
Public Scene Recognition Using Mobile Phone

Sensors

Shuang Liang and Xiaojiang Du

Dept. of Computer and Information Science

Temple University,

Philadelphia, PA 19122, USA

{shuang.liang2012, dux}@temple.edu

Ping Dong

School of Electronic Information and Engineering

Beijing Jiao Tong University

P.R. China

pdong@bjtu.edu.cn

Abstract—AbstractSmartphones evolve rapidly and become
more powerful in computing capabilities. More importantly, they
are becoming smarter as more sensors such as the accelerometer,
gyroscope, compass and the camera have been embedded on
the digital board. In this paper, we propose a novel framework
to recognize public scenes based on the sensors embedded in
mobile phones. We build individual models for audio, light,
wifi and bluetooth first, then integrate these sub-models using
dynamically-weighted majority voting. We consider two factors
when deciding the voting weight. One factor is the recognition
rate of each sub-model and the other factor is recognition
precision of the sub-model in specific scenes. We build the
data-collecting app on the Android phone and implement the
recognition algorithm on a Linux server. Evaluation of the data
collected in the bar, cafe, elevator, library, subway station and the
office shows that the ensemble recognition model is more accurate
and robust than each individual sub-models. We achieved 83.33%
(13.33% higher than audio sub-model) recognition accuracy when
we evaluated the ensemble model with test dataset.

Keywords—mobile sensing; scene recognition; ensemble learn-
ing

I. INTRODUCTION

According to the data published by Gartner [1], sales of

smartphones accounted for 53.6 percent of overall mobile

phone sales in 2013. Smartphones have a number of built

in sensors such as light sensor, proximity, accelerometer,

gyroscope, bluetooth, wifi, camera, GPS, microphone and so

on. The rich set of sensors on smartphones makes it possible

for them to get the ambient context information and become

more intelligent. Context-aware apps also benefit a lot from

the built-in sensors. Location-based apps can present cus-

tomized content and service based on your current location

obtained by GPS. Yelp lets you find nearby restaurants and

the upcoming events around your current location. Motion

control games such as Abduction, Radio Ball 3D and Asphalt

6 exploit mobile sensors to control the game.

Scene recognition tells the type of location you are in,

for example whether you are in a cafe or in a bar. There

has been research on scene classification. These research

papers are based on tagged camera images [1], [2], [3].

Some research papers such as [4], [5] are based on only

audio features to identify and differentiate scenes. However,

the results are biased and not accurate. Is there any way

to just use the sensors on smartphones to recognize the

scenes accurately and robustly? To answer this question, we

propose using only audio, light, wifi and bluetooth features

to recognize public scenes. We trained individual models

for each os these sensors. From experimental results we

found the strengths and weaknesses of sub-models when

recognizing certain scenes. We combined the sub-models

using ensemble learning. To make the model accurate and

robust, we considered both the overall recognition rate of

the sub-models and the precision on specific scenes of each

sub-model in the ensemble model.

The contributions of our work are as follows:

• We designed and implemented the public scene

recognition system on a real smartphone.

• We proposed using only mobile phone sensors for

scene classification.

• We proposed an ensemble learning method based

on dynamically-weighted majority learning to build

a accurate and robust scene recognition model.

• We collected amounts of datasets of audio, light,

wifi, bluetooth, which could be published for evalu-

ation of similar systems.

The rest of this paper is organized into the following. In

section II, we will discuss related works. We will introduce

the system architecture and the data models in Section III.

Later in Section IV, we will discuss in detail about the

implementation of the system and the recognition algorithm.

Evaluations of the system are given in Section V and we

draw our conclusions in Section VI.

II. RELATED WORK

Public scene classification has been researched for a

long time, and is still active in some areas such as image

classification and robot scene recognition. Very few scene

recognition research papsers are about resource-constrained

mobile platforms. Among them, only one or two are about

using mobile phone sensors.

There are papers on using audio features to recognize

everyday activities and identify human voices. Chen et al.

2016 International Conference on Computing, Networking and Communications, Wireless Networks

978-1-4673-8579-4/16/$31.00 ©2016 IEEE

monitored activities which occurred within a bathroom based

on the sound [6]. Wang et al. presented a sound recognition

system for home automation [7]. They evaluated their system

using six sound classes: doorbell, glass breaking, knocking,

telephone ringing, cough and human speech. Their system

can also recognize speech if the sound was identified as

human speech. Mesaros et al. presented a system to detect

events in real life recordings [8]. They detected up to 61

event classes with an accuracy of 24%. All of the research

exploits audio features to detect environment or life activities

and events, which could also be used to detect scenes.

To our knowledge, only a few researchers focused on

using mobile phone sensors to recognize scenes. Ambi-

entSense [9] is such a system which was implemented on

smartphones. Based on audio features collected by smart-

phones, AmbientSense could recognize 23 daily life ambient

sound classes. The overall recognition rate is 58.45% for

the system. The performance of AmbientSense differs for

recognizing different sound classes.

Instead of only counting on individual sensors on mobile

platforms, we propose a novel framework which exploits

four different sensors on smartphones to recognize public

scenes . The features we use include audio, light, wifi

and bluetooth, and the recognition can be done almost

immediately within two minutes. Our recongnition model

is more accurate and robust compared with systems that just

use individual sensor data for classification.

III. SYSTEM ARCHITECTURE

Fig. 1. System architecture

Figure 1 shows the system architecture and how each

component interacted with the other components. Basically

the system is a client / server structue. The client devices

could be a mobile device or a desktop computer. The

mobile device posts the collected sensor data to the server.

The server puts the data into the database through the

Data Interface on the server. And the Data Models on the

server build the recognition model using the collected data.

Additionally, the desktop client can request and browse the

collected data on the server by sending requests to the server.

Fig. 2. Data model hierarchy

A. Data Models

Figure 2 shows the structure of the data models. At

the lowest level are the sensors we use to recognize the

scene. We extract features from these underlying sensors

and pass the features data to the corresponding classifier

model. Then we integrate individual models to generate the

final classifier. Besides having data models as the primary

part, the system also includes interfaces to data and service.

The data interface unit receives data from mobile devices,

stores the data and keeps track of the data in the server. It

also monitors data requests from the controller and responds

with the data records. When the data model needs training

and testing datasets, it sends requests to the data interface

and the data interface will extract training and testing data

from the stored dataset. For the service interface, it analyzes

the service request information from the mobile device and

responds with the classification result from the data models.

IV. IMPLEMENTATION

The public scene recognition system implementation

involves data sensing and collection on the mobile plat-

form, data storage and management on the server and data

classification models based on the collected data. In this

section, we will review the details about each component’s

implementation.

A. Mobile Data Sensing

The data sensing and collection components of the sys-

tem were built on the Android 4.4.2 system. We exploited the

built-in sensing probes of the FUNF open sensing framework

[10] to obtain the ambient sensor data of audio, light, wifi,

bluetooth. Figure 3 shows the Android app for collecting

training and testing data. Using this app, users can set scene

type, name of the location, the type of sensor to use and

the number of features to collect. The app can work both in

offline mode and online mode. In offline data, the collected

data samples are stored in the SD card and users can upload

data when network is available. The user can also check

the ”Auto Upload” box to upload directly, without storing

data on mobile phone external storage. Both vibration and

sound notifications are provided to notify the user when data

collection and uploading have completed.

(a) Collecting training data (b) Collecting testing data

Fig. 3. Mobile data collection app

The app stops collecting data when all selected sensors

finish. For audio and light sensors, which are continuous and

always available, they stop sensing when the collection the

number of features that the user set is done. While for wifi

and bluetooth, they are not available in some scenes, such as

for the elevator. In such cases, they stop after completing the

initial broadcast. Furthermore, we can get the approximate

number of bluetooth and wifi devices in the scene at that

moment.

The collected features for audio, light, wifi and bluetooth

are in different sizes. The features are derived from the data

collected by FUNF probes. For audio, we use 12 mfccs [11]

as the feature vector. Table I shows the features in detail.

TABLE I. FEATURES OF THE SENSOR DATA

Sensor Feature Type Vector Size

Audio MFCCs Float 12

Light Lux Float 1

Wifi # of Wifi device Integer 1

Bluetooth # of Bluetooth device Integer 1

B. Classification Modules and Algorithms

The classification process includes two phases. At phase

one, we trained individual sub-models using naive bayes

classifier. Then we obtain the model profiles which include

recognition rate and recognition precision on each scene

class for the corresponding sub-model. At phase two, we

build the ensemble learning model based on the sub-models

and model profiles created at phase one. We then use the test

dataset for testing the phase two ensemble model. Figure 4

shows the flowchart for this two-phase classification model.

In phase two, we exploited dynamic-weighted majority

voting to build the ensemble classification model. Algorithm

1 is the algorithm for the ensemble classification model.

Fig. 4. Two-phase scene classification flowchart

Algorithm 1 Ensemble scene classification algorithm

1: learners← [audio, light, wifi, bluetooth]
2: reward ratio← 1.1
3: punish ratio← 0.9

// Profile sub-model

4: for all i = 0 to len(learners) do

5: model← train(learner[i])
6: learner[i].weight← model.recognition rate

7: learner[i].precision← model.precision

8: end for

// Take sub-decisions from enrolled learners

9: for all i = 0 to len(learners) do

10: predict = learner[i].predict()
11: vote vector ← make vote(learner[i], predict)
12: result vector ← result vector + vote vector

13: end for

14: ensemble predict = max(result vector)

// Update voting weights of learners

15: if ensemble predict = target then

16: for all i = 0 to len(learners) do

17: if learner[i].predict = ensemble predict then

18: update weight(learner[i].weight ∗
reward ratio)

19: end if

20: end for

21: else

22: for all i = 0 to len(learners) do

23: if learner[i].predict = ensemble predict then

24: update weight(learner[i].weight ∗
reward ratio)

25: end if

26: end for

27: end if

The ensemble model starts by building and profiling sub-

models for all enrolled learners (audio, light, wifi, bluetooth).

In the model profiling process, we initialize the voting

weight of the sub-model to the recognition rate of the

model. The recognition rate for each sub-model is calculated

in equation (1) which we use the ratio of the number of

correctly classified samples to the total number of samples.

Recognition rate =
correct sample

total sample
(1)

And for each scene, we build a precision map which maps

the predicted scene to the precision rate of this prediction.

The precision of the scene indicates the probability that the

predicted scene is correct for this scene in the sub-model.

So we calculate this rate based on the true positive (TP) and

false positive (FP) number for the predicted scene. Equation

(2) shows how the precision map is calculated.

Precision(scene) =
TP (scene)

TP (scene) + FP (scene)
(2)

Then we let each enrolled learner vote for the scene

class. The value of the vote is calculated in equation (3). We

consider both the predicted result (the precision factor) and

the model (the weight factor) in making the voting decision.

V ote(scene) = precision(scene)× weight (3)

We also adjust the weight of the sub-models dynamically

after each prediction in the ensemble model. If the predicted

result is correct, we increase the weights of the models that

make contributions in the voting process. On the contrary,

we reduce the weights of the models that make the wrong

decision if the predicted result is not the actual scene.

V. EVALUATION

A. Evaluation Environment and Datasets

We tested our public recognition recognition system on a

LG Nexus 4 with a Android 4.3.1 system and ubuntu server

with sqlite 3.7.11 database, python 2.7.3 and django 1.6.6

installed. We collected training and testing data using the

Android app we developed in six different scenes: the bar,

Cafe, elevator (elev.), library (lib.), office (offi.) and subway

station (subw.). For each selected scene, we collected several

observations (obs.) in different spots and at different times of

the day. And each observation include four samples (sam.)

which are for audio, light, wifi, and bluetooth respectively.

Currently, we have 1179 training samples and 1141 testing

samples in our database. Table II shows the details about

our training and testing datasets.

TABLE II. TRAINING AND TESTING DATASETS

Usage Bar Cafe Elev. Lib. Offi. Sub. Obs.#

Train 63 78 71 63 28 59 362

Test 64 77 72 59 21 57 350

We randomly select 20 observations for each scene from

the training dataset. We use these observation samples to

0.0 0.2 0.4 0.6 0.8 1.0
Precision

bar

cafe

elev

lib

offi

subw

audio
light

wifi
bluetooth

0.0 0.2 0.4 0.6 0.8 1.0
Recall

bar

cafe

elev

lib

offi

subw

audio
light

wifi
bluetooth

(a) Precision bar chart (b) Recall bar chart

Fig. 5. Classification metrics on scenes

train the sub-models of audio, light, wifi and bluetooth. Then

we randomly select 10 observations for each scene from the

testing dataset. We used half of these samples for profiling

the sub-models which let us know the recognition rate of

the sub-models and the recognition precision of each sub-

model when predicting certain scene. With the remaining

test samples, we fed them to the ensemble model to test our

ensemble model.

B. Performance of Sub-models

From the evaluation experiments, we find that different

sensors have their strengths in recognizing certain scenes and

are weak or disadvantaged to detect other certain scenes.

To see which sensor models are strong and which sensor

models are weak for certain scenes, we use two metrics: the

precision and recall of each sensor model on the scenes. As

introduced in equation (2), the precision is the fraction of

samples that are truly positive from the samples predicted to

be positive by the model. As shown in figure 5 (a), the bar

chart clearly tells the precision difference of the sub-models

on the scenes to be classified. The precision of the sub-

models tells us the overall possibility that the recognition

is correct. Therefore, we took this factor into consideration

when constructing the ensemble model. The other metric is

the recall. Recall measures the fraction of positive samples

the model successfully classified on the scene. It also applies

to each scene. Equation 4 shows how recall values of scenes

are calculated. From the recall of the sub-models, we can

know the recognition performance of the sub-model on a

specific scene.

Recall(scene) =
TP (scene)

TP (scene) + FP (scene)
(4)

To get to know the overall recognition performance and

the robustness of each sub-model, we built the recognition

confusion matrix for each sub-model as shown in figure 6.

In the confusion matrix diagram, the darker the off-diagonal

cells are, the more mistakes the model has made. From the

confusion matrix, we found that the sub-model for audio

features outperformed the others and is the most robust sub-

model in recognizing the scenes.

bar cafeelev lib offisubw

bar

cafe

elev

lib

offi

subw

audio

bar cafeelev lib offisubw

bar

cafe

elev

lib

offi

subw

light
bar cafeelev lib offisubw

bar

cafe

elev

lib

offi

subw

wifi

bar cafeelev lib offisubw

bar

cafe

elev

lib

offi

subw

bluetooth
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 6. Confusion matrices of sub-models

C. Classification Performance

Our ultimate goal is to build an accurate and robust

model to recognize public scenes. To this end, we obtained

insights from sub-models of sensors and built our ensemble

model based on dynamically-weighted majority voting. We

considered both the recognition precision of individual sub-

model on the scenes and the overall recognition rate per

sub-model. So the ensemble model is at least as accurate as

the best sub-model while is better in robustness.

TABLE III. RECOGNITION RATES

Classifiers Recognition rate (%)

Audio 70

Light 26.67

Wifi 33.33

Bluetooth 20

Ensemble 83.33

Table III shows the recognition rate of the ensemble

model together with the sub-models of audio, light, wifi

and bluetooth. The accuracy improvement shows that our

ensemble model is better than using individual sub-models.

And the confusion matrix diagram of the ensemble model

that is shown in figure 7 also confirms that the model is

more robust and rarely makes error.

VI. CONCLUSION

We proposed a public scene recognition system based

on the sensors embedded in smartphones. Compared with

recognition systems using only individual sensor data, the

ensemble module performs better in accuracy and robust-

ness. We designed and implemented the recognition system

and evaluated it using the data collected in six different

scenes. For each scene, we collected samples in different

places and different hours of the day. We investigated the

performance of each sub-module with specific scenes and

bar cafe elev lib offi subw

Predicted Scene

bar

cafe

elev

lib

offi

subw

A
ct

u
a
l
S
ce

n
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 7. Confusion matrix of ensemble model

use that knowledge in building our ensemble model based on

dynamic-weighted majority voting. Since the classification

models are not limited to certain sensor features, they can

apply to other smartphone sensors.

ACKNOWLEDGMENT

This work was supported in part by the US NSF under

grants CNS-1022552, CNS-1065444, as well as the US

Army Research Office under grant WF911NF-14-1-0518.

REFERENCES

[1] L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total scene understanding:
Classification, annotation and segmentation in an automatic framework,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[2] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “Sun database:
Large-scale scene recognition from abbey to zoo,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2010.

[3] J.-H. Lim, Y. Li, Y. You, and J.-P. Chevallet, “Scene recognition
with camera phones for tourist information access,” in International

Conference on Multimedia and Expo, 2007.

[4] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa,
“Computational auditory scene recognition,” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2002.

[5] S. Ravindran and D. Anderson, “Audio classification and scene recogni-
tion and for hearing aids,” in IEEE International Symposium on Circuits

and Systems, 2005.

[6] J. Chen, A. H. Kam, J. Zhang, N. Liu, and L. Shue, “Bathroom activity
monitoring based on sound,” in Pervasive Computing. Springer, 2005.

[7] J.-C. Wang, H.-P. Lee, J.-F. Wang, and C.-B. Lin, “Robust environ-
mental sound recognition for home automation,” IEEE Transactions on

Automation Science and Engineering, 2008.

[8] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event
detection in real life recordings,” in 18th European Signal Processing

Conference, 2010.

[9] M. Rossi, S. Feese, O. Amft, N. Braune, S. Martis, and G. Troster,
“Ambientsense: A real-time ambient sound recognition system for
smartphones,” in International Conference on Pervasive Computing and

Communications Workshops, 2013.

[10] “Funf open sensing framework,” http://www.funf.org/.

[11] “Mel-frequency cepstrum,” http://en.wikipedia.org/wiki/
Mel-frequency cepstrum.

