
A Shared Memory based Cross-VM Side Channel
Attacks in IaaS Cloud

Ziqi Wang1, Rui Yang1, Xiao Fu1*, Xiaojiang Du2, Bin Luo1

1State Key Laboratory for Novel Software Technology at Nanjing University
2Dept. of Computer and Information Sciences at Temple University

{ziqiwang.nju, ruiyang.nju}@hotmail.com, fuxiao@nju.edu.cn, dxj@ieee.org, luobin@software.nju.edu.cn

Abstract—Cloud providers usually use virtualization to
maximize the utilization of their computing resources, e.g. many
virtual machines (VMs) run on a shared physical infrastructure.
However co-residency with other VMs will cause high security
risks, such as side channel attacks. This kind of attack is difficult
to detect and prevent, so it’s necessary to study it deeply. Recent
research has shown attackers can build up cross-VM side
channels to obtain sensitive information. However, due to the
features of shared resources (e.g. CPU cache), the sensitive
information obtained is usually limited and coarse-grained. In
this paper, we present a novel side channel, which is based on
shared physical memory and exploits the vulnerabilities of
balloon driver. Balloon driver is a very popular mechanism used
by current virtual machine managers (VMMs) to balance
physical memory among several VMs. Because it is widely used
in IaaS cloud, our side channel attack can achieve a high success
rate. And compared with current cross-VM side channels, it can
transmit more fine-grained data. Using Xen as a case study, we
explore how to transmit data by this side channel.

Keywords—side channel attack; cloud computing;
Infrastructure-as-a-Service (IaaS); cloud security

I. INTRODUCTION

According to the NIST [1], cloud computing is a model for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
servers, storage, applications and services) that can be rapidly
provisioned and released with minimal cloud service provider’s
(CSP’s) interaction. In other words, cloud providers usually
use virtualization to maximize the utilization of their
computing resources, e.g. many virtual machines (VMs) run on
a shared physical infrastructure. While co-residency with other
VMs has brought a lot of advantages, it also causes high
security risks, such as side channel attacks. Side-channel attack,
which leverages low-bandwidth message channels (e.g., timing,
power, cache misses) in a system to derive or leak security-
sensitive information, has been proven to be realistic threats to
modern computer systems [2]. Recent research has shown
attackers can build up cross-VM side channels [3] to obtain
sensitive information. However, currently these channels are
mostly based on shared CPU cache, networks, CPU loads and
so on. Due to the features of these resources, the sensitive
information obtained is usually limited and coarse-grained.

In this paper, we present a novel side channel, which is
based on shared physical memory and utilizes the
vulnerabilities of balloon driver. Balloon driver is a popular
mechanism used by current VMMs to balance physical

memory among several co-resident VMs. Therefore, if we can
put the required information into these pages, and try to
actively trigger the balloon drivers of the source VM and target
VM, then the information can be “legally” transmitted to the
destination without attracting attention from VMM or any
other security monitors. Thus it becomes a shared memory
based side channel. However, there are two challenges when
implementing this channel.

The first one is how to ensure the data in free pages will not
be cleared up while transmitting. To achieve high performance,
most current operating systems will not clear up the dirty pages
immediately after a process’s release until a new write
operation requires these pages. In addition, to ensure the data
confidentiality while balancing memory, the balloon driver
also provides a mechanism to clean old data, but this operation
only occurs when VM releases idle memory pages to the
balloon. Beside this, the balloon and the VMM will not make
any inspection to data in the free pages. That is just the
vulnerability we can exploit.

The second challenge is how to transmit specific physical
pages that contain required data from the source VM to the
target VM. The balloon driver cannot adjust memory
automatically by itself. All the adjustments are controlled by
the VMM. So in order to transmit specific physical pages,
some specific measures should be taken to urge the VMM to
adjust the shared memory.

We can summarize our side channel attack as following:
Firstly, modify the balloon driver to prevent the memory from
being cleared up. Secondly, the source VM reads the required
information into some memory pages, and then releases them
to urge the VMM to recycle these pages into the shared
memory pool. Thirdly, the target VM applies for memory as
much as possible at the same time to push the VMM to allocate
them required memory pages from the shared pool. By this
way, attackers can obtain required information from source
VM.

This channel can be used as a hidden measure to transmit
data between VMs without attracting the VMM’s attention. For
the wide use of the shared memory and balloon driver in IaaS
cloud, this side channel attack can achieve a high success rate
and compared with current cross-VM side channels, it can
transmit more fine-grained data directly. Furthermore, it can be
used to transmit information of any size without limitations.
Using Xen as a case study, we introduce two scenarios in detail
to explain how to accomplish this attack.

2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): BigSecurity 16: The Fourth
International Workshop on Security and Privacy in Big Data

978-1-4673-9955-5/16/$31.00 ©2016 IEEE

II. RELATED WORK

Side channels have been known for many years. Up to now,
many side channels have been demonstrated, but most of them
are on the basis of a traditional network environment (e.g. [4][5]
[6]). Recently with the development of cloud computing, the
side channels in cloud have also obtained much attention. They
mainly include the following categories:

CPU cache based side channel. This channel can detect
the activity of a co-resident VM by analyzing cache usage.
Ristenpart et al. [3] shows an attack that identifies whether
particular virtual machines are likely to reside on the same
physical server in the cloud. Some researchers also use this
channel to infer the distribution of VMs [7][8]. In addition,
some researchers use it to monitor the keystroke of the victim
VM [2] or even extract private keys [9][10].

Timing of computation based side channel. Although the
virtualization technology provides strong isolation in cloud, the
timing channels can break this isolation by exploring the
numerous implicit and high resolution clocks created by the
massive sharing resources. In this type of attack, Wang et al.
[11] shows a technique for creating a timing channel between
VMs, which takes advantage of contention for an arithmetic
logic unit on simultaneous multithreading processors.
Attackers also can use this side channel to extract confidential
information [12], such as keystroke.

Applications or Modules based side channels. One side
channel can obtain the browser behavior through tracking
changes in the application’s memory footprint [13]. Another
side channel uses the Kernel Samepage Merging (KSM)
module to transmit information between VMs [14].

This paper is motivated by these studies, but is different in
several aspects. Our side channel attack is based on shared
memory and using the balloon driver to transmit information
between co-resident VMs. In our attacks, we can obtain large
quantities of fine-gained data rather than limited coarse
information, so our attacks do serious harm to the security.
Furthermore, the wide usage of the shared memory and the
balloon mechanism make our attack have a higher success rate.

III. BACKGROUND AND THREAT MODEL

A. Background

Before introducing our attack, several relevant concepts
should be introduced. Firstly, there are three concepts about the
configurations of VM’s memory: the Current Memory, the
Max Memory and the Min Memory.

Definition 1. Current Memory: The total memory size in
the Domain currently.

Definition 2. Max Memory: The maximum memory size
the OS can obtain.

Definition 3. Min Memory: The minimum memory size the
OS owns.

Secondly, to make full use of all kinds of physical
resources, the VMM depends on some rules to adjust VMs’

memory dynamically. Usually the Adjustment Rule can be
described as follows:

Definition 4. Adjustment Rule: VMM detects all the
memory status of VMs located on the host periodically. For
each VM, if the usage rate of its memory is above the upper
limit, the VMM then will increase its memory size by the
increase unit, but the total memory size should still be less than
the value of the Max Memory after adjustments; oppositely, if
the usage rate of its memory is below the lower limit, the
VMM then will decrease the memory size of it by the decrease
unit, but the total memory size is still above the Min Memory
after adjustments.

In the above rule, the upper limit, the lower limit, the
increase unit, and the decrease unit can be defined as follows:

Definition 5. The upper limit: The upper bound, above
which the VMM will increase the memory size of the VM.

Definition 6. The lower limit: The lower bound, below
which the VMM will decrease the memory size of the VM.

Definition 7. The increase unit: When the VMM increases
the memory, the increase unit represents a percentage, by
which the memory increases once a time.

Definition 8. The decrease unit: When the VMM decreases
the memory, the decrease unit represents a percentage, by
which the memory decrease once a time.

B. Threat Model

We consider the VMs involved in the side channel attack
are all co-resident on a given physical host and they have no
control over the functions of the VMM. In our model, we refer
to the VM completely under attackers’ control as the monitor,
the VM partly under attackers’ control as the guest and the
others as the test. In addition, during an attack, the monitor and
the guest can switch between the two different roles: the target
and the source VM of the transmission data. We model the
cloud provider as neutral and the side channel attack does not
need any extra help from the cloud providers.

The preconditions of the threat can be described from four
aspects: (1) all VMs must be on the same physical host; (2) all
the VMs have installed balloon drivers to support balloon
mechanism; (3) the VMM must have adopted some rules to
automatically adjust the memory of VMs running on it; (4) at
least one of the two VMs must be under the control.

In this setting, we consider two attack scenarios: (1) the
attackers use a VM to steal confidential information from a co-
resident victim VM; (2) the attackers use a VM to implant
some malwares into a co-resident victim VM.

Steal confidential information: In this scenario, the victim
VM contains some confidential information and the victim
supports the balloon mechanism. Then, attackers want to
exploit its co-residency to steal information from the victim.
All the operations on the victim are legal. In the procedure of
stealing, it is the VMM that controls the adjustment of shared
memory and triggers the balloon drivers in the victim
according to the rules VMM adopts to balance memory
between VMs.

Implant malwares: Attackers may want to implant
malicious data into the victim VM. They can divide the
malicious data into several parts, and then transmit them
separately. Before transmitting, attackers tag every part by the
index and special marks. Until the victim receives all the parts
of the data, it combines all the parts in a certain order and
recreates the malware. During the process, all the operations on
the victim are legal, and the victim gains the transmitted
malware pieces from its memory.

IV. DESIGN AND IMPLEMENTATION

Our shared memory based side channel attack can be
divided into three modules (see in Fig.1), i.e. the sender

module, the receiver module and the self-adjustment module.

The sender module is in charge of creating the source data
to be transmitted and sending it to the shared memory pool,
and it consists of the data filling component and the balloon
driver’s triggering component. The receiver module is
responsible for obtaining the transmission data from the shared
memory pool, identifying and reconstructing the data. The
receiver module also contains two components: the data
identification and reception component and the balloon driver
triggering component. The self-adjustment module is only
adopted in the VMs under attackers’ control entirely and this
module can complete the memory adjustments by itself in
kernel mode. However, there is a premise we should do firstly
to carry out our attack. This premise is to make the balloon
driver not clean the dirty pages to be transmitted, which can be
simply achieved by resetting the configuration of balloon
driver. For example, in Linux, the
CONFIG_XEN_SCRUB_PAGES should be set to “n”.

Therefore, the process of our shared memory based
transmission from the source VM to the target VM can be
described as the following steps (see in Fig.2). To make it
convenient to state, we refer to the target VM under attackers’
control as the target and the source VM as the source.

(1) In the target, attackers should use the sender module to
detect the upper limit and the lower limit of the adjustment rule
in the VMM. (2) In the target, attackers use the self-adjustment
module to release some idle memory pages to the shared
memory pool. (3) In the source, attackers use the sender

module to write the data to be transmitted into curtain pages.
Then, they apply for memory pages constantly to urge the
VMM to increase the memory of the source until it reaches the
Max Memory. (4) In the source, attackers use the sender
module to release the processes space so as to decrease the
memory pressure, by which way it urges the VMM to decrease
the memory of the source and recycle the memory with
transmission data into the shared memory pool. (5) In the target,
attackers use the self-adjustment module to reset the memory
to the Max Memory to obtain more memory pages from the
shared memory pool. (6) In the target, attackers use the
receiver module to obtain current memory data, and then scan
for specific marks to recreate the original data to be transmitted.

A. The Sender Module

The target of this module is simply creating the source data
to be transmitted and sending them to the shared memory. This
module can be divided into two components:

1) The data filling component
In this component, it needs to write the data to be

transmitted to the memory pages. There are some inputs for
this component. One input, called the address, refers to the
address where the data to be transmitted located in. Another
input, named as the percent, represents the percentage which
the sender wants the memory usage of the data to reach.

It chooses a size as a standard. Then the module divides the
data into several small pieces and ensures that the size of every
piece is not bigger than the standard. Then reconstruct the data
of every small piece. Not only does it need to tag the beginning
and the end of every piece, but it also needs to mark the index
of each piece with a serial number to make it convenient for
the receiver module to recreate the transmission data. The next
step is a loop to transmit the data one piece at a time and use
the same read program data_reader to continuously write a
piece of the data to the memory.

Fig. 2. The process of the side channel attack

Fig. 1. Structure of the Shared Memory based Side channel Attack

After the attackers put the data into memory, what they
should do next is ro run another program called memory_filler
while the program data_reader does not close. The
memory_filler will apply for large numbers of memory to push
up the memory usage rate to urge the VMM to increase its
memory until the memory size equals the Max Memory.

2) The balloon drivers triggering component
In this component, it offers two functions: balloon_trigger

and rule_detector. The balloon_trigger makes the data which
is already lying in the memory be recycled into the shared
memory pool by the balloon drivers. If the current VM is out of
the attackers’ control, the measure the function adopts is
releasing all the processes apart from the system processes to
minimize the memory usage. The function rule_detector is in
charge of detecting the upper limit and the lower limit of the
Adjustment Rule used by the VMM to balance the memory
among several VMs. However, the function can only be
obtained in VMs under attackers’ control completely. The
process of the function rule_detector can be described as
follows, which is displayed in Algorithm 1.

Algorithm 1 Rule Detector Algorithm.
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

initialize the monitor
if memory is changing then
 if memory is decreasing then
 if Current memory != Min Memory then
 return the lower limit = current memory usage rate
 end if

else if Current memory != Max Memory then
 return the upper limit =current memory usage rate
end if

end if
if have not got the value of the upper limit then

if Current memory size = Max Memory then
 reconfiguration the monitor
 return nothing
else increase memory usage step by step
 if an increase of the memory occurs then
 return the upper limit = current memory usage rate
 end if

end if end if
if have not got the value of the lower limit then

if Current memory size = Min Memory then
 increase memory usage step by step
 if a decrease of the memory occurs then
 return the lower limit = current memory usage rate
 end if
else invoke self-adjustment module to increase memory rate

 if an decrease of the memory occurs then
 return the lower limit = current memory usage rate
 else reconfiguration the monitor; return nothing; end if

end if end if

B. The Receiver Module

The target of this module is identifying and receiving the
data transmitted from the Sender Module and then
reconstructing the data. This module can also be divided into
two components:

1) The balloon drivers triggering component
As our side channel attack is based on shared memory,

what we should do firstly in this module is gain the shared
memory. This component uses a program named

memory_collector, which simply invokes the function named
malloc, to apply for memory constantly without closing.

2) The data identification and reception component
For VMs attackers cannot fully control, it needs to take

advantage of some tools, such as DD, to obtain the memory
data, because all the operations in these VMs should be legal
and proper. For VMs under attackers’ control, the attackers
modify the source codes of the OS kernel. In Linux, there is a
strategy named Demand Fetch to deal with the pages that do
not reside in the current memory. Thus, attackers insert some
codes into the physical page allocation algorithm to dump the
original memory data into files, by which way the attackers not
only obtain the memory data but also increase the memory
pressure. We create a function, named memory_dumper, to
realize this method. In the design of the function
memory_dumper, we dump all the pages belonging to a certain
process into files, and add a lock to avoid the deadlock caused
by the function known as vfs_write used in our codes. The
logic is displayed in Algorithm 2.

Algorithm 2 Memory Dumper Algorithm.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

lock = 1
in function page_alloc
pages are cleared up or replaced with new data
if the process = “dumpFile” && lock = 1 then

count = 0, lock = 0
obtain current timestamp to generate the file name
for count = 0 to PAGE_SIZE do
 invoke vfs_write to write to file
end for

end if
lock = 1
other page_alloc codes go on working

After the module has gained the memory data, it scans the
files for special marks to find the transmission data. If the data
has been transmitted successfully, the next step is to
reconstruct the data.

C. The Self-adjustment Module

This module only applies to the VMs under attackers’
control completely. This module only has one input which
refers to the target size of pages the user wants to set. In this
module, it can dynamically adjust the memory size by itself
with the help of a self-adjustment module, which invokes the
function known as balloon_set_new_target, provided by the
balloon driver.

V. CASE STUDY

In order to present how to use the side channel to conduct

TABLE I. DOMAINS ON XEN

Domain Name OS Kernel
Dom0 Ubuntu12.0.4 3.13.4

guest Ubuntu12.0.4
3.15.1 (modified configuration of
balloon driver)

monitor Ubuntu12.0.4

3.15.1 (modified configuration of
balloon driver and added codes of
dumping data to files into Linux
Kernel)

test Ubuntu12.0.4 3.13.4

attacks, we choose Xen as the testbed and Ubuntu 12.0.4 as the
OS running on it. Xen is an X86 VMM which allows multiple
commodity operation systems to share conventional hardware
in a safe and resource managed fashion without sacrificing
either performance or functionality. The host’s total memory
size is 4GB, but for Xen, the available total memory size is
3.5GB. The VMs running on Xen are listed in TABLE I. From
the table, we can recognize that the guest only modifies the
configuration of CONFIG_XEN_SCRUB_PAGES in Linux
Kernel and resets it to “n”, followed by recompiling and
reinstalling the Linux Kernel. Furthermore, we carry out a
detection experiment firstly using the function rule_detector in
the sender module in the monitor to obtain the upper and lower
limits of the Adjustment Rule. The result is that the upper limit
is 83% and the lower limit is 32%.

A. Scenario I

In this scenario, the target is to steal some information from
a guest using the monitor. The configurations of the VMs are
displayed in TABLE II.

For example, a typical attack can be described as follows:

Company A has set up a Linux server on an IaaS cloud to
store the source codes of a project. The VM belonging to the
company is named as the guest. During the development of the
project, the codes of the project are always added, modified,
deleted and so on. Thus, the memory of the guest contains
many physical pages with detail data of the codes. Thus, after
one day’s work, the memory usage of the guest may meet the
requirements of the Adjustment Rule used in the VMM. Then,
the VMM will recycle idle memory pages of the guest.
Furthermore, an attacker can use the side channel to conduct
an attack to steal the source codes of the project from the guest.

The process of the experiment is displayed as follows.

(1) Initialize all the VMs on Xen. The Domain will occupy
about 350MB of memory at the beginning. (2) In the monitor,
we adjust the monitor’s memory size to 512MB through the
self-adjustment module. At this time, the memory usage rate is
below 83%. (3) In the guest, we write the transmission data
into the memory via the program data_reader continually. In
this way, we increase the memory usage rate up to 83% to
trigger VMM’s adjustment. Then, the memory size of the guest
will increase until it reaches the Max Memory. (4) In the guest,
we use the sender module to cancel all processes apart from
systems’. Then the OS occupies only 378MB, at which time
the usage rate falls below 32% and Domain0 will decrease the
memory size of guest. While the guest memory remains stable,
the total memory size of the guest is 1112MB and the memory
usage rate is about 34%. Thus, the guest has released 424MB
free pages into the shared memory pool. (5) In the monitor, we
reset the size of memory to 1GB. Then we trigger the function

memory_dumper to dump data into files to obtain the data
transmitted from the guest. We have gotten 2682 files and then
we insert all files into a database and use the SQL, “select *
from FILE where CONTENT like ‘%begin>>%’ ”, to search
for the transmission data.

B. Scenario II

In this scenario, the target is to transmit malicious data
from monitor to guest. For example, this type of attack can be
described as follows:

Company A owns a Linux server on an IaaS cloud to store
some internal information about the company, while the
information is updated day by day. An attacker wants to steal
the internal information once a day. He has obtained the
username and password of the server, but he does not want to
obtain the information manually every day taking into account
the changes of the password. Therefore he wants to install a
malware on the server, but if he transmits the malware through
the network, some security tools may check the data being
transmitted. Thus, a transmission without attracting the VMM
and other security tools’ attentions is needed. Under the
circumstances, the attacker can use this side channel to
transmit the malware from his co-resident VM to the server.

There are several differences between this scenario and
Scenario I we should pay attention to: (1) As the size of the file
he transmits is 221KB, the attacker divides the malware into 56
pieces and transmit them several times between the two VMs.
(2) Every time the attacker reads the small malware piece, he
insert some special tags, “begin>>” and “<<end”, at the
beginning and end of the piece. In addition, he inserts a
transmission serial number just following the beginning
symbol. The process of transmitting is similar to Scenario I. (3)
The attacker uses a tool, named as DD, to dump current
memory into a file. Then, he extracts the data between
“begin>>” and “<<end” to a file. Finally, he gets 56 files in
total and the filename is the index of each file gotten from the
bit following the beginning symbol “begin>>”. (4) He
reconstructs the transmission file by combining these ordered
files. Then he can do what he wants with the file.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our attack, we choose the
transmission success rate as the target. We define the success
rate as follows:

Definition 8. Transmission success rate: After a complete
process of an attack, if the data transmitted from the victim is
totally received and reconstructed, we treat this attack as one
time of success. The transmission success rate can be
calculated by equality (1):

 Success ratesuccess timestotal times of attack 

The success rate may be related with two aspects: (1) The
percentage of data to be transmitted in memory. It is obvious
that if the data to be transmitted occupies most of the memory,
the success times will be bigger. (2) The lower limit of the
Adjustment Rule. The lower limit of the rule controls the

TABLE II. CONFIGURATION OF VMS IN SCENARIO I

Domain
Name

Current
Memory

Max Memory Min Memory

guest 1GB 1.5GB 1GB
monitor 1GB 1GB 512MB

test 512MB 512MB 400MB

release of the memory, so if the lower limit is very small, all
the VMs will not release memory pages to the shared memory
pool again.

Thus, we carry out the evaluation from these two aspects.
And the size of the data to be transmitted in our evaluation is
smaller than a physical page size.

A. The percentage of data to be transmitted in memory

In this evaluation, the configuration and process are all the
same as Scenario I and the process of evaluation is the same as
Scenario I. We divide the evaluation into four groups: 10%,
30%, 50% and 70%. Each value represents the percentage of
the memory with transmission data in total memory. We
conduct the experiment 20 times with each group and count the
success times. The result is displayed in Fig.3.

The percent is related to the existence of data sources of our
attack. According to Fig.3, it indicates that the more the
percent is, the more times it succeeds. When the percent
reaches a certain value, about 35% or so, the transmission will
always succeed.

B. The lower limit of the Adjustment Rule

This aspect not only affects the Adjustment Rule but also
affects the size of memory the guest can release. In this
evaluation, the configuration and process are all the same as
Scenario I. The percentage of data to be transmitted in memory
we choose is 50%. We also divide the evaluation into four
groups: 20%, 25%, 30% and 40%. Each value refers to the
value of the lower limit of the Adjustment Rule. We conduct
the experiment 20 times with each group and count the success
times. The result is displayed in Fig.4.

From Fig.4, it suggests that if the transmission channel has
been established, it will be likely to succeed. Therefore, this
aspect controls the transmission of the attack.

VII. CONCLUSION

In this paper, we present a novel side channel, which is
based on shared physical memory and utilizes the
vulnerabilities of the balloon driver. This attack can directly
obtain fine-gained information from another co-resident VM
without the limitation of data size. Because of the wide use of
shared memory and the balloon in current IaaS, this attack can
achieve a high success rate.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61100198/F0207).

REFERENCES

[1] Mell P, Grance T. Draft NIST working definition of cloud computing[J].
Referenced on, 2009, 53(6):50-50.

[2] Shi J, Song X, Chen H, et al. Limiting cache-based side-channel in
multi-tenant cloud using dynamic page coloring[C]// IEEE/IFIP
International Conference on Dependable Systems & Networks
Workshops. IEEE Computer Society, 2011:194 - 199.

[3] Erdal T, Onculer A. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds[C]// Acm
Conference on Computer & Communications Security. 2009:199-212.

[4] Handel T G, Ii M T S. Hiding Data in the OSI Network Model.[J].
Proceedings of International Workshop on Information Hiding, 1996,
1174:23-38.

[5] Hu W M. Reducing timing channels with fuzzy time[C]// Research in
Security and Privacy, 1991. Proceedings., 1991 IEEE Computer Society
Symposium on. IEEE, 1991:8-20.

[6] Osvik D A, Shamir A, Tromer E. Cache Attacks and Countermeasures:
The Case of AES[M]// Topics in Cryptology – CT-RSA 2006. Springer
Berlin Heidelberg, 2006:1-20.

[7] Zhang Y, Juels A, Oprea A, et al. HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis[C]// 2011 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2011:313-328.

[8] Sarda S, Kotecha R, Shetty P, et al. Secure Co-resident virtualization in
multicore systems by VM pinning and page coloring[C]// Cloud
Computing Technologies, Applications and Management (ICCCTAM),
2012 International Conference on. IEEE, 2012:1-7.

[9] Zhang Y, Juels A, Reiter M K, et al. Cross-VM side channels and their
use to extract private keys[C]// Acm Conference on Computer &
Communications Security. ACM, 2012:305-316.

[10] Yarom Y, Falkner K. FLUSH+RELOAD: a high resolution, low noise,
L3 cache side-channel attack[C]// Proceedings of the 23rd USENIX
conference on Security Symposium. USENIX Association, 2014:719-
732.

[11] Aviram A, Hu S, Ford B, et al. Determinating Timing Channels in
Compute Clouds[C]// Proceedings of the 2010 ACM workshop on
Cloud computing security workshop. ACM, 2010:103-108.

[12] Charles W. Practical Timing Side Channel Attacks against Kernel Space
ASLR[C]// 2013 IEEE Symposium on Security and Privacy. IEEE,
2013:191-205.

[13] Jana S, Shmatikov V. Memento: Learning Secrets from Process
Footprints[C]// Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012:143 - 157.

[14] Harnik D, Pinkas B, Shulman-Peleg A. Side channels in cloud services,
the case of deduplication in[J]. IEEE Security & Privacy Magazine,
2011, 8(6):40-47.

Fig. 3. Result of Evaluation A

Fig. 4. Result of Evaluation B

