
Analysis of Clickjacking Attacks and An Effective
Defense Scheme for Android Devices

Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji
Department of Computer and Information Sciences

Temple University
Philadelphia, Pennsylvania 19122

{longfei.wu, benjamin.brandt, dux, boji}@temple.edu

Abstract—Smartphones bring users lots of convenience by
integrating all useful functions people may need. While users are
spending more time on their phones, have they ever questioned of
being spoofed by the phone they are interacting with? This paper
conducts a thorough study of the mobile clickjacking attacks. We
first present how the clickjacking attack works and the key points
to remain undiscovered. Then, we evaluate its potential threats
by exploring the feasibility of launching clickjacking attacks
on various UIs, including system app windows, 3rd-party app
windows, and other system UIs. Finally, we propose a system-level
defense scheme against clickjacking attacks on Android platform,
which requires no user or developer effort and is compatible
with existing apps. The performance of the countermeasure is
evaluated with extensive experiments. The results show that our
scheme can effectively prevent clickjacking attacks with only a
minor impact to the system.

Keywords—Android; security; clickjacking

I. INTRODUCTION

Smartphone continues its popularization worldwide and has
become an important part of people’s daily lives. Android is
the most popular and the best-selling smartphone operating
system (OS), holding over 80% of global smartphone market
share [1]. However, security and privacy issues are a widely
recognized problem of Android, mainly because it is open-
source and attackers can find security vulnerabilities from the
source code.

The security of user interface (UI) is particularly important,
since mobile users interact directly with the UIs of the system
as well as 3rd-party apps. Specifically, users receive most
information visually from the UI, and give their inputs in
terms of touch, click, and key entry to the UI as well. The
manipulation of UIs can pose huge threats to the interaction
between user and the phone. In general, the identities of two
UIs should be treated carefully regarding the UI security: the
UI that the user thinks of interacting with and the UI that is
actually taking the user inputs. It is very important to guarantee
that these two identities are consistent, otherwise it indicates
that the user is spoofed and an app is receiving the user
inputs while it is not supposed to. When talking about illegally
gaining user input, most people immediately blame phishing
attacks. However, the app to which user inputs are sent to is not
necessarily the malicious one. Instead, it can be the victim in
a clickjacking attack. For example, it is covered intentionally
by a malicious UI that is “transparent” to user inputs (does not
accept user inputs). As the result, the victim app is “forced” to

take the user inputs while the user is expecting to interact with
the app on top. Hence, we look into the mobile UI spoofing
attacks in two categories based on whether the malicious UI
intends to obtain the user input, namely the phishing attack
(steal user input) and clickjacking attack (redirect user input
to the victim UI).

In this paper, we focus on mobile clickjacking attacks.
We start with the general pattern and key steps to implement
a clickjacking attack. Then, we give a detailed analysis of
the potential risks posed by clickjacking. Finally, we propose
an automatic, lightweight and effective defense scheme to
defeat clickjacking attempts, which is able to overcome the
limitations of all existing solutions. All different types of
clickjacking attacks and the defense mechanism are imple-
mented on a Nexus 4 smartphone running Android 5.0 system.
The effectiveness and overheads of the proposed scheme are
evaluated with extensive experiments.
Our main contributions are listed as follows:
• We systematically study mobile clickjacking attacks from

the perspective of floating window and target window,
separately. We discover and analyze more unique features
of clickjacking including the window flags, transparency,
etc., which make our detection scheme more accurate than
existing solutions which mistakenly accuse some benign
apps due to their coarse policies.

• We investigate the “after-attack” disguises to keep the
clickjacking undiscovered after one successful attack, which
has not been considered in previous works. Specifically, we
present three types of side-channels that allow the malicious
app to listen to the user input events (different to [2], not
necessarily lead to UI state change).

• We explore a variety of clickjacking attacks, targeted on
system apps, 3rd-party apps, and other particular system UI.
The threat of clickjacking is better evaluated than previous
works which only have a couple of examples for illustration.

• Our detection scheme outperforms previous methods as it
requires no user/developer involvement and is compatible
with Android system design as well as existing apps. We
implement the proposed scheme on real smartphone. The
experimental results show that it is effective and efficient.

II. BACKGROUND

A. Android UI Basics
There are two confusing concepts that we want to explain

in the first place: view and window. In Android, a View object

Fig. 1: Illustration of Clickjacking Attacks

is the basic building block for UI components (e.g., buttons,
images, text fields, etc.). Views can be used to draw graphical
contents. A Window object is an abstract base class for a top-
level window look and behavior policy. By comparison, View
objects are closer to the conventional windows we considered
to display content as graphical user interfaces (GUIs), while
Window objects are more likely a framework to hold the Views.
In this paper, both terms “view” and “window” refer to the UI
implemented using View object.

B. Overview
Clickjacking attack is also known as “UI redress attack”. It

happens when a malicious app inserts an opaque layer (or in
very low transparency) on top of the screen, to trick a user
to click on a specific position. The click event seemingly
going to the top front window actually goes to the target
window underneath. If carefully designed, the user may trigger
a concealed button or link in the underlaying window. Note
that the conventional webpage clickjacking attacks have been
well-studied in previous works [3]–[8], most of them can be
migrated to mobile platform to protect mobile browser and
webpages. In this paper, we focus on clickjacking attacks
on mobile application UIs and system UIs. An illustration is
presented in Figure 1, in which the attack window appears as a
game menu and covers on top of the target window. When the
user clicks to start the game, the click is instead received by the
“SEND” button in the target window (e.g. a premium SMS).
Obviously, the target window is launched by the malicious
app after the attack window has blocked user’s sight. This is
because if instead the target window is launched first (by the
user), then the only way that the clickjacking can succeed is to
have the user herself open the malicious app (attack window)
while the target window is on front. This condition (predicting
user behavior) is too strong for any real-world app.

Therefore, the attack window needs to be added before the
target window, and remains on top when the target window
is launched; otherwise, the user will see the target window
launched without her command. Intuitively, the attack window
cannot be in the same type as normal apps, which will be
covered by the target window launched later. In fact, the attack
window must be a floating window which has higher priority
to stay on top of normal app windows (detailed in Section
IV-A). Besides, the attack window has to be untouchable (does
not take user inputs), so that user inputs can penetrate this
camouflage layer and take effect on the target window below.

III. RELATED WORKS

A recent work conducted by Bianchi et al. [9] compre-
hensively study the Android UI attacks. In their work, GUI

confusion attacks, including both the phishing attack and
clickjacking attack are handled together. They first develop
a static analysis approach to detect apps that try to interfere
with the UI in response to some action taken by the user (or
another app). However, unlike the phishing attacks that are
performed right after the user launches the target app login
UI, a clickjacking attack does not have a specific timing (the
launch of the attack window and the target window are both
controlled by the malicious app). Hence, clickjacking attacks
can bypass this method as they are independent of user’s or
other app’s action. Meanwhile, some benign apps are captured
instead (e.g., locker apps will always stay on top of the app that
is being protected until the user authenticates herself). They
also devise an on-device defense by modifying the Android
system. A trusted indicator is added to show the identity of
the app that the user is interacting with, and its developer.
Extended-Validation (EV) HTTPS infrastructure is used to
verify if an app is indeed associated with a specific domain
name. Warnings will be given if the user is interacting with
an unverified app or an external window is present over the
top activity. The limitations of this solution are three-fold: (1)
Users have to make the final decision, which requires mobile
users to understand the potential attacks they are facing and
evaluate the risk in each specific situation. (2) Yellow alert will
be issued to a verified app covered with an external window.
However, some apps create an “always visible” window (e.g.,
Facebook Messenger provides the ability to chat while using
other apps), and false alarms are generated when dealing with
such benign apps. (3) The HTTPS EV certificates adopted
will force the apps to be associated with domain names, and
the certificate itself costs more than $100 each year. The
verification of apps and developers is not a straightforward
approach to excluding benign apps. The reason why they are
using this approach as a complement is that the common
features of different mobile UI attacks alone are not sufficient
to detect any of the UI attacks. Instead, we split the general
UI attacks to phishing and clickjacking, and develop separate
detection schemes based on each’s unique features (i.e. [10]
and this work). Next, we discuss the existing solutions that are
specific to the clickjacking attacks on mobile platform.

Niemietz et. al [11] study the mobile app clickjacking
attacks through case studies. They propose to add a security
layer between all neighboring apps (without implementation),
so that no user input can pass across apps. However, some be-
nign app windows are designed to be untouchable (transparent
to user input) and floating on top of the screen (illustrated
in Section IV-A). Blindly rejecting pass-through user inputs
could cause serious incompatibilities with such apps. Besides,
Android system creates flags like FLAG NOT TOUCHABLE
and FLAG NOT TOUCH MODAL for UIs, to offer the option
to let the input events above/outside of a window to be
delivered to the window below. The proposed solid security
layer will spoil the intrinsic design of Android, and cause many
existing apps to malfunction.

Android framework offers a touch-filtering mechanism as
an option for app developers to protect the windows of their
apps from receiving any user input event when obscured by
another visible window. Specifically, the touch filtering can be
activated by calling setFilterTouchesWhenObscured function,
or by setting the android:filterTouchesWhenObscured attribute
of a layout to true (for all views contained or only selected

TABLE I: Window Types for Floating Window

Window Type Layer Value Permission Required Description

TYPE PHONE 3 SYSTEM ALERT WINDOW user interaction with the phone (in particular incoming
calls)

TYPE TOAST 7 None transient notifications

TYPE PRIORITY PHONE 8 SYSTEM ALERT WINDOW priority phone UI, needs to be displayed even if the
keyguard is active

TYPE SYSTEM ALERT 10 SYSTEM ALERT WINDOW system alert window, such as low power alert
TYPE SYSTEM OVERLAY 19 SYSTEM ALERT WINDOW system overlay windows

TYPE SYSTEM ERROR 22 SYSTEM ALERT WINDOW internal system error windows

views). This method is also suggested by Niemietz’s follow-
up work [12]. When enabled, the protected views will simply
discard inputs whenever a toast, dialog or other window (may
belong to a benign app) appears above. However, this solution
is incompatible with benign apps that contain a floating win-
dow. This explains why Android phone manufacturers won’t
set up this flag by default for their system apps. What we need
is a smart defense scheme that can make the filtering decision
in real-time and only filter out misled input.

Fernandes et al. [13] find that the security indicator in
[9] checks the identity of the foreground app periodically, so
that the malicious app can launch clickjacking attacks right
between two consecutive checking points. The timing of the
binder IPC calls can be leveraged as the side-channel to predict
the next check. Instead, they propose Overlay Mutex which
guarantees that a background non-system app cannot overlay
a window on top of another app’s window while it is using
soft keyboard. However, it will block the pop-up notification
window of benign 3rd-party apps, and is conflicting with
Android flag FLAG NOT FOCUSABLE which does allow an
overlaid window to interact with the soft keyboard. We need
to design the clickjacking detection scheme to be compatible
with Android system and all existing apps.

IV. MOBILE CLICKJACKING ATTACKS

In this section, we describe the mobile clickjacking attacks
in detail. Specifically, we first introduce the floating window
and the target window, which are the basic components in a
clickjacking attack. Next, we present a step-by-step analysis
of the general attack model. Then, we discuss the potential
threats posed by clickjacking attacks.

A. Floating Window

Floating window is a special type of window that can
remain on top of normal app windows. By using a floating
window, UIs of multiple apps can be displayed together, which
facilitates the cooperation between apps and simplifies user
operations. For instance, some apps keep a small and semi-
transparent floating icon on screen, to provide quick access to
useful functions (e.g., switching network connections, GPS,
taking photos, etc.). These apps are welcomed by mobile
users because of their convenience. These functions are usually
accessible within 2 clicks, which otherwise would require
tedious app switching operations including pausing the current
activity, going to home menu or recent app list, activating the
target app, and getting back to the original app after comple-
tion. Some other apps create an untouchable semitransparent
floating window. For example, in screen camera apps, a full-
screen translucent camera preview is projected into a floating
window so that pedestrian users can see the traffics/obstacles

ahead while texting; system performance monitor apps can
display the real-time CPU and memory usage in such windows.

Usually the floating window is created by a service, so
that it can still be floating on screen even if the host app
has been brought to the background. Besides, Android system
enforces a “solid” layer to block the penetration of user
inputs between windows created by different activities, an
untouchable floating window that wants the user inputs to
pass through (like the screen camera apps) can bypass this
restriction only if it is running in a service. A floating window
can create fancy UIs and improve user experience. However,
it may be used to launch clickjacking attacks if carefully
designed by the attacker. In the rest of this paper, the term
“floating window” refers to the malicious attack window used
to perform clickjacking attacks, unless explicitly specified.

Unlike in an activity where associated views are loaded
together with the activity, views in a service have to be added
explicitly. This can be achieved using the addview API of the
WindowManager. When calling this API, several parameters
can be specified in LayoutParams which will affect how
the window is laid out, including the width/height, position,
general window type, behavioral flags, and desired bitmap
format. The size and position are common parameters. As an
attack window, the floating window has to occupy the entire
available area on screen. This is because only a full-screen
floating window (except status bar and navigation bar) can
ensure that the user does not get any visual clue of the attack
happening underneath (i.e. the loading of the target window).
The fifth parameter window format defines the desired bitmap
format. Any of the formats defined in PixelFormat can be
used for floating window. Below we explain the other two
parameters: Type and Flags.

1) Window Type: To achieve the goal of floating, we pick
out the window types that are prioritized to stay above normal
app windows, and permitted to be used in a 3rd-party app (the
malicious app), as listed in Table I.

In Android, each window is associated with a Z value (Z-
order). Windows with larger Z-order are placed on top of those
with lower Z-order. The Z-order of a window is decided by
both the window type (Layer Value) and its position in the
“window stack”. The window management is a complicated
task: when there is a change in the “window stack”, Z-orders
of all windows will need to be re-calculated. However, in terms
of detecting a malicious floating window, we only have to
know two basic rules: (1) For windows with different Layer
Values, the one with larger Layer Value can stay above the
lower ones. (2) For windows with the same Layer Value, the
most recently launched one will appear on top of the previous
ones. In a clickjacking attack, the floating window is launched

TABLE II: Window Flags of Floating Window

Window Flag Description
FLAG NOT TOUCHABLE this window can never receive touch events.

FLAG NOT FOCUSABLE this window does not need to interact with a soft
input method.

FLAG ALT FOCUSABLE IM
invert the state of FLAG NOT FOCUSABLE
with respect to how this window interacts with
the current method.

in advance and needs to cover the target window launched
afterwards, so the floating window must have a Layer Value
greater than the target window.

In Table I, the window types are listed in an increasing
order of the Layer Value. For a given target window, the
attacker only has to pick one window type with greater
Layer Value. Meanwhile, we noticed that all of the listed
window types require SYSTEM ALERT WINDOW permis-
sion except TYPE TOAST. According to a study of 1260
malware samples and 1260 top free benign apps [14], SYS-
TEM ALERT WINDOW permission is not among the top 20
commonly requested permissions of both malware and benign
app samples. And it’s widely used among some categories of
apps including anti-virus apps, locker apps, etc. Still, if the
malicious app can avoid using it, the malware could become
less suspicious. Note that if a TYPE TOAST floating window
is created with addView API, it will not go disappeared after
a certain period of time like Toast.show() API does. Instead,
the floating window remains on the screen untill removeView
API is called to explicitly remove the window.

2) Window Flag: Flags provide various behavioral options
for windows. Unlike the single-choice window type, there can
be multiple flags to be set for a given window. We describe
the flags relevant to floating windows in Table II.

Since the floating window has to be untouchable, the
FLAG NOT TOUCHABLE must be set so that all click and
touch events will be passed down to the target window. The
FLAG NOT FOCUSABLE controls whether a given window
can take key input focus and other button events (e.g., Back
button). If set, these will be delivered to the next focusable
window behind. In Android, the input focus can only be
given to one window, namely the top focusable window.
Hence if the FLAG NOT FOCUSABLE is not set for the
floating window, the target window will become unfocusable.
The FLAG ALT FOCUSABLE IM is to invert the state of
FLAG NOT FOCUSABLE. If both flags are set, the window
will behave as if it needs to interact with the input method;
while if FLAG NOT FOCUSABLE is not set and this flag
is set, then the window will behave as if it doesn’t need to
interact with the input method.

Generally, the attacker wants to trick the user to op-
erate on the target window with a few clicks. Attacks
with a large number of clicks/touches or text input are
much harder to accomplish, as the attacker will have to
design a series of UIs and ensure that the user will always
click on the desired position. The floating window is ad-
vised not to set any one of the FLAG NOT FOCUSABLE
and FLAG ALT FOCUSABLE IM, to keep the input fo-
cus from the target window. In this way, even if the
user clicks on the text field of the target window (if
there is any) by accident, the input method will not be

activated and give sound/vibration feedbacks to alert the
user. A special case is that FLAG NOT TOUCHABLE and
FLAG NOT FOCUSABLE will be automatically added for
windows of TYPE SYSTEM OVERLAY if they are absent
(Android thinks that such types of windows must not take
input focus, or they will interfere with the keyguard).

B. Target Window
The target window can belong to a 3rd-party app, system

app or be other system UIs (e.g., confirmation dialogs). Some
of these UIs’ functionalities are security-sensitive and require
specific permissions to use programmatically, e.g., SMS mes-
senger, camera, system settings, etc. However, the malicious
app could launch the target app UI while the floating window
is on, and entice the user to manually operate according to
the attacker’s will (e.g., pressing attractive dummy buttons
which sit right on top of actual buttons). As the invocation
of the target UI usually does not need any permission, the
clickjacking attacks can “achieve” the malicious intention
without declaring those sensitive permissions.

The launching of the target UI can be done either pro-
grammatically or manually. Manual launch could take lots of
extra efforts (e.g. navigating in the app or settings menu).
By comparison, the code-based approach will not increase
the overall attack complexity, and is much more stealthy.
The invocation of the target UI through code requires inter-
application communication. Android provides two types of
channels for apps to communicate with each other: Intents
and Schemes. Furthermore, there are two forms of intents:
explicit intents and implicit intents. Explicit intents specify the
exported app component to start by class name, while implicit
intents declare a general action to match against the intent
filters of all exported components (i.e. components that are
invokable by other apps). Scheme is implemented based on
intent, which allows an app or website to use a URL to invoke
another app that has registered the scheme of that URL.

A practical issue for implicit intents and schemes is that
when multiple compatible intent filters (from different com-
ponents) or scheme “handlers” are available, a system dialog
is displayed which lists all candidate apps alphabetically and
prompts the user to manually select one. Though the malicious
app can calculate the target app’s position by scanning all
components via PackageManager, a simple bypass for this is to
directly use an explicit intent. We use explicit intent to launch
target windows in our experiment.

C. Clickjacking Attack Implementation

So far, we have introduced the fundamental knowledge of
the floating window and target window. Next, we give a step-
by-step analysis on how to implement a clickjacking attack.

1) Step 1 - Launch the Floating Window: Through former
study, we have determined that the first step to perform a click-
jacking attack is to launch the floating window. That is, when
the malicious app starts to attack, it first adds a full-screen
floating window on top of the screen. The type of floating
window can be chosen from Table I, whose Layer Value has to
be greater than the pre-selected target window. The flags of the
floating window must contain FLAG NOT TOUCHABLE,
while it is highly suggested that FLAG NOT FOCUSABLE
and FLAG ALT FOCUSABLE IM are not set.

2) Step 2 - Launch the Target Window: The target window
is launched right after the floating window, to receive the
user inputs. Blinded by the floating window, the user would
“click” the dummy object while the click event is actually
delivered to the target window. One may consider that as an
end for clickjacking attacks. However, such attacks may be
discovered immediately after a one-time success. Since the
floating window is designed to pass over the user inputs, the
malicious app may not be notified of when the input events
take place. This is a crucial issue for clickjacking attacks as
the user will sense the abnormality if the malicious app cannot
“react” in a timely manner to her input action. In order to
remain undiscovered, the malicious app must either “listen” to
the input taking effect on the target window, or find a way to
detect the expected result of the user input.

3) Step 3 - Monitor User Input and Respond: The dura-
bility of the malicious app is also an important factor from
the attacker’s point of view, which has been neglected in all
previous works. After the user falls into the clickjacking trap
(e.g. click onto the fake UI), the malicious app needs to know
as soon as possible when the user input is performed, and
react in a way as if the user is really interacting with it. In
our work, these “after-attack” disguises are considered. Based
on each particular target window, there could be three kinds
of ways for the malicious app to track the user input events:

• As the caller of the target window, the target app may
issue a callback to the malicious app (e.g., calling the
target activity with startActivityForResult() and register the
onActivityResult() callback method).

• The target app (or the system) may issue a broadcast intent
to inform all related modules about the specific user action
or the phone’s state change.

• The malicious app may detect if the expected user action
has been made by observing the relevant database.

If it’s the first case, the malicious app can directly insert
the code for proper response into the callback function. For
example, the malicious app wants to take a picture by stealthily
starting the camera app with ACTION IMAGE CAPTURE
intent. After the user is spoofed to click the capture button, the
image is returned to the malicious app. Then the malicious app
can save or send out the image while on the surface (floating
window) starting a game as the user has expected. Note that
for camera-based attacks, the phone needs be set to the silent
ringer mode RINGER MODE SILENT, in which sound and
vibration will be shut down. The audio volume and vibration
state will be recovered (if modified) after the attack.

If the target app does not give a callback, the malicious
app will have to seek for other channels. In Android, some
of the user actions will be broadcasted so that the relevant
apps can keep up with the most recent phone status and
adapt themselves accordingly. For example, the malicious app
may launch the date settings panel by sending an intent with
DATE SETTINGS action, to trick the user to modify the date
(and/or time) so that the scheduled calender events, reminders,
and alarming events are all disturbed. The time & date set-
ting is considered security sensitive, the required permission
SET TIME is not granted to 3rd-party apps. However, this
protection strategy can be easily bypassed via a clickjacking
attack. Meanwhile, the malicious app can register a broadcast

receiver with the TIME SET action to catch the moment that
the date/time is changed.

Under other situations where no broadcast channel is
available to listen to, the malicious app could register an
“observer” for the relevant database as a way to eavesdrop on
the user action of interest. For instance, there is a broadcast
intent SMS RECEIVED ACTION for incoming SMS but no
notification is issued for outgoing SMS. However, Android
uses content providers to store common data such as contact
information, calendar information, media files, messages, call
logs, etc. After programmatically filling the phone number and
content into a SMS draft, the malicious app can monitor the
SMS database (basically a content provider that contains all
SMS messages). Specifically, a ContentObserver is registered
with “content://sms” as the content URL (no SMS-related
permission is needed). Since the time that the user takes to
click and send the message is very short (we assume the user
is spoofed and tempted to click without hesitation), the change
in SMS database during that period is sufficient to indicate that
the expected “click to send” action by the user has been made.

In either of the three circumstances above, after the user
input is detected (the clickjacking attack has succeeded),
the malicious app needs to respond instantly and properly,
according to the dummy function that the user selected from
the floating window. Based on whether to continue the attack,
the floating window may be removed (the attack ends) or
another target window may be loaded (the attack continues).

D. Potential Risks of Clickjacking Attacks

The threats posed by clickjacking are decided by the
various target windows under attack. In general, the ideal
target should be invokable through code, which means the
component holding the target window (usually an activity) has
to be exported (i.e. android:exported attribute is set to true).
Additionally, the malicious app should be able to monitor the
user action on the target window. To evaluate the potential
threats, we present the typical clickjacking attacks targeted on
system apps, 3rd-party apps and system UIs, respectively.

1) Clickjacking Attacks on System Applications: We first
summarize the commonly used public components of system
apps that are vulnerable to clickjacking attacks (listed in Table
III). The second column shows the component name that can
be used to explicitly invoke the target window. The after-
attack monitor channel is presented in the forth column. As
we have found, the target windows of all victim components
are of the same type TYPE BASE APPLICATION, which is
the normal window type. All these target windows have the
same Layer Value 2, which means they will be shielded by any
of the floating window types listed in Table I. An exception
is that sometimes user operations may trigger toast mes-
sages (TYPE TOAST). For instance, after the user modifies
a contact, a toast message “Contact saved” will be displayed.
When launching attacks associated with toast messages, the
floating window type must have a Layer Value greater than
TYPE TOAST.

The target windows could belong to media apps (camera,
sound recorder), telephony apps (dialer, messaging, contact),
the package installer, the settings or the file explorer. By
tricking the user to click on these windows, the attacker
is able to perform security sensitive operations behind the

TABLE III: Clickjacking Attacks on System Apps

Target app Target Component Intent Action (Scheme) Monitor Channel Permission Bypassed
Camera CameraActivity IMAGE CAPTURE Callback CAMERA
Camera VideoCamera (alias) VIDEO CAPTURE Callback CAMERA
Contact ContactSelectionActivity PICK Callback READ CONTACTS
Contact ContactEditorActivity EDIT Listen to contact database WRITE CONTACTS
Dialer DialtactsActivity DIAL Listen to contact database CALL PHONE

Documents DocumentsActivity GET CONTENT Callback READ EXTERNAL STORAGE

Package installer PackageInstallerActivity INSTALL PACKAGE Callback INSTALL PACKAGES (system only)
UninstallerActivity UNINSTALL PACKAGE Callback DELETE PACKAGES (system only)

Settings
WirelessSettingsActivity WIRELESS SETTINGS Broadcast receiver WRITE SETTINGS

WifiSettingsActivity WIFI SETTINGS Listen to settings database CHANGE WIFI STATE
DateTimeSettingsActivity DATE SETTINGS Broadcast receiver SET TIME (system only)

Sound recorder SoundRecorder RECORD SOUND Callback RECORD AUDIO
Messaging ComposeMessageActivity SENDTO (smsto/mmsto) Listen to SMS/MMS database SEND SMS

user’s back. These operations are normally guarded by specific
permissions (listed in the “Permission Bypassed” column of
Table III), some are not available for 3rd-party apps (IN-
STALL PACKAGE, DELETE PACKAGES and SET TIME).
From this perspective, the clickjacking attack actually gives
the malicious app a permission escalation [15] [16], by having
the privileged system apps delegate the sensitive operations
(performed by the user). The system permissions usually
protect APIs that are extremely security sensitive. For example,
INSTALL PACKAGE permission allows an app to silently
install other apps. If a malicious app acquires this capability
(even if indirectly via clickjacking), it can install other mal-
wares and cause more serious consequences.

2) Clickjacking Attacks on 3rd-party Applications: We also
look into the 3rd-party apps and check if their APIs could
be targeted by clickjacking attacks. It has been reported in
[17] that many 3rd-party apps unintentionally expose their
components that may be utilized by attackers. In our work, we
mainly consider apps that explicitly share their APIs, e.g., apps
that release their own SDKs for other apps to use their services.
This is quite popular especially among social networking apps
which allow users to quickly spread information via their social
networks. We use Twitter and Facebook as examples to check
their potential vulnerability to the clickjacking attacks.

The Twitter and Facebook SDKs provide a set of APIs to
perform commonly used operations like tweet, update mood,
share photos/links, load contents from Twitter/Facebook, etc.
We implement the basic “tweet” and “share link” functions
on Twitter and Facebook, respectively, to demonstrate the
feasibility of launching clickjacking on these apps. We suppose
that the user has already logged into the client app, so that the
malicious app can be authorized via a couple of clicks.

In Twitter, a TwitterLoginButton is placed in the target
window (also launched by the malicious app). When the user
is tricked to click the TwitterLoginButton , she will be brought
to the Twitter authorization window (shown in Figure 2(a)),
where the user is then tricked to click the “allow” button so
that the malicious app is authorized to utilize Twitter APIs
(e.g., perform a post). The post operation can be conducted
programmatically as soon as it is authorized. Specifically, the
malicious app calls the getStatusesService() method to get a
StatusesService object for tweet post requests. Then a message
is composed, and posted by calling the update() method of the
StatusesService object.

The general procedure of attacking the Facebook client app
is similar to Twitter. But the click on the login button is not

necessary, since the actual method of logging in is private with
the Twitter SDK, whereas with the Facebook SDK it is public.
Hence, the malicious app can directly bring the user to the
Facebook login authorization window (shown in Figure 2(b))
to gain user’s authorization via clickjacking. Then, the posting
action on Facebook, however, requires explicit user approval.
After these two authorizations, the malicious app will have the
privilege to post. For example, a GraphRequest object can be
created to post a shared link to the user’s wall (“me/feed”).

(a) Twitter Login Authorization (b) Facebook Login Authorization

Fig. 2: Clickjacking Attacks on 3rd-party Client Apps

In sum, the unauthorized posting (user is not aware of) on
Twitter and Facebook both require two clicks, which is easy
to achieve by clickjacking attacks. The authorization window
will also give a callback to the caller app, so the malicious app
can know the user input event instantly and react accordingly.
Note that the explicit authorization is required only once (in
the first time the malicious app tries to connect with the client
app). After that, even if the malicious app has been closed, it
can still directly perform operations through APIs.

3) Clickjacking Attacks on System UIs: We find that the
Android system UIs are vulnerable to clickjacking attacks as
well. A particular example is the screen recording API: starting
from Android 5.0 Lollipop, a new “android.media.projection”
API is created to facilitate the screen capturing and screen
sharing, without the need of connecting the device to PC
over the Android Debug Bridge (ADB) as required by the
previous Android 4.4 KitKat. Specifically, the createVirtualD-
isplay() method of the “MediaProjection” class starts a screen
capture session to capture the contents of the main screen
into a Surface object. The invocation of this API does

not require any permission, but a confirmation dialog of
TYPE BASE APPLICATION will pop up asking for user
approval to start. In a clickjacking attack, the user may be
spoofed to click right on the “start now” button without
realizing that the screen recording is being activated. Unlike
attacking system apps (e.g., calling the camera to shoot a
video), the ending of the screen recording does not need user
operation (manually click to stop). The malicious app can just
set a timer (in a service) to release the VirtualDisplay after a
certain amount of time. Hence, the whole attack process can
be very simple and stealthy. By default, the recorded video
is sent to a Surface object that can be displayed instantly.
If the attacker wants to obtain the video, it can be saved
as a video file using MediaRecorder. An alternative way is
to extract images from the buffer by setting an ImageReader
object as the callback of createVirtualDisplay(), in a frequency
high enough to observe all user actions.

Screen recording is considered as a sensitive API, as
all user actions will be logged. Apart from the violation of
user privacy, a even more serious consequence is the leak of
credentials (e.g., user name, password, credit card details) as
the screen recording will capture the login and transaction
processes as well. Usually, the account name entered stays
unmasked while the password will turn into asterisks or bullets
after a short moment of time (e.g., half second), which is long
enough for the attacker to recognize each letter/number.

V. COUNTERMEASURE

The design of our defense scheme to clickjacking attacks is
based on the features summarized in Section IV. To overcome
the limitations of existing solutions, we add an independent
module to the Android system for automatic detection of click-
jacking attacks. With our system-level and real-time protection,
users are relieved from checking a security indicator whenever
a window pops up and developers no longer need to worry
about the incompatibility side-effect caused by touch filtering.
Besides, the defense scheme is much more flexible than
enforcing a solid security layer between each two neighboring
apps, benign pass-through inputs will not be blocked.

We start with the two essential windows in clickjacking
attacks. The camouflage window must be floating, untouchable
and preferably focusable. Another factor that has never been
considered in previous works is the transparency (controlled by
the alpha attribute of window layout parameters). A floating
window in a benign app is usually auxiliary for the user
or other apps, hence is set to semitransparent (e.g. screen
camera apps); while in clickjacking, it is used to cover the
target window and has to be opaque or slightly transparent.
By default, we can set an empirical threshold value 0.95 for
alpha in the detection, considering that the user can barely see
through the window with an alpha value as high as 0.95. Users
can modify this threshold according to their preferences. In
contrast, there is no common feature for target windows since
the target can be any normal-type app window or system UI.
Hence, the identity of the target window is not clear until a
clickjacking attack is launched.

Next, we analyze the dynamic features of clickjacking.
An important pattern is that a successful clicking attack will
always end with a user click. This means the detection is not
necessary to be performed every time a window shows up,

but instead, only when an input event is being received. Note
that here we mean the input has just been received by the
operating system and has not been delivered to the target app.
The detection logic is to presume the window that has received
the input as the target window, then check if it is covered by
any malicious floating window of another app. There could be
multiple windows above, all of them need to be checked since
we are not sure which one is actually displayed to the user
(fake floating windows with full transparent view or minimized
size may exist on top to “fool” the detector). If any of these
windows matches the features of a malicious floating window,
it is considered as a clickjacking attack.

Fig. 3: CDS and the Four Probes

To check if there is a floating window among windows
above, the detector should keep a record of all visible windows.
Since the “window stack” in WindowManagerService is not
maintained in the Z-order, a full re-calculation of the Z-order
of all windows is required even if we are only interested in
(malicious) floating windows. To avoid the unnecessary work-
loads, we create an independent clickjacking detection service
(CDS) in parallel with other system services (e.g., Actici-
tyManagerService, WindowManagerService, etc). Meanwhile,
four probes are set up to catch window actions. As depicted in
Figure 3, the four probes are hooked to the addView() and
removeView() methods of the WindowManagerGlobal class,
dispatchAppVisibility() method of the ViewRootImpl class, and
the binderDied() method defined in the WindowState class.
The addView() and removeView() methods are invoked when
views are created/destroyed along with their hosting activity,
or added/removed explicitly through WindowManager APIs.
The dispatchAppVisibility() method is called when the hosting
activity becomes visible/invisible (hence so as the associated
views). A special situation is that an app is uninstalled when
its view is being displayed. In this case, the binderDied()
callback method of the view is invoked and a corresponding
removal will be performed at WindowManagerService. By
hooking these four methods, CDS is able to collect all window
actions including “add/remove” and “turn visible/invisible”.
Specifically, the creation and turn-to-visible actions go to the
CDS addView() API while the removal and turn-to-invisible
actions go to the CDS removeView() API.

In Android, each time a view is added through addView()
API, a ViewRootImpl object is created in the app process
along with the window parameters and an InputChannel ob-
ject (used to deliver input events to the destined window).
Then these information are sent to WindowManagerService so
that a corresponding WindowState object is created. Unlike
the window management service WindowManagerService, the
CDS is specified to detect malicious floating windows for
clickjacking. Obviously, it only needs to keep the information
related to floating detection rather than the whole WindowState
objects. Hence, we define a new class WindowCDS to record
windows in a floating-specific representation. Specifically, all

(a) CDS Option (b) CDS Switch Button

Fig. 4: Customized Settings Menu

floating-related window attributes are kept as instance variables
including window type, window flags, and alpha. In addition,
the package name is needed to determine if the “floating
window” and the “target window” actually belong to the same
app (not considered as an attack). Furthermore, a unique ID is
required to identify windows in CDS. However, Android does
not provide a unified ID for windows/views. We resolve this
issue by extracting the number contained in the InputChannel
object’s name as the window ID (all windows have different
InputChannels). Note that even if a window is untouchable/un-
focusable, it is still assigned with an InputChannel.

The WindowCDS objects are stored in the CDS window list
according to the Z-order. When a new window is inserted, it
will be placed according to the Layer Value of its window type
(defined in the PhoneWindowManager class). If there exists
other windows with the same Layer Value, the new one will
be placed ahead of the old ones. The removal of a window is
simple: just search the ID in the window list, and remove the
one with the same ID; however, it may happen that the window
to be removed is not found (already removed). This is because
sometimes the window is turned invisible before it is removed,
which means the CDS removeView() API will be called twice.
Hence, “window not found” is considered acceptable in CDS,
no exception will be given.

So far we are able to maintain the windows information
in CDS. To catch the input events, we add a hook to the
onInputEvent() callback function of the WindowInputEventRe-
ceiver. In each ViewRootImpl object, a WindowInputEventRe-
ceiver is registered along with the creation of the InputChan-
nel, to receive input events from the low level input dispatching
module. In onInputEvent() function, the inputs are added
into the input event queue and finally delivered to respective
apps. Our defense strategy is to perform the checking for
clickjacking attacks before the input event is handed over to the
client app. Specifically, upon receiving an input event, the ID
of the receiver window and the base package name are sent to
the CDS, to check if it is under clickjacking attack. The input
will stay suspended until the checking is cleared. In CDS, a
malicious floating window is confirmed with four conditions:
(1) its host app is different from the receiver window’s; (2)
its Layer Value is greater than the receiver window; (3) its
flags contains FLAG NOT TOUCHABLE; (4) its alpha value
is greater than 0.95. If no such window is found, it means no
clickjacking risk is detected and the input event can be released
to the receiver app. Otherwise, the user will be alerted.

VI. EVALUATION

In this section, we evaluate the performance of the pro-
posed defense scheme through extensive experiments. Al-
though currently no real-world malicious clickjacking app
is available on market, we believe this is a practical and
potentially dangerous problem like previous works [9] [11]

[12] [13]. We implement our clickjacking defense mechanism
on a Nexus 4 smartphone running Android 5.0 system, and we
add a switch button in the settings menu (as shown in Figure
4) to enable/disable the CDS (by default it is enabled).

A. Effectiveness
Our defense scheme is able to detect clickjacking attacks

on all different target windows considered in this paper. Figure
5 shows the UI of a malicious game app “Space Battle”
we developed for illustration. This UI is actually a floating
window, and the user input will be delivered to the target
window below which is the confirmation window of screen
recording. With the CDS enabled, as the user clicks the play
button, an alert window will be issued to warn the user about
the clickjacking attack detected. The alert window is of type
TYPE SYSTEM ERROR, hence it will not be shielded by
the floating window. Meanwhile, sound and vibration alerts
are also made to catch the user’s attention. The name of the
suspected app is displayed in the title. The user can directly
uninstall the app by clicking “OK” button in the alert window.
Note that our defense scheme can deterministically decide if
an app is launching a clickjacking attack. This warning dialog
is not requesting user’s own judgement. Besides, we also test
with common benign apps, including the locker apps, apps
with a small “always visible” icon, and screen camera apps that
utilize floating windows. All of them are correctly recognized
as benign by CDS, and no false alarm is generated.

(a) Sample Clickjacking Attack (b) Alert of Clickjacking Attack

Fig. 5: Clickjacking Attack and Defense

B. Overhead
CDS is running as an independent service which manages

the floating-related information for windows, and provides the
checking of clickjacking attacks for each user input event.
As a much simplified version of WindowManagerService, the
collection of floating-related information in CDS includes
only five variables (window type, window flags, alpha value,
package name, and window ID). The overhead for collecting
these variables is too trivial that our experiments cannot give a
convincing measurement, so we only present the overhead of
the checking procedure. Figure 6 shows the average execution
time of the checking process in CDS, the checking is repeated
for 10 times for each target window: on UI of system apps, it
takes 5.2 to 10.5 ms; on UI of 3rd-party apps like Facebook and
Twitter, it takes 14.1 and 12.2 ms respectively; on system UI
like screen recording dialog, it takes 16.7 ms. The time delay
caused by clickjacking detection is considered acceptable.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 L

o
a

d
 (

%
)

Trials

regular

CDS

(a) CPU Load

 0

 4

 8

 12

 16

 20

 24

 28

 0 5 10 15 20 25 30 35 40 45 50

M
e

m
o

ry
 U

s
a

g
e

 (
%

)

Trials

regular

CDS

(b) Memory Usage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30 35 40 45 50

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Trials

regular

CDS

(c) Energy Consumption

Fig. 7: Overhead of the Checking Procedure

 0

 4

 8

 12

 16

 20

 24

Cam
era

Contact

Dialer

Docum
ent

Package Installer

Settings

Sound Recorder

M
essaging

Facebook

Twitter

Screen Record UI

E
xe

cu
tio

n
T

im
e

(m
s)

Target Window

Fig. 6: Execution Time of the Checking Procedure

Next, we measure the real-time CPU load, memory usage
and energy consumption per click event when clickjacking
detection is enabled/disabled. The CPU load is measured by a
system monitor app Tinycore, the memory usage is obtained
via the getMemoryInfo API, while the energy consumption is
measured using the power profiling app Trepn Profiler. All
three metrics are measured for 50 trials (groups). Each CPU
and memory trial is the average of 90 readings, while each
power consumption trial is the average of 10 readings in a
one-minute profiling. As depicted in Figure 7, the 50 groups
of measurements are drawn by the increasing order of the
regular overhead (without CDS). The solid part on top of
the bar represents the extra overhead brought by CDS. Our
results indicate that CDS causes a mean increase of 0.84%
in CPU load, 0.145% in memory usage, and 3.21% in power
consumption (relative increment). The standard deviation over
50 trails is 0.239%, 0.076%, and 1.487%, respectively. Over-
all, our clickjacking detection scheme is quite lightweight,
particularly regarding its CPU and memory overhead. Note
that currently there is no accurate and direct measurement of
energy consumption available for phones, our result on power
consumption is an approximate reflection of CDS’s impact.

VII. CONCLUSION

In this paper, we conducted a comprehensive study on
mobile clickjacking attacks. We presented the key steps to im-
plement a stealthy clickjacking attack and explored its potential
threats. Finally, an automatic countermeasure for clickjacking
attacks is implemented and evaluated. The experimental results
show that our defense scheme is effective and lightweight. In
our future work, we will improve the CDS by fingerprinting the
opened-windows state, so that the checking is not performed
when the window hierarchy is unchanged.

ACKNOWLEDGMENT

This work was supported in part by the US NSF under
grants CNS-1022552, CNS-1065444, as well as the US Army
Research Office under grant WF911NF-14-1-0518.

REFERENCES

[1] Gartner, “Worldwide smartphone sales to end users by operating system
in 4q15,” http://www.gartner.com/newsroom/id/3215217, Feb 2016.

[2] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: Ui state inference and novel android attacks,” in
Proceedings of USENIX Conference on Security Symposium, 2014.

[3] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh, “Framing attacks
on smart phones and dumb routers: Tap-jacking and geo-localization
attacks,” in Proceedings of the 4th USENIX Conference on Offensive
Technologies (WOOT), 2010.

[4] L.-S. Huang et al., “Clickjacking: Attacks and defenses,” in Proceedings
of the 21st USENIX Conference on Security Symposium, 2012.

[5] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking attacks
on web in android, ios, and windows phone,” in Foundations and
Practice of Security, 2013, vol. 7743, pp. 227–243.

[6] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Clickjacking
revisited: A perceptual view of ui security,” in 8th USENIX Workshop
on Offensive Technologies (WOOT), San Diego, CA, Aug. 2014.

[7] J. A. Shamsi et al., “Clicksafe: Providing security against clickjacking
attacks,” in Proceedings of IEEE 15th International Symposium on
High-Assurance Systems Engineering, Jan 2014.

[8] H. Shahriar and H. Haddad, “Security assessment of clickjacking risks
in web applications: Metrics based approach,” in Proceedings of the
30th Annual ACM Symposium on Applied Computing (SAC), 2015.

[9] A. Bianchi et al., “What the app is that? deception and countermeasures
in the android user interface,” in Proceedings of IEEE S&P, May 2015.

[10] L. Wu, X. Du, and J. Wu, “Effective defense schemes for phishing at-
tacks on mobile computing platforms,” IEEE Transactions on Vehicular
Technology, Aug 2015.

[11] M. Niemietz and J. Schwenk, “Ui redressing attacks on android
devices,” in Black Hat Abu Dhabi, 2012.

[12] M. Niemietz, “Ui redressing attacks on android devices revisited,” in
Black Hat Asia, 2014.

[13] E. Fernandes et al., “Android UI Deception Revisited: Attacks and
Defenses,” in Proceedings of the 20th International Conference on
Financial Cryptography and Data Security, February 2016.

[14] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of IEEE S&P, May 2012.

[15] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, 2011.

[16] A. P. Felt et al., “Permission re-delegation: Attacks and defenses,” in
Proceedings of USENIX Conference on Security Symposium, 2011.

[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of ACM
MobiSys, 2011.

