
CFWatcher: A Novel Target-based Real-time
Approach to Monitor Critical Files using VMI

Dongyang Zhan∗, Lin Ye∗, Binxing Fang∗, Xiaojiang Du† and Shen Su∗
∗Harbin Institute of Technology

Email: {dongyangzhan, yelin, bxfang, sushen}@pact518.hit.edu.cn
†Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

Email:dxj@ieee.org

Abstract—Protecting critical files in file systems is very im-
portant to computer systems. To protect critical files, the VMI-
based Real-time File-system Monitor tools are promising options.
However, these tools are always operation-based and introduce
high overhead. The operation-based approaches intercept some
kind of file operation to monitor critical files. The selected file
operation is intercepted by the monitor whenever it is being
executed. As file operation are high-frequency, the operation-
based methods always result in the high performance degra-
dation. In this paper, we present a VMI-based low overhead
real-time critical file monitor method, CFWatcher, to meet the
performance requirements of real-time monitor tools. CFWatcher
is a target-based monitor tool which means it only intercepts the
file operations accessing the user-defined critical files, and then
obtains enough information to check the rules. The overhead
of CFWatcher is related to the frequency of the target being
accessed. Besides monitoring critical files, CFWatcher can take
actions to prevent the illegal access if there is any rule violation.
We implemented the prototype of CFWatcher and then evaluated
the performance. Experimental results show that the overhead of
our approach is low.

Keywords—Critical file monitor, target-based method, VMI.

I. INTRODUCTION

Protecting critical files in file systems is very important to
computer systems. Most of the attacks work through unautho-
rized access to critical files to steal the confidential information
like password, credit-card number etc. and then they usually
hide their traces by subverting critical files, such as system
logs. File-system Monitor is a popular approach to protect
critical files. Traditional File-system Monitor [1]–[4] is usually
an agent or a kernel module running in the operating system.
As the malware are also running in the operating system or
even in the kernel, these in-the-box approaches take risks of
the monitor being detected and the monitor being subverted
by the malware.

Virtual Machine Introspection(VMI) gives people a novel
way to reduce these risks. Under the VMI architecture, monitor
applications are always deployed in VMM or another protected
VM. The monitoring sensors are moved to the VMM, so they
can’t be detected by the target VM. VMM protects the monitor
applications from being subverted. VMI-based File-system
Monitor tools can be classified into two types: periodic monitor
and real-time monitor. Periodic monitor tools [5]–[7] compare
current attributes of the critical files with previously gathered,
such as the owner, the content, and the last modification time

etc. These approaches can’t protect critical files in real time.
The attacker could modify and then recover the critical files
during the sleep period. Real-time monitor tools [8]–[11] inter-
cept file operations during the execution process of the system.
They always hook the system calls or the backend driver
related with file operation to get attributes of the operated file,
such as file name, and then compare them with the blacklist.
These methods are operation-based, because they first intercept
every file operation that can access the monitored files, and
then check whether the operated file should be monitored.
File operation is high-frequency in operating systems, but the
operation accessing target files is always low-frequency, so the
operation-based methods’ overhead is high, and most of the
overhead is meaningless.

In this paper, we present a VMI-based target-based real-
time critical file monitor method, CFWatcher, to meet the per-
formance requirements of real-time monitor tools. CFWatcher
is transparent and secure as it is a VMI-based solution. All
the sensors run in the VMM layer, so CFWatcher is isolated
from the target VM and transparent to the target VM. As
virtualization technology is widely used by cloud computing,
CFWatcher could also be used in a cloud environment to
protect critical files in VMs.

CFWatcher is a low-overhead monitor tool, because it is
a target-based approach. The target-based approach means
the monitor tool’s interceptor works only when the target is
operated. The overhead of a target-based monitor tool is related
to the frequency of the target being accessed, instead of the
frequency of the target VM’s operation. As a target-based
tool, CFWatcher only intercepts the file operation accessing the
user-defined critical files, and then obtains enough information
to check the rules, such as process id, file name.

Besides monitoring predefined critical files, CFWatcher
is able to take actions to prevent the illegal access when
there is any rule violation. CFWatcher’s administrators can
define many kinds of rules, because the interceptor can get
comprehensive information of the target process. To prevent
the illegal access, CFWatcher makes the illegal file operation
fail, so that the attackers can’t operate the target files any more.

We implemented the prototype of CFWatcher on XEN with
full virtualization using the Volatility Framework [12]. In our
implementation, only Ubuntu was used as the target VM, as
it is a widely used operating system, but CFWatcher is an
adaptable monitor tool which can monitor most of Linux VMs

IEEE ICC 2016 Communication and Information Systems Security Symposium

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

without any modification.

The rest of this paper is organized as follows: Section 2
covers the related work. Section 3 introduces the design of
CFWatcher. The implementation of CFWatcher is described in
Section 4. Section 5 evaluates the performance of CFWatcher.
Conclusions and future work are presented in Section 6.

II. RELATED WORKS

As file-system integrity is important to the overall security,
it is not surprising that there are many papers and resultant
tools on the topic. In this section, we introduce these works
respectively.

Traditional File-system Monitor is usually an agent or a
kernel module running in the operating system. Tripwire [1] is
an integrity checking tool designed for the UNIX environment
to let system administrators monitor their file systems for
unauthorized modifications. It creates a database to store some
unique identifier for each file to be monitored. It is possible to
determine if a file has been modified by comparing it with
the saved version. Furthermore, it is possible to determine
if files have been added or deleted from the system. Unlike
Tripwire, I3FS [2] runs in OS’s kernel intercepts system calls
and compares the checksums of files in real-time. XenRIM
[3] is deployed in XEN environment, the agents are running
in VMs to intercept the file operation, and the server is running
in DOM0 to receive logs sent by agents. Flogger [4] can be
implemented in both VM and PM kernels. It intercepts file
operations and then writes events into log files. As the malware
are also running in the operating system or even in the kernel,
these in-the-box approaches take risks of the monitor being
detected and the monitor being subverted by the malware.

As virtualization technology is widely applied to various
aspects of computer systems and cloud environment. VM-
based security [13], [14] becomes increasingly important. Vir-
tual Machine Introspection [15] (VMI) is a powerful technique
that allows monitor a running VM’s execution without any
agents. VMI is widely used to protect virtual machines [16]–
[18].

VMI-based File-system Monitor tools can be classified into
two types: periodic monitor and real-time monitor. Periodic
monitor tools always compare current attributes of the critical
files with previously gathered attributes, such as the owner,
the content, and the last modification time etc. They also
compare files on the disk with the black list to find malwares.
VMWatcher [5] exports the files in the target VM to the trusted
VM (DOM0), and then carries out malware detection through
anti-virus tools deployed on the host. CFMT [7] calculates
cryptographic checksum of each file and stores it in file itself,
and check each file’s encrypted hash periodically. VMDriver
[6] periodically checks file objects that the current process
operates on, and lists all operations on specific files, such as
process id, process name, system call number, file name, and
operation time. The periodic method’s problem is it cannot
detect the modification in time and the attacker could modify
and then recover the critical files during the monitor tool’s
sleep period.

Real-time VMI-based monitor tools are more popular than
periodic tools, because they can protect critical files in real-
time. Real-time monitor tools intercept file operations during

the execution process of the system. XenFIT [9] is a file
integrity monitor designed for XEN VMs. Breakpoints are
inserted in the monitored system to intercept system calls
related with file operations, for instance, open, close, etc. Un-
like XenFIT, [10] proposed a guest-transparent RFIM, which
intercepts file operation in VMM. It could get the file operation
information, like process identity, file name, file operation,
time et al., when one critical file is modified in the target
VM. [8] deploys sensors in the target VM’s VFS file operation
functions to capture the operated file name. [11] is a XEN-
based secure virtual disk access-control method, it works in
the Qemu-dm which exists in DOM0, and corresponds with
every virtual system’s device daemon. This method lets Qemu-
dm only handle secure I/O requests. These methods are all
operation-based. When some kind of file operation is used
to monitor critical files, it is intercepted by the monitor tool
whenever it is being executed. File operation is high-frequency
in operating systems, but operations accessing target files
are always low-frequency, so the operation-based method’s
overhead is high, and most of the overhead is meaningless.
Our paper aims to design and implement a target-based user-
defined critical file monitor approach using VMI technology.

III. DESIGN

CFWatcher is a VMI-based monitor tool working out of
the box. It is used to monitor file operations on the predefind
critical files in guest VM. The list of critical files and the rule
corresponding to these files can be defined by the administra-
tor.

A. Architecture

Virtual Machine Monitor (VMM)

Guest OS and its
Applications

Toolkit Library

Target VM

Secure VM

Policy Engine

Query Response

Hardware State

Fig. 1. A High-Level View of CFWatcher Architecture.

As shown in Figure 1, on the right is the monitored virtual
machine (target VM). On the left is the VMI-based CFWatcher
with its major components: the toolkit library that provides an
OS-level view of the VM for the policy engine by interpreting
the hardware state exported by the VMM, the policy engine
consisting of all the policies. The virtual machine monitor
(VMM) isolates the monitor tool from the VM to be monitored
and allows the monitor tool to inspect the hardware state of
the target VM. The VMM also allows the monitor to change
the content of the VM’s memory and registers.

Policy engine is the core of our system. There are three
functions in CFWatcher’s policy engine: 1) monitoring critical

files, 2) creating dentry and inode objects, 3) checking rules
and taking actions in response to rule violations. We will
describe the detailed design of these functions in the following
paragraphs.

B. Target-based Monitor Mechanism

CFWatcher monitors critical files by monitoring the op-
eration of dentry and inode objects corresponding to critical
files.

In Linux, all files are accessed through the Virtual File
System [19] (VFS). The concept of a directory entry (dentry
object) is employed by VFS. Dentry objects are all components
in a path, including files, they make the software accessing files
easier and faster. When userspace software accesses a file, VFS
uses the file’s pathname to search through the directory entry
cache (also known as the dentry cache). If the corresponding
dentry object has not been created, VFS will create it. After
each element in the filepath is resolved into a dentry object by
VFS and arrives at the end of the filepath, the kernel caches
these dentry objects in the dentry cache. By searching the
dentry cache, it is very fast to translate a file name into a
specific dentry object. Dentry objects are never saved to disk,
they only live in memory for performance.

/

home

target-file

Dentry CacheProcess 1

Process 2

Process 3

New Reference

Old Reference
...

Reference number+1
...

Fig. 2. Dentry cache.

A used dentry object points to valid data and can be used
by one or more users, so than it cannot be discarded. A dentry
object can be freed, when it is not currently used by VFS. In
that case, there is no software accessing the file corresponding
to the dentry object. In order to count how many users are
using the dentry object, every dentry object has a field to record
the number of valid references. As shown in Figure 2, when
a new reference comes, the dentry object’s reference number
increases. Although there are many modes which can be used
by software to open files, there must be a new reference to the
corresponding dentry object.

CFWatcher monitors critical file access activities by
monitoring the corresponding dentry object operation. First,
CFWatcher finds the region of the monitored files’ correspond-
ing dentry objects in VM’s memory (RAM) by using the tar-
get VM’s OS-level semantic information. Second, CFWatcher
finds and records the fields of every dentry object’s reference
number in these memory regions. At last, CFWatcher monitors
the changes of these memory fields. If one of the monitored
field’s value increases, which means someone is accessing
the corresponding file, CFWatcher can intercept the event
immediately. If the number of reference is decreased to zero,
the monitored dentry object may be discarded. To make the

monitored dentry objects living in RAM forever, CFWatcher
adds the original value before it down to zero using VMI
technology. In that case, although there is no valid reference
to the dentry object, the reference number of it is still one, and
it can’t be freed.

/

home

target-file

Dentry Cache Inode Cache

Hard link to
target-file

target-file

Fig. 3. Hard link.

An individual dentry object is usually pointed to an inode
object. Dentry objects only live in RAM, but inode objects
live on the disk. Every file on the disk is corresponded to only
one inode object. When a file is accessed, the corresponding
inode object is copied into the memory, and then changes to
the inode are written back to the disk. Hard link makes a single
inode object be pointed to by multiple dentry objects as shown
in Figure 3. Every inode object records the number of hard
links to itself. When the number is greater than one, there may
be many dentry objects pointing to the object. These dentry
objects are linked by a doubly linked list. To ensure nobody
can bypass our monitor system using hard link, CFWatcher
finds all the dentry objects to the target file by following the
linked list and monitors them.

When a file is being removed, the related inode object’s
link number is decreased to zero. CFWatcher can intercept the
deletion of the target files by monitoring the corresponding
inode object’s link number. The method is similar to moni-
toring the dentry object’s reference number. When one of the
monitored field’s value decreases, CFWatcher intercepts the
removing of the corresponding file immediately.

Attachers may bypass CFWatcher by directly operating the
storage devices, but the storage devices are still files in VFS
(for example, in Ubuntu, the first hard-disk’s file descriptor
is like “/dev/xvda”). So CFWatcher can monitor the devices’
objects to protect these attacks. Kernel attack is another kind
of method to subvert CFWatcher, these attacks may change
the kernel or even replace the kernel. As CFWatcher is not
a full-featured IDS, it can’t prevent these attacks, but we can
defeat these attacks by using other kernel protection tools.

C. Creating Dentry and Inode Objects

CFWatcher monitors the operation of the target files by
monitoring the corresponding dentry objects and inode objects.
If the target dentry objects and inode objects are not in cache,
CFWatcher can’t perform functions. We can’t guarantee that
the target files have been accessed before CFWatcher starts, so
CFWatcher should be able to create the corresponding dentry
objects and inode objects which are not in the VM’s memory.

...

User Mode

Kernel Mode

Software invokes
System call

Kernel begins to
handle system call

System call is
completed

Software gets the
return value

...

User Mode

Kernel Mode

Software invokes
System call

Change the origin
System call to the
open system call

Inserted system call
is completed, let the
kernel carry out the
origin system call

Software gets the
return value

...

Origin system call
is completed

×

(a) (b)

Fig. 4. Normal and inserted system call flow.

When a file that has never been accessed before is being
opened, the VFS creates the corresponding dentry object and
inode object in the VM’s memory. To ensure the existence of
monitored files’ dentry objects and inode objects in memory,
using an agent running in target VM to open all the monitored
files is an easy solution, but an agent-based approach is not
safe, because the agent could be detected and be subverted.

In our solution, we leverage an out-of-box approach to
create dentry and inode objects of the monitored files in the
target VM’s memory. In a modern operating system, all of the
important resources (file, network etc.) can only be accessed
via system call, so the OS handles system calls with very
high frequency. The core idea of our approach is to let the
target VM’s OS carry out an extra open system call. This extra
system call opens the file that should be monitored. When the
OS wants to handle a system call invoked by the userspace
software, it enters kernel mode then handles the system call as
shown Figure 4 (a). To achieve our goal, we select the moment
when the target VM’s OS has just entered kernel mode to insert
our extra system call.

As shown in Figure 4 (b), our insert approach has two
steps.

Step 1: We change the origin system call to the open system
call, which opens the file that should be monitored.

Step 2: When our inserted system call has just completed,
we let the target VM’s OS carry out the origin system call
before it re-enters user mode. In this case, the userspace
software gets the right return, so it can’t detect the inserted
extra system call.

D. Checking Rules & Taking Actions

CFWatcher’s rule checker module is triggered by the in-
terceptor when the monitored files are operated. After being
triggered, rule checker gets enough information of the process
which is accessing the critical files using VMI technology.
The process information includes the process name, process
id, user id, group id etc. Rules of the rule checker module
are defined by CFWatcher’s administrators. Administrators can
define many kinds of rules. For example, the administrator
defined a rule that “/test/test.txt” can only be accessed by root
user with the “cat” process in VM. If a userspace process
opens the target file, the rule checker module checks whether

the process’s user id is root and the process’s name is “cat”.
If it is an illegal operation, CFWatcher takes actions to stop it.

To prevent the illegal access, CFWatcher makes the target
system call fail by setting the return value of it to a neg-
ative number and clearing the related file descriptor in the
target process. The userspace process can’t access the target
file anymore because the open operation failed and the file
descriptor doesn’t exist. To prevent remove operation on the
critical files, CFWatcher should also ensure the file can’t be
removed on the disk. To that end, CFWatcher adds the link
number value before it is going to be decreased to zero.
The userspace software can’t delete the critical file illegally,
because the link number of the corresponding inode object can
never be decreased to zero.

IV. PROTOTYPE IMPLEMENTATION

A. Implementation Environment

The current CFWatcher prototype is implemented on an
x86 server that supports Intel VT [20] technology and is
designed to support guest VMs running all contributions of
Linux OS. An open-source hypervisor, XEN [21], is selected
as the VMM. Ubuntu is selected as the guest VM.

We leverage the Volatility Framework [12] to provide an
OS-level view of the guest VM. CFWatcher is an adaptable
monitor tool which can monitor most of Linux VM with-
out any modification, because the Volatility Framework is a
programmed OS-level semantic analysis toolkit. The kernel
symbols and data structure are contained in its built-in profile,
so CFWatcher need not manually analyze the binary layout of
the target VM.

B. Monitor Initialization

CFWatcher first uses XEN toolkit library to access the
memory of the monitored VM. This library exposes the
memory of a VM to the Dom0, so we can read the live VM’s
memory in the Dom0. This memory address space (AS) can be
used by the Volatility Framework. We extended the Volatility
framework with a new plugin called dentryfinder to find the
target dentry objects in dentry cache. The dentryfinder plugin is
written in Python and utilizes the existing Volatility scanning
algorithms for extraction of kernel data structures from the
target VM’s memory. The dentryfinder plugin analyzes the

target VM’s memory by reading the AS which is mapped
by XEN toolkit library. It calculates offsets and lengths of
data fields of dentry objects using Volatility’s built-in profiles.
The dentryfinder plugin is able to identify all invalid dentry
structures within target VM’s dentry cache. If the dentryfinder
finds the target dentry objects, it reports the address of them.

C. Monitoring Special Memory Region

CFWatcher monitors the modification and execution of
special memory region by setting the Extended Page Table
(EPT) entry of the target VM’s physical page which contains
the monitored region to read-only (to intercept the writting
events) or read-only and write-only (to intercept the executing
events) [22]. When the target page is accessed, an EPT
violation is triggered which can be captured by CFWatcher.
If the accessed address belongs to the region to be monitored,
CFWatcher can invoke the predefined monitor handler. Then,
CFWatcher sets the corresponding EPT entry to writable and
resumes the target VM with single-step mode, so that the target
VM can access the monitored memory region. After the target
VM executes the memory access instruction, CFWatcher resets
the corresponding EPT entry to read-only or write-only and
read-only to intercept future access.

D. Creating Dentry and Inode Objects

If there is no dentry object corresponding to the target file,
CFWatcher creates it. As mentioned in section 3, CFWatcher
inserts an open system call to create these objects. To that
end, we exploit the features of the Intel fast system call entry
mechanism.

In Intel x86 architecture, SYSENTER/SYSEXIT instruc-
tions [23] are used for fast entry to the kernel. SYSEXIT
is a companion instruction to SYSENTER. The SYSENTER
instruction is used by system calls to convert user mode to
kernel mode. When SYSENTER is executed, the CPU switches
to ring 0, and begins to execute the system call procedure.
When SYSEXIT is executed, the CPU re-enters ring 3. The
CPU doesn’t save state information for the user code when
executing a SYSENTER instruction.

We change the system call number and parameters by
changing CPU registers. Nether the SYSENTER nor the SY-
SEXIT instruction uses the stack to pass parameters. Instead,
SYSENTER and SYSEXIT leverage the CPU registers to
pass parameters. In SYSENTER, EAX stores the system call
number, EBX stores the first argument, and ECX stores the
second argument, and so on. There can be six arguments, max.
SYSEXIT leverages EAX to pass the system call return value.
It is easy to change the system call number and parameters by
changing registers when SYSENTER is executing, and system
call return value when SYSEXIT is executing.

V. PERFORMANCE EVALUATION

We evaluated the performance of our system in this section.
Our testbed consisted of a virtualized server, whose hypervisor
was XEN version 4.3 and Dom0’s OS kernel was Ubuntu
13.10. The host system had Core i5 processor running two
cores at 2.4GHz and 4GB of system memory. The CFWatcher
system was installed in the Dom0 domain. In addition, the
virtualized server hosted one full-virtualization VM running a

Fig. 5. File-system Performance.

default installation of Ubuntu 12.04. The VM was configured
with 512MByte RAM and 1 virtual CPU (VCPU).

We analyzed the overhead introduced by CFWatcher on
file-system. To protect the user’s confidential information, we
only need to monitor a small number of critical files in the
target VM. However, we are interested in the performance
overhead as the number of monitored files increases. As
our test VM totally opened about 900 different files, so we
evaluated the performance impact for up to monitoring 400
different files simultaneously, this is about half of the opened
files.

We used the Linux dd command to assess the file-system
performance. dd is a useful and simple file-system benchmark
tool, which is widely accepted and applied. dd is a command-
line utility for Unix and Unix-like operating systems whose
primary purpose is to convert and copy files. In Linux, device
drivers for hardware (such as hard disks) and special device
files (such as /dev/zero and /dev/null) appear in the file system
just like normal files, dd can also read and/or write from/to
these files. /dev/zero can provide as many null characters
(ASCII NUL, 0x00) as are read from it, so copying data
from it only has write overhead. /dev/null is a device file that
discards all data written to it but reports that the write operation
succeeded, copying data to it only produces read payload. As
a result, dd can be used to generate and measure the read and
write operations.

In our test, write and read operations were measured.
We tested read speed by using the command “dd -bs 128k
count=10240 if =/dev/xvda of=/dev/null”, which means copy
10k blocks from the disk to /dev/null, the size of each block
is 128kByte. Then we used “dd -bs 128k count=10240 if
=/dev/zero of=testfile” to test write speed. In this case, dd
copid 1.3GByte data from /dev/null to the disk. We set the
total size of copied data to 1.3Gbyte which is twice the size
of the target VM’s RAM to reduce errors generated by it.

We first executed the test process without CFWatcher, then
ran it again with CFWatcher. We did each test 10 times and
recorded the average value. Figure 5 shows the read and
write performance of the VM without CFWatcher and under
CFWatcher with 50 to 400 monitored files. The horizontal axis
represents the number of files to be monitored, and the vertical
axis represents the reading or writing speed (MB per second).

According to all conditions from Figure 5, we can know

when the number of monitored file is small, the overhead of
monitoring is low. For the 50 monitored files in two experi-
ments, the file-system overhead of monitoring as compared to
an unmonitored system was less than 5%. And in the case of
100 monitored files, the file-system overhead is less than 9%.
In Figure 5, the max read performance decrease is 15% in the
case of 400 monitored files. For write, the max performance
decrease is 20% in the case of 400 monitored files.

When the number of monitored files increased, the number
of monitored memory regions also increased. In XEN, We
can only monitor the modification of the target VM’s memory
page, so that the memory page performance decreases if it
contains a monitored region. As a result, large numbers of
monitored files result in the decrease of the VM’s cache
performance.

When the target file is being accessed, the rule checker
module is triggered to check rules. We also measured the
performance of the rule checker module. To simplify the test,
the rule checker module only records the access log. An agent
was developed running in the target VM, which opens the
monitored files 100 times and records the average processing
time. We first executed the agent without CFWatcher, then ran
it again with CFWatcher, and finally calculated the difference
between the two values. We did this test 10 times, the average
overhead of the rule checker module is 2 ms.

VI. CONCLUSION

In this paper, we have presented the design, implementation
and evaluation of CFWatcher, a VMI-based real-time critical
file monitor with low-overhead. CFWatcher is a target-based
monitor tool which means it only intercepts the file operation
accessing the critical files, and then obtains enough informa-
tion to check rules. We also presented a no-agent approach
to create the dentry and inode objects corresponding to the
monitored files which ensures CFWatcher can monitor all the
critical files. After implementing the prototype of CFWatcher
on XEN with full virtualization, we have evaluated the per-
formance of it. From the experiment, the overhead introduced
by CFWatcher increases with the number of monitored files.
When the number is below 100, the overhead is less than 5%;
and in the case of 200 monitored files, the overhead is less
than 9%.

In the future work, we are going to extend our system to a
full-featured IDS. As Windows is a popular operating system,
we are also going to extend our system to protect files in VM
running Windows.

ACKNOWLEDGEMENT

This work is supported by National Natural Science Foun-
dation of China (Project NO. 61173144).

REFERENCES

[1] G. H. Kim and E. H. Spafford, “The design and implementation of
tripwire: A file system integrity checker,” in Proceedings of the 2nd
ACM Conference on Computer and Communications Security. ACM,
1994, pp. 18–29.

[2] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3fs: An in-kernel
integrity checker and intrusion detection file system.” in LISA, vol. 4,
2004, pp. 67–78.

[3] N. A. Quynh and Y. Takefuji, “A real-time integrity monitor for
xen virtual machine,” in Networking and Services, 2006. ICNS’06.
International conference on. IEEE, 2006, pp. 90–90.

[4] R. K. Ko, P. Jagadpramana, and B. S. Lee, “Flogger: A file-centric
logger for monitoring file access and transfers within cloud computing
environments,” in Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2011 IEEE 10th International Conference on.
IEEE, 2011, pp. 765–771.

[5] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[6] G. Xiang, H. Jin, D. Zou, X. Zhang, S. Wen, and F. Zhao, “Vmdriver:
A driver-based monitoring mechanism for virtualization,” in Reliable
Distributed Systems, 2010 29th IEEE Symposium on. IEEE, 2010, pp.
72–81.

[7] S. Gupta, A. Sardana, and P. Kumar, “A light weight centralized
file monitoring approach for securing files in cloud environment,”
in Internet Technology And Secured Transactions, 2012 International
Conference for. IEEE, 2012, pp. 382–387.

[8] K. Asrigo, L. Litty, and D. Lie, “Using vmm-based sensors to monitor
honeypots,” in Proceedings of the 2nd international conference on
Virtual execution environments. ACM, 2006, pp. 13–23.

[9] N. A. Quynh and Y. Takefuji, “A novel approach for a file-system
integrity monitor tool of xen virtual machine,” in Proceedings of the
2nd ACM symposium on Information, computer and communications
security. ACM, 2007, pp. 194–202.

[10] H. Jin, G. Xiang, D. Zou, F. Zhao, M. Li, and C. Yu, “A guest-
transparent file integrity monitoring method in virtualization environ-
ment,” Computers & Mathematics with Applications, vol. 60, no. 2, pp.
256–266, 2010.

[11] F. Liu, H. Zhang, and H. Zhou, “A xen-based secure virtual disk access-
control method,” in 2010 International Conference on Multimedia
Information Networking and Security. Nanjing, Jiangsu China: IEEE
Computer Society, 2010, pp. 375–378.

[12] “The volatility foundation,” http://www.volatilityfoundation.org/.

[13] R. Perez, L. van Doorn, and R. Sailer, “Virtualization and hardware-
based security,” IEEE Security & Privacy, no. 5, pp. 24–31, 2008.

[14] T. Garfinkel and M. Rosenblum, “When virtual is harder than real.”
HotOS, 2005.

[15] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection.” in NDSS, vol. 3, 2003, pp.
191–206.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008,
pp. 51–62.

[17] J. Hizver and T.-c. Chiueh, “Real-time deep virtual machine intro-
spection and its applications,” in Proceedings of the 10th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments. ACM, 2014, pp. 3–14.

[18] A. F. Fanton, J. J. Gandee, W. H. Lutton, E. L. Harper, K. E. Godwin,
and A. A. Rozga, “Cloud-based application whitelisting,” Nov. 29 2011,
uS Patent 8,069,487.

[19] “Vfs,” http://wiki.osdev.org/VFS.

[20] P. Guide, “Intel R© 64 and ia-32 architectures software developers
manual,” 2010.

[21] “The xen project,” http://www.xenproject.org/.

[22] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instru-
mentation and debugging via hardware virtualization,” in Proceedings
of the 29th Annual Computer Security Applications Conference. ACM,
2013, pp. 289–298.

[23] “Sysenter,” http://wiki.osdev.org/SYSENTER.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

