results. Then, the winning workers perform their
tasks and upload the collected data reports to the
SP through wireless connections.

(6) The SP processes the collected data and returns the
query results to the requesters. Then, each worker j
is paid an amount of money p(sj) corresponding to
its winning bid sj, and each winning requester i pays
a certain amount of money p(qi) corresponding to
its winning query qi.

During the interaction, the challenge faced by the SP is
as follows: Which participants (both requesters and
workers) should be selected as winners in each time slot
with the aim of maximizing the long-term total utility of
the SP? The system utility is defined as follows:

Definition 1 (system utility). The system utility is intro-
duced as a performance index to reflect the social welfare
that is generated by the SP. The system utility can be
regarded as the difference between the total value of all re-
questers and the total social cost of all workers. Thus, at
time t, the utility of the SP U(t) is computed as follows:

U tð Þ ¼
X
qi∈Q

yibi �
X
si∈S

xici (1)
where yi denotes whether the SP selected query qi (from re-
quester i) as a winning participant (yi is equal to 1, when
query qi is selected as a winner) and xi denotes whether
the SP selected bid si (of worker i) as a winning participant
(xi is equal to 1 when bid si is selected as a winner). The set
Q= {qi|0< i ≤m} denotes the set of all queries, and the set
S= {si|0< i ≤ n} denotes the set of all bids from the
workers. The first summation in (1) is the value of the win-
ning requesters, and the second summation denotes the to-
tal social cost of the winning workers.

The goal of the SP is to maximize its total utility in the
long term, which is calculated as follows:

max
X
t∈T

U tð Þ (2)

As mentioned previously, the utility values of MC in dif-
ferent time slots are coupled. However, the system is dynamic.
Workers may log in or out at any time. The information
concerning the future state is incomplete, and the SP cannot
explicitly determine the winning participants in each time
slot in advance and therefore must determine the winning
participants using only the currently available information.

Thus, the CAPR mechanism is introduced and investi-
gated in which the ratio between the requesters and
workers is not constant and isolated along the temporal di-
mension. It is argued that the SP should offer the capability
to dynamically adjust its participant recruitment mecha-
nism, depending on the ratio between the numbers of the
requesters and workers. It is proposed that the SP should
place a greater emphasis on load balance (increasing the
number of the workers remaining in the system and de-
creasing the worker drop rate) when there is a high ratio
of requesters to workers, whereas otherwise, the SP should
place more value on system utility (maximizing the current
system utility). The mathematical formulation of the
CAPR is defined later.

Definition 2 (CAPR problem). For each subsetM(t) of the
requesters and each subset N(t) of the workers, the problem
of determining winning participant is defined as follows:

max
X
qi∈Q

yibi �
X
si∈S

xici

 !
(3)

s:t: xi; xij∈ 0; 1f g (4)

yi ¼
1 ∀rj∈Qk

i xij ¼ 1
0 else

�
(5)

X
qi∈Q

xij≤ S rj
� ��� �� ∀rj (6)

ε < f M tð Þ;N tð Þð Þ (7)

Remarks. The definition of the CAPR problem indicates
that the objective of the SP in selecting the winning partic-
ipants is to maximize the system utility, as defined in (3).
The set S(rj) = {si|r(i) = rj, 0< i ≤ n} denotes the set of
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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workers that possess the grid resource rj. The variable xij
is equal to 1 when the SP allocates grid resource rj to
qi; otherwise, the variable xij is equal to 0. The con-
straint defined in (5) indicates that the requester’s query
is satisfied if and only if all of the corresponding spatial
sub-tasks are completed. The constraint defined in (6)
indicates that the number of times that grid resource
rj that is allocated cannot exceed the maximum number
|S(rj)|. In this paper, it is assumed that each worker can
complete only one sub-task at a time. However, the
problem formulation can be easily extended to address
other situations. The constant defined in (7) is the load
balance constraint, and it indicates whether the drop
rate ε of the participants is sufficient to satisfy the basic
requirements of the SP for load balancing, which is
determined by the set of requesters M(t) and the
set of workers N(t). The process of deriving the formula
f(M(t), N(t)) will be discussed in the next section.
3. LOAD BALANCE VERSUS UTILITY
MAXIMIZATION

This section first further investigates the CAPR problem
and then describes the derivation process of the tradeoff
between system utility and load balance.

3.1. Context-aware participant recruitment
problem
We consider a scenario in which each worker j would exit
the system if his or her winning probability (the probability
of being selected as a winner) is smaller than a certain
threshold τ(j), which is called the drop threshold of worker
j. The drop rate of the workers is used as the metric for the
load balance. The drop rate is defined as follows.

Definition 3 (drop rate). Let W(t) denote the set of win-
ning participants at time t. Let sj[t]∈{0, 1} denote whether
the worker j is selected as a winning participant. If j∈W(t),
xj[t] = 1; otherwise, xj[t] = 0. Then, the worker drop rate εt
at time t is calculated as follows:

εt ¼
j pj < τ jð Þ; j∈N tð Þ�� �� ��

N tð Þj j

����� (8)

pj ¼

X
t∈T

xj tð Þ

Tj j (9)

where pj denotes the winning probability of worker j up
through time t; pj can be calculated using (9). Then, the
number of workers at time t+ 1 is calculated as follows:

N t þ 1ð Þ ¼ N tð Þ � εtN tð Þ þ λ t þ 1ð Þ (10)

where λ(t + 1) denotes the stochastic future information at
time (t + 1), which combines the effects of a variety of
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
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factors, such as a worker logging out of the system to at-
tend some urgent matter or a new worker joining. In this
paper, it is argued that the SP can summarize the general
trend of the queries based on the queries log and use this
trend to predict further queries in the short-term time.
Thus, the number of requesters at time t+ 1 is calculated
as follows:

M t þ 1ð Þ ¼ αM tð Þ þ 1� αð ÞFt (11)

where F(t) denotes the predicted numbers of the requesters
and 0< a ≤ 1 is a control parameter that is chosen to
achieve a desirable tradeoff between the predicted value
and the observation.

As mentioned previously, the selection of winning par-
ticipants at the current time determines the number of
workers available in the next time slot to a certain extent.
In addition, the system utility is closely related to the num-
ber of workers. The utility values of MC in different time
slots are coupled. The goal of the SP is to maximize the
long-term utility of the system. Thus, the participant re-
cruitment mechanism must consider not only the utility at
the present time but also the load balance (drop rate),
which is closely related to the system utility as follows.

With complete future information, it is easy for the SP
to determine the optimal tradeoff between system utility
and load balance at each time point to maximize the
long-term system utility. As shown in (10) and (11), the
number of workers and requesters changes over time, and
the ratio between the requesters and workers cannot be pre-
dicted in an exact manner. This leads to a dilemma regard-
ing how to achieve a suitable tradeoff between load
balance and system utility with incomplete information.
To address the problem, a CAPR mechanism is proposed
in which the SP dynamically adjusts the participant recruit-
ment mechanism, depending on the ratio between the num-
bers of the workers and requesters at the present time.

3.2. The derivation of the workload
constraint
This subsection presents a logistic model to describe the
interactions between the requesters and workers. For sim-
plicity, it is initially assumed that the number of requesters
remains fixed at y to investigate how changes in the num-
ber of workers affect participant recruitment.

The basic premise is that the SP should place a
greater emphasis on the drop rate (load balance) when
there is a high ratio of requesters to workers, whereas
otherwise, the SP should place more value on the cur-
rent system utility.

Let x denote the number of workers at time t, and let the
function h(x), which takes the number of workers x as an
input, denote the upper limit on the drop rate. The drop rate
εt should be less than or equal to h(x) when the number of
workers is x. As the number of the workers increases, the
SP should pay greater attention to the system utility.
Thus, h(x) is a monotonically increasing function of



Figure 3. Function h(x): upper limit on the drop rate.
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x,and 0 ≤ h(x) ≤1. One can simply assume that h(x) is a
linear function. Then, as shown in Figure 3, the function
h(x) can be specified as follows:

h xð Þ ¼
1 x > xmax

aþ bx xmin≤ x ≤ xmax
0 x < xmin

(
(12)

where xmax is the critical point at which there is a sufficient
number of workers such that the SP only focuses on the
system utility, xmin is the critical point at which the SP only
focuses on the drop rate, and a and b are the normalization
parameters, which are calculated as follows:

aþ bxmax ¼ 1
aþ bxmin ¼ 0

�
(13)

From earlier, the values of these parameters can be
computed.

a ¼ �xmin

xmax � xmin

b ¼ 1
xmax � xmin

8>><
>>: (14)

Then, the relationships between the number of re-
questers y and the critical points (xmax and xmin) can now
be quantified. It is assumed that there are y requesters in
the system, that their queries will require an average of z
workers to complete, and that the drop threshold of each
worker is 1/k.

Definition 4 (competitive ratio). Given the number of
queries y and the number of workers x, the competitive ra-
tio τ is calculated as follows:

τ ¼ x
y�z
�

(15)

where y denotes the size ofM(t) and x denotes the size ofN(t).

Theorem 1. The maximum number of workers that will
remain in the system once the system has converged to a
stable state (the number of workers is fixed, and no worker
will log out because of an excessively low winning
probability) is k * y * z.

Proof. Assume that there are k * y * z + 1 workers in the
system at time t. Because the system is stable, there will
also be k * y * z+ 1 workers in the system at time t+ k.
However, the system assigns only k * y * z total tasks be-
tween time t and time t + k. Therefore, there must be at least
one user who does not receive any tasks during this period.
In this scenario, the worker’s winning probability will be-
come smaller than 1/k, and the worker will exit the system.
This conflicts with the assumption that the system has con-
verged to a stable state. And in this case, the competitive
ratio τ is equal to k.

Theorem 2. For all queries to be completed, at least y * z
workers must be present in the system.

Proof. The queries will require an average of z workers to
complete, and each worker can accept only one task at a
time. Thus, there must be at least y * z workers in the sys-
tem. And in this case, the competitive ratio τ is equal to 1.

Theorem 1 indicates that the SP will focus only on the
system utility once the competitive ratio τ reaches the re-
quired maximum competitive ratio τmax, which is lower
than or equal to k. Theorem 2 indicates that that the SP will
focus only on the drop rate when the competitive ratio τ
drops below than the required minimal competitive ratio
τmin, which is greater than or equal to 1. Thus, the work-
load constraint in (7) can be calculated as follows:

f M tð Þ;N tð Þð Þ ¼
1 τ > τmax

aþ bN tð Þ τmin≤τ≤τmax
0 τ < τmin

(
(16)

where a and b are calculated using (14) and the competi-
tive ratio τ is calculated using (15).
4. PROPOSED SCHEME

The proposed schemes consist of two components: The first
component solves the CAPR problem to determine the win-
ning participants, and the second component is a payment
scheme. Before the algorithm for the first component is
described, it is first proven that the CAPR problem is non-
deterministic polynomial (NP)-hard and the bid density of
the requesters is analyzed. Then, a heuristic algorithm
based on the greedy strategy to solve the CAPR, which
can effectively determine the winners within a suitable time
frame, is proposed to solve the CAPR problem. Finally, a
payment scheme is proposed to motivate the requesters
and workers to continue to participate in the system.

Theorem 3. The CAPR problem is NP-hard.

Proof. It can be proven that the CAPR problem is NP-hard
by proving that its decision version is NP-complete. For
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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the decision problem, it should be demonstrated that it be-
longs to NP and then another known NP-complete problem
should be identified that can be reduced to the decision ver-
sion of the CAPR in polynomial time. The decision version
of the CAPR is a modified mixed 0–1 integer program-
ming problem in which certain sub-tasks belong to the
same query, that is, they should win simultaneously. The
decision problem belongs to NP because checking whether
a solution is correct requires polynomial time. Therefore,
the CAPR is NP-hard. Thus, it is critical to solve the CAPR
with a time-efficient algorithm.
4.1. Bid density of the requesters
To determine the winning participants, a metric called “bid
density” is introduced to evaluate the value of the queries
(of the requesters).

Definition 5 (bid density γ). The bid density is introduced
as a performance index to reflect the value of queries. A re-
quester with a higher bid density will have a higher proba-
bility of winning. For a query qi= {Qi

k, bi} from requester i,
the query’s bid density γi is calculated as follows:

γi ¼ bi
�
Qk

i
(17)

However, given any two queries qi and qj within the re-
quester’s set M(t), the grid resources that are required to
complete these queries may be different. In other words,
set Qi

k may not be equal to set Qj
k. Thus, in most cases,

the bid densities of different queries cannot be directly
compared with one another via (17). One straightforward
method is to compare the size of the set Qi

k. Thus, the
query’s bid density γi is calculated as follows:

γi ¼ bi
�
Qk

i

�� �� (18)

However, as shown in Figure 4, the distributions of
queries and grid resources vary significantly across the
grids. The relationships between supply and demand for
Figure 4. The bid density of a requester’s query, rij correspond-
ing to the grid in line i and column j.
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the grid sources are different in different regions. As a sim-
ple example, consider the following scenario. Given two
queries, qi and qj, assume that the bidding price bi is equal
to bj and that Qi

2 = {r11, r32} and Qj
2 = {r14, r34}. Then,

Equation (18) indicates that γi is equal to γj. However, as
shown in Figure 4, the winning probability of query qi is
higher than the winning probability of query qj. Based on
the aforementioned analysis, the bid density of the re-
quester can be analyzed from the perspective of supply
and demand in the economy, yielding the following ex-
pression for the bid density γi of a query:

γi ¼
bi
Qk

i

�� �� �
X
ri∈Qk

i

S rið Þj j
X
ri∈R

S rið Þj j �

X
ri∈R

Q rið Þj j
X
ri∈Qk

i

Q rið Þj j (19)

where Q(ri) = {qj|ri∈Qj
k, 0< j≤m} denotes the set of queries

that require the grid resources ri and S(ri) = {sj|r(j) = ri,
0< j≤ n} denotes the set of workers that possess the grid
resource ri.
4.2. Heuristic greedy algorithm for the
context-aware participant recruitment
problem
To achieve the desired computational efficiency, a heuris-
tic greedy algorithm is proposed to solve the CAPR prob-
lem. The SP first sorts the workers who possess the same
grid resources in ascending order by their claimed costs.
Then, the SP adopts a greedy strategy to solve the problem.
The SP selects the query (qi∈Q, Q = {qi|0< i ≤m}) that has
the highest bid density and adds it into W1 (the set of win-
ning requesters) until all of the requesters (that belong to
Q) have been assigned. In each iteration, the bid density
γi is updated, and all queries that could not be selected to-
gether with the existing winning queries are deleted (from
Q). Once the winning requesters have been determined, the
grid resources required to complete the queries are identi-
fied. Then, the SP selects the worker (L[i][j]) with the low-
est claimed cost from the set L[i] of workers that possess
the grid resource ri and places that worker into W2 (the
set of winning workers). The detail of this algorithm is
shown in Algorithm 1.

Algorithm 1: Heuristic greedy algorithm for solving the CAPR
problem
Input: Q = {qi|0 < i ≤ m}, S(ri), Q(ri)
Output: W1 // W1: the set of winning requesters

W2 // W2: the set of winning workers
1. Initialize W1 ← ∅; W2 ← ∅; int a[|R|]; int j;
// Sort the workers who possess the same grid resource in as-
cending order by the claimed cost.
2. for i from 1 to |R| //grid resource ri

3. Sort cj for all sj∈S(ri) in ascending order and the resulting
list is denoted by L[i].
4. L[i][j] denotes the jth element of L[i].
5. end for
6. while Q ≠ ∅do
7. Sort γi for all qi ∈Q in descending order, and the resulting
list is denoted by queue L
8. qs denotes the first element in L
9. W1 ← W1∪{qs} //Determine the winning requesters
10. Delete qs from Q;
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11. for each ri in Qs
k

12 j = a[i]++;
13. W2 ←W2∪{L[i][j]};// Determine the winning workers.
14. Delete L[i][j] from S(ri) //Delete the requesters that
conflict with the winning requesters
15 if |S(ri)| < =0
16. for each qi in Q(ri)
17. delete qi from Q;
18. end for
19. end if
20. end for
21. end while
22. return W1,W2;

Algorithm 1 focuses on system utility; however, as
mentioned previously, the set W2 of winning workers
should satisfy the basic requirements of the SP for load
balancing, which are defined in (7). Thus, the SP first
counts the set of the workers D(t) = {j|pj< τ(j), j∈N(t)}
to determine who will drop out using (8). Then, the
SP determines whether the winning worker set W2 sat-
isfies the requirements of the system, which can be cal-
culated using (16). If this condition is not met, then the
SP will adopt a reassignment strategy to solve the prob-
lem. The SP will select the worker with the lowest
claimed cost and uses that worker to replace the worker
with the highest claimed cost in set W2. The SP will
repeat this process until the drop rate meets the
necessary requirement.
4.3. Payment scheme for the context-aware
participant recruitment
To motivate participants to join MC and continue to partic-
ipate in the MC system, a reasonable payment scheme
should be designed that satisfies the following critical
properties: (1) individual rationality: Each participant can
expect a non-negative utility upon participating in the sys-
tem; and (2) budget balance: The system can run auctions
without deficits. Thus, the rule of critical payment intro-
duced in [24] is used to determine the amount that the re-
questers should pay and the amounts that the workers
should receive.

Definition 6 (critical value). Given a query qi = {Qi
k, bi}

from requester i, if the bid value bi is greater than or equal
to p(qi), then requester i will be selected as a winning par-
ticipant; otherwise, the requester will lost the bid. The bid
value p(qi) is called the critical value for requester i. The
concept of a critical value is also applied to the bid request
from the workers.

First, the critical values for the workers are calcu-
lated. In the proposed model, each worker can complete
only one sub-query at a time (although the model can
easily be extended to other situations). Additionally,
workers that possess the same grid resources compete
for the same queries. In each time slot, they issue their
respective bid requests to the SP. Thus, the entire set of
sales offer can be regarded as a Vickrey auction, which
is also known as a sealed-bid second-price auction [18].

Assume that there are n workers (c1< c2<, …, ck< ck
+ 1, …, cn) that possess the same grid resource ri and that
the worker with a claim cost of ck was selected as a
winning participant in the final round. Then, the critical
value for the worker j, who also possesses the grid resource
ri (r( j) = ri), can be calculated as follows:

p sj
� � ¼ ckþ1 0 < j≤k

0 otherwise

�
(20)

Then, the critical values for the requesters are calcu-
lated. As shown in Algorithm 1, a requester fails to win
in the auction when the requester’s query conflicts with
the queries that have won (∃ ri∈Qi

k, S(ri) =∅). In this sit-
uation, there are an insufficient number of workers to sat-
isfy the requester’s query. Thus, determining the critical
payment (of qi) involves deleting qi and greedily
selecting other queries as shown in Algorithm 1 until
the remaining workers cannot satisfy query qi. It is as-
sumed that query qi fails to win in the auction when query
qs is selected as a winner. Thus, the critical value of the
requester (the payment that the requester should pay) is
calculated as follows:

p qið Þ ¼ max Qk
i

�� ��*γs*
X
ri∈R

S rið Þj j
X
ri∈Qk

i

S rið Þj j

X
ri∈Qk

i

Q rið Þj j
X
ri∈R

Q rið Þj j ;
X
ri∈Qk

i

p rið Þ

0
BBB@

1
CCCA qi∈W1

0 else

8>>>><
>>>>:

(21)

where p(ri) denotes the payment that a worker
possessing grid resources ri will receive and γs denotes
the bid density of qs. To guarantee of the rationality
of the auction, the payment p(qi) should be lower than
or equal to the bid value bi. Otherwise, the SP will de-
lete qi from the winning set W1. The detail of this algo-
rithm is shown in Algorithm 2.

Algorithm 2: Critical value algorithm for the requester
Input: query qm, other submitted Q�(m) = {qi|i ≠ m,0 < i ≤ n}
Output:p(qm) //critical value
1. W1 ← ∅; int flag ← 0; int a[] = {|S(r1)|, |S(r2)|,…. |S(rl)|}
2. while Q�(m) ≠ ∅ &&flag==0 do
3. Sort γi for all qi ∈Q�(m) in decreasing order, and the
resulting list is denoted by queue L
4. qs denotes the first element of L
5. W1 ← W1∪{qs}
6. delete qs from Q;
7. for each ri in Qs

k

8. if –a[i] < 1
9. if ri in Qm

k
// Determine whether qm conflicts with the winner

10. flag = 1;
11. break;
12. end if
13. for each qi in Q(ri)
14. delete qi from Q�(k); //Delete the queries that conflict
with the queries that have won
15. end for
16. end if
17. end for
18. end while
19. if p(qm) > bm

20. p(qm) = 0
21. end if
22. return p(qm);

Algorithm 2 is individually rational because the partic-
ipants are never charged more than their valuations as a re-
sult of the allocation. Moreover, Algorithm 2 is budget
Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm
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balanced because the payment obtained from the re-
questers is always greater than or equal to the amount paid
to the workers.
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5. PERFORMANCE EVALUATION

5.1. Simulation setup
Foursquare is one of the most popular location-based
social networks in the world; it has 15 million members
as of June 2011 and keeps growing every month. The
distribution of the check-in locations of Foursquare users
represents the distribution of potential MC participants.
Thus, the performance of the proposed mechanisms was
evaluated through extensive simulations based on a real-
world Foursquare dataset that was made available by
Gao [25]. This dataset contains the check-in histories of
18 107 users from March 2010 to January 2011. The previ-
ous check-in locations and corresponding check-in times
for each user are available. For a user i, the corresponding
check-in sequence is a set of POIs ordered by check-in
time C(i) =< (p1, t1), …, (pi, ti), …, (pm, tm)>, where
(pi, ti) indicate that user i checked-in POI pi at time ti.

In the simulation, the POIs were treated as the grid cells.
Without loss of generality, 20 POIs were selected as the set
of the grid resources R. Workers in the same grid cell provide
the SP with the same sensing capability. Thus, a user that
checks in POI pi at time ti is assumed to possess grid resource
ri. The real costs of the users were generated according to a
normal distribution, where the mean μ of the real costs was
set to 5. For query qi in the system, k (1≤ k≤ 5) POIs were
randomly selected from set R as a set of the grid resources
(Qi

k) required to complete query qi. Similarly, the real value
of the queries was generated according to a normal distribu-
tion where the mean μ of the real value was set to 20. The de-
fault settings of the parameters are summarized in Table II.

5.2. Evaluation results at a single point
The performance of the proposed mechanism was first
evaluated at a single point. In this evaluation, the focus
was placed on examining the allocation performance of
the proposed mechanism in different scenarios. The perfor-
mance of the system utility predominantly depends on the
value of the winning queries and the social cost. Thus, the
following metrics was used: the completion ratio of the
queries, the unit social cost, and the system utility.

Because no prior study has implemented online combi-
natorial double auction in MC, in the simulations, the
proposed winning participants recruitment mechanism
Table II. Summary of the default settings

Parameter name Default value

Number of grid resources 20
Range of cost cj [0,10]
Range of real value bi [10,30]
Number of sub-tasks in a query [1,5]

Wirel. Commun. Mob. Comput. (2016) © 2016 John Wiley & Sons, Ltd.
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(denoted by “CAA”) was compared with the following
mechanisms: (1) the optimal offline allocation mechanism
(denoted by “OPT”); (2) the combinatorial double auction
mechanism based on a random policy (denoted by
“CAR”), in which the SP randomly selects the winning
queries; and (3) the single-sided auction mechanism (de-
noted by “AUC”) proposed in [11], in which the requesters
bid for the queried resources in several sequential, inde-
pendent auctions.

(1) Completion ratio of all requesters’ queries

The simulations were performed under different back-
ground conditions. Thus, the total value of the completed
queries was different. To compare the results obtained in
the different experiments, a metric called the completion ra-
tio η was introduced, which is calculated as follows:

η ¼

X
qi∈W1

bi,
X
qi∈Q

bi

(22)

where bi denotes the value of query qi, W1 denotes the win-
ning queries, and Q denotes all queries that were received
by the SP. Figure 5 plots the values of completion ratio η
when the number of queries is fixed at 100 and the number
of workers varies from 500 to 100. In Figure 6, the completion
ratio is evaluated when the number of workers is fixed at 100
and the number of queries varies from 100 to 300. Figure 5
illustrates that the completion ratio η increases with an in-
creasing number of workers, whereas in Figure 6, the comple-
tion ratio η decreases with an increasing number of queries.

As shown in Figure 5, when n (the number of workers) is
equal to 500, all of the considered mechanisms result in a
high completion ratio. However, as the number of workers
decreases, the completion ratio of the AUC mechanism re-
duces more rapidly than those of the other mechanisms. Its
completion ratio (n=300, η=0.27) is even lower than that
of the CARmechanism (n=300, η=0.41)when n is less than
or equal to 300. This lower completion ratio occurs because
the SP satisfies a requester’s query if and only if the re-
questers won all the auctions for grid resources required to
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Figure 5. Completion ratio versus number of workers n.
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Figure 6. Completion ratio versus number of queries m.
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complete the query. The simulation results demonstrate that
the CAR mechanism is inefficient and that the CAA model
is more suitable for participant recruitment in MC.

As shown in Figures 5 and 6, the completion ratio of the
CAA mechanism (n= 100, μ= 0.22) is always greater than
that of the CAR mechanism (n= 100, μ= 0.11) and is
closer to that of the OPT mechanism (n= 100, μ= 0.28).
The results show that the proposed evaluation metric “bid
density”, which is calculated using (19), can adequately
reflect the true values of the queries.

(2) Unit social cost of the workers

The social cost has an important influence on the system
utility. However, the completion ratios of the different
schemes are different. Therefore, the total social costs of
the queries completed under the different mechanisms are
not directly comparable. For this reason, a metric called
the unit social cost β, which denotes the average social cost
of all winning queries, was introduced to evaluate the so-
cial cost of the different schemes. Formally, this metric is
calculated as follows:

ß ¼ Ctotal
�
W1j j (23)

where W1 denotes the set of winning queries and Ctotal

denotes the total social cost of all winning queries. Ctotal

is calculated using (24).
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Figure 7. Unit social cost versus number of workers n.
Ctotal ¼
X
j∈W2

cj (24)

where W2 denotes the set of winning workers and cj de-
notes the social cost of worker j.

Figure 7 plots the social costs when the number of
queries remains fixed at 100 and the total number of
workers varies from 500 to 100. In general, the unit social
cost decreases with an increasing number of workers. For
example, as shown in Figure 7, when n is equal to 100,
the unit social cost of the CAA mechanism is 7.1, whereas
the unit social cost is 4.5 when n is equal to 500. This is be-
cause as the number of workers decreases, the SP becomes
less likely to find low-cost workers and thus incurs higher
unit social costs. The results demonstrate that the SP needs
a rational participant mechanism designed to incentivize
mobile users to participate in the MC.

(3) System utility at a single point

According to Definition 1, the system utility can be
regarded as the difference between the total value of all
requesters and the total social cost of all workers. The sim-
ulations were performed under different background condi-
tions. Thus, the values of the system utility were different.
To compare the results obtained in the different experi-
ments, the system utility of the OPT scheme was defined
as 1 in each simulation. Figure 8 depicts the system utility
values when the number of queries remains fixed at 100
and the total number of workers varies from 500 to 100. In
general, the system utility increases with an increasing num-
ber of workers. For example, when n is equal to 100, the sys-
tem utility of the CAA mechanism is 0.95, whereas the
system utility is 0.79 when n is equal to 500. Among all in-
vestigated schemes, CAA has the highest system utility, pri-
marily because it could achieve a high completion ratio.

5.3. Evaluation results of the entire time
period
Finally, the performance of the proposed mechanism was
evaluated from a long-term perspective. The performance
of the proposed CAPR mechanism (denoted by “CAPR”)
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Figure 8. System utility versus number of workers n.
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Figure 9. Total drop probability in scenario (a). CAPR, context-
aware participant recruitment.
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Figure 11. System utility in scenario (a). CAPR, context-aware
participant recruitment.
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was compared with the performances of the following
mechanisms: (1) the CAA mechanism without long-term
incentives, in which the objective of the SP is solely to
maximize the system utility in each round (denoted by
“Greedy”); (2) the combinatorial double auction mecha-
nism based on a random policy (marked as “Random”),
in which the SP randomly selects the winning queries;
and (3) the CAA mechanism combined with the
RADP-VPC policy proposed in [11] (denoted by
“RADP”), in which a virtual credit is introduced to lower
the bids of users who lost in the previous auction round
and are participating in the current auction round, hence in-
creasing their probabilities of winning.

In this simulation, the drop threshold was set to 0.5
(k= 2) for all workers. Therefore, a worker would exit
the system if his or her allocation probability was less
than 0.5. Two different simulation scenarios, (a) and
(b), were considered. In scenario (a), the number of
queries was fixed at 120, and the number of workers
was initialized at 200. No new users were added to the
system during the simulation. Then, we ran the system
over a period of 1000 time slots, which was sufficiently
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Figure 10. Average drop probability in scenario (b). CAPR, con-
text-aware participant recruitment.
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long to achieve stable outcomes under the adopted poli-
cies. In scenario (b), the number of queries was fixed
at 120, and the number of workers was initialized at 0.
Workers were added to the system in the order that they
appeared in the check-in sequence. The notation CAPR
(x) indicates that the required minimal completive ratio
τmin was x. The simulation was repeated 20 times on dif-
ferent days.

(1) Drop probability

As shown in Figure 9, in scenario (a), more than 70% of
the workers dropped out of the system under the greedy
and random selection mechanisms, and approximately
65% of the workers dropped out under the RADP policy.
However, by virtue of the context-aware participant mech-
anism, the proposed method retained more users in the sys-
tem (CAPR (1.5), τmin= 1.5); the total drop probability was
56%. Moreover, the number of remaining workers in-
creased with an increasing competitive ratio τ. When
τmin= 2(CAPR (2)), the total drop probability closes to
the theoretical lower bound of 40%.
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Figure 12. System utility in scenario (b). CAPR, context-aware
participant recruitment.
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Because the total number of workers changes in scenario
(b) is dynamically changing, to enable direct comparison,
the average drop probability in each time period was used,
instead of the total drop probability, to evaluate the afore-
mentioned investigated mechanisms. Figure 10 plots the
change in the average drop probability over time. The
average drop probability of the proposed mechanism was
the lowest throughout the simulations because our partici-
pant recruitment mechanism is adaptive. When the ratio
between the workers and queries is low, the SP places a
greater emphasis on the load balance (increasing the number
of workers that remain in the system). Thus, in the initial
phase, the average drop probability was relatively low com-
pared with the other mechanisms. When the system reached
the balance point (τmin=2, approximately 950 workers), the
proposed mechanism could retain more users in the system,
while the same number of new users was being added to
the system. Thus, in this scenario, the average drop probabil-
ity of the proposed mechanism remained relatively low.

(2) System utility

As shown in Figure 11, in scenario (a), the system
utility of all mechanisms decreased until the system
reached the balance point. The system utility under the pro-
posed mechanism (τmin = 1.5, τmin = 1.2) was higher than
those under the other mechanisms. When τmin was equal
to 1.5, the system utility was always greater than 0.7,
whereas the system utility was always greater than 0.55
when τmin was equal to 1.2. This occurred because the sys-
tem utility is closely related to the number of workers, as
demonstrated in previous sections. Thus, the proposed
mechanism offers a good performance gain because of its
low drop rate. However, the performance of the proposed
mechanism was poor when the SP only focused on the load
balance (τmin = 2). Thus, the performance of our mecha-
nism depends on the choice of the parameter τmin. A
suitable value of this parameter can be determined for a
given platform through historical data analysis.

As shown in Figure 12, in scenario (b), the system utility
values of all mechanisms increased until the system reached
the balance point. The process can be divided into two stages.
In the first stage (from time t0 to time t8), the number of
workers was not sufficient to satisfy all of the requesters’
queries. Thus, during that stage, the system utility increased
with near-linear efficiency as the number of workers increased.
In the second stage, the platform attempted to select the
workers with low social costs to increase the system utility.
Thus, the growth gradually decreased. As the workers became
abundant, most of the mechanisms achieved high efficiency.
6. CONCLUSION

This paper investigated the important problem of designing
participant recruitment mechanism for maximizing the
system utility of the SP in the long term. First, a double-
sided combinatorial auction model was introduced to
address the participant recruitment at a given time. The
problem of maximizing system utility in the long term was
then investigated. The problem was formalized as how to
achieve a tradeoff between load balance and system utility
at each time point. Based on the aforementioned analysis,
we designed a CAPR mechanism. First, a novel metric
called bid density was proposed to evaluate the values of
the users’ queries, and a greedy heuristic algorithm was pre-
sented to determine the winning participants in polynomial
time. Then, a critical payment scheme was proposed to guar-
antee the rationality of the mechanism. Finally, extensive
simulations demonstrated that the proposed mechanism
achieves high system utility in the long term.

Based on the work presented here, future research will
address the following issues. First, several workers may
collude to gain a better payoff. An extension of the CAPR
mechanism to resist collusion attacks will be proposed.
Second, mobile participants must submit sensitive informa-
tion, such as their locations, to the SP; this may introduce a
risk of privacy breach. The issue of privacy protection in
MC should therefore be studied. Finally, because
simulation-based evaluations generally cannot capture all
factors that contribute to the problem in reality, there are
also plans to conduct real experiments to further evaluate
the effectiveness of the proposed mechanism.
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