IEEE ICC 2016 Communication and Information Systems Security Symposium

A Detection Method for a Novel DDoS Attack against
SDN Controllers by Vast New Low-Traffic Flows

Ping Dong', Member, IEEE, Xiaojiang Du?, Senior Member, IEEE, Hongke Zhang', Tong Xu'
'School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

pdong@bjtu.edu.cn, xjdu@temple.edu

Abstract—A Distributed Denial of Service (DDoS) attack against
controllers is one of the key security threats of Software-Defined Networking
(SDN). The breakdown of a controller may disrupt a whole SDN network.
Nowadays, a novel DDoS means is that the attackers may generate vast new
low-traffic flows to trigger malicious flooding requests to overload the
controllers. It is difficult to prevent this attack, as the attackers may connect to
any interface of any switch in an SDN network. In this paper, we propose an
effective detection method, which is designed to detect the DDoS attack and
to further locate the compromised interfaces the malicious attackers have
connected. We first classify the flow events associated with an interface, then
make a decision using Sequential Probability Ratio Test (SPRT), which has
bounded false negative and false positive error rates. In addition, we evaluate
the performance of the proposed method using DARPA Intrusion Detection
Data Sets. We also discuss and compare our method to three other detection
methods, which are based on the percentage, count, and entropy of the flows,
respectively, and demonstrate the superiority of our method in terms of
promptness, versatility and accuracy.

Keywords—DDoS; detection; SDN; controller;

I. INTRODUCTION

Software-defined networking (SDN) separates a network’s
control logic from its underlying switches, simplifies network
management, and facilitates network evolution. These specific
capabilities make SDN deployable in many network
environments, from home and enterprise networks to data
centers in cloud networks.

The wide variety of use cases make SDN security a serious
concern [1]. Out of all known SDN exploits, Distributed Denial
of Service (DDoS), which overloads the centralized controllers,
is an SDN-specific attack [2] and one of the most severe threats
to SDN because its ability to break down a controller can
disrupt a whole network.

OpenFlow [3] is a protocol that standardizes how SDN
switches communicate with an SDN controller. In OpenFlow,
the switches will typically ask a controller, using packet-in
messages, to obtain new flow rules for any data flows they do
not know how to handle. However, a novel DDoS attack is
such that, with a large volume of new data flows generated by
the malicious attackers, many packet-in messages may be
generated by the switches and aggressively sent to the
controller, which may exhaust the resources or even lead to a
failure of the controller [4].

This novel DDoS attack against SDN controllers has some
specific features and can hardly be detected by the traditional
DDoS defense methods:

978-1-4799-6664-6/16/$31.00 ©2016 |IEEE

First, it is difficult for each of the switches to detect the
malicious flows. Initially, The attackers may locate in different
subnets that connect to different switches, so that the traffic
passing each switch may be low. Additionally, no matter how
heavy the traffic of a new flow is, only the first few packets of
the flow will be encapsulated in the packet-in messages and
sent to the controller. Thus, the attackers will prefer to use low-
traffic flows to trigger the attack.

Second, it is difficult for a controller to judge whether it is
under a DDOS attack based only on the number of incoming
queries, since a flooding of queries may result from burst
nonmalicious flows.

Third, this attack is a kind of reflection-based flooding in
which the attackers do not send the malicious flows directly to
a controller. Instead, the attackers may generate the flows
based on any protocol (TCP, UDP, et al.) to trigger the attack
against a controller. The special method leads to some specific
features that differ from those of the known DDoS attacks,
such as ICMP flood, TCP SYN flood, and HTTP flood [5].
Correspondingly, existing detection and defense mechanisms
[6] are not fully applicable to this attack.

Several recent papers [7] [8] pointed out that the SDN
controller is a vulnerable target of DDoS attacks and suggested
policing packets destined to the controller. D. Kotani [9]
introduced a packet-in filtering mechanism to protect the SDN
control plane. The mechanism records the values of packet
header fields before sending packet-in messages, then filters
out packets that have the same values as the recorded ones.
However, if the malicious attackers generate new flows, in
which the packets have different values from the recorded ones,
the proposed mechanism will become ineffective. S. M.
Mousavi [10] proposed an early detection method for the
DDoS attacks against the SDN controller. The method is based
on the entropy variation of the data flows’ destination IP
addresses. It assumes that the destination IP addresses are
almost evenly distributed in the normal flows, while the
malicious flows are destined to a small amount of hosts.
However, it is not difficult for the malicious attackers to
generate lots of new low-traffic flows, with their destination IP
addresses evenly distributed, to overload the controllers.

In this paper, we propose an effective detection method for
the novel DDoS attack against SDN controllers by vast new
low-traffic flows. Our method has the following advantages:

DDoS Detection
Flow!l [Packets [Interface]

Flow2 | Packets |Interface]
Controller veveee [eeeees
Control Plane Queries

Flows_.sc”
el

el

Fig. 1. Network model.

1) Promptness. Benefitting from the Sequential Probability
Ratio Test (SPRT), which is a powerful statistical tool, the
proposed method can quickly detect the compromised interface
after only a small number of successive observations of low-
traffic flows.

2) Versatility. The proposed method can detect the DDoS
attacks against the SDN controllers, no matter how the
malicious flows are generated. That is, our method can detect
the malicious attacks triggered by TCP flood, ICMP flood, or
even some unknown means leading to the flooding of requests
to an SDN controller.

3) Accuracy. The proposed method can distinguish normal
burst traffic from malicious flows, and make more accurate
decisions than the detection methods based on percentage,
count and entropy of the data flows.

The remainder of this paper is organized as follows. The
network model for our proposed method and some network
assumptions are stated in Section II. The details of our method
in terms of flow classification and attack detection are
described in Section III. Experimental evaluations and
discussions are provided in Section IV, followed by the
conclusion.

II. PROBLEM FORMULATION

In this section, we first state the DDoS detection problem in
the SDN network. In particular, we formulate the network
model for our proposed method. Then, we describe the network
assumptions and the attacker models that we use to evaluate
our method.

Fig. 1 illustrates the logical view of the network model.
Since a DDoS attack could come from any of the interfaces of
any switch, our goal is to detect the attack and locate the
potential interfaces that are compromised.

We define an interface of an SDN switch as a compromised
interface if it is connected by the malicious DDoS attackers or
hijacked zombies. Many new low-traffic flows are likely to be
injected into the compromised interfaces by the malicious
attackers and zombies, with the purpose of triggering a high
volume of switch-to-controller messages to overload the SDN
controller.

We define F; for h=1,2,-- as the successive observations

of a random variable F , which is a flow event corresponding
to the sequence of flows x| injected into an interface i of an

SDN switch. We let F, =1 if flow x; is low-traffic, and F, =0

otherwise. A compromised interface differs from a normal
interface in terms of the quantity of incoming low-traffic flows.
Specifically, a compromised interface has a higher probability
of being injected into low-traffic flows than a normal interface.
Formally,

Pr(F) =1|H,)>Pr(F, =1|H,)

where H, is the hypothesis denoting that the interface i is
compromised, and H| is the hypothesis denoting the interface
is normal.

We aim to detect whether an interface i has been

compromised.

In the detection, we assume that each switch is capable of
obtaining the statistics information of the incoming flows and
reporting it to the controller. This can be achieved using
several methods. First, OpenFlow itself can monitor per-port
and per-rule byte and packet counters. Second, NetFlow [11]
provides a way to collect per-flow statistics in switches and
sends the flow records to a collector. NetFlow checks the
header fields of each packet to see if the packet matches an
existing flow. Third, sFlow [12] can estimate the byte and
packet counts of flows by fetching real-time packet samples
from switches. sFlow captures one packet out of every N
packets, and sends the header of the sampled packet to a
central collector for flow statistics. We assumed that the flow
statistics will pass our DDoS detection modules running on the
northbound interface of the controller.

In addition, it is reasonable that attackers tend to generate
vast new low-traffic flows to launch an attack in an SDN
network because: (1) Only vast packet-in messages may
congest a controller. (2) Only new flows can trigger packet-in
messages towards a controller. (3) Only low-traffic flows are
of high-efficiency for such an attack. A flow with heavy traffic
cannot enhance an attack. On the contrary, it will consume
more of the attacker’s resources than a flow with low traffic,
because no malicious packet-in messages will be generated
after the delivery of a corresponding flow rule.

III. DETECTION BASED ON SPRT

Our method is comprised of a flow classification function
and an attack detection function. In this section, we describe
these functions in detail.

A. Flow Classification

The flow classification function classifies the data flows in
the network. A data flow is considered to be either a normal
flow or a low-traffic flow. Upon receiving a statistic report
about a data flow, the flow classification function makes the
distinction.

Let ¢, be the packet counts of flow x,. Let C,_ be the

threshold to classify a flow. Then, a flow event F, is defined

as a Bernoulli random variable:

o
oL ife, <C,,
b . i

0, ifc,>C,

()

The value of C

ax Can be obtained and recalibrated by
training processes. For example, an offline process can

recalibrate C__ if the traffic characteristics change.

max

In an SDN network, the match fields [3] of each flow table
entry consist of the packet headers, the ingress port, and,
optionally, other fields. Due to the global perspective and
centralized control of SDN, the flow classification function can
adaptively classify data flows according to the match fields in
the flow tables.

After the classification of a flow, the flow classification
function reports the result to the attack detection function.

B. Attack Detection Based on SPRT

The attack detection function analyzes the list of observed
events (normal flows and low-traffic flows) to decide whether
an interface is compromised.

In reality, a detection function can make two types of errors:

false positive and false negative. As described in Section II, we
consider H, as a detection of a compromised interface, and

H, as a normality. False positive means the acceptance of H,
when H| is true, while false negative means the acceptance of
H, when H, is true. To avoid these two errors, we define «
and £ as the user-specified probabilities of false positive and

false negative, respectively. The error rates of the designed
detection function should not exceed o and S for false

positive and false negative, respectively.
To design an effective detection method that meets the

requirements, we adopt SPRT, a powerful statistical tool, to
evaluate interface i from the »n observed flow events

Fl,b=12,-,n. We define D,’; as an evaluation of interface
i ’s behavior by the detection function. Let D. be the log-
probability ratio considering all n normal flow and low-traffic
flow events noted for interface i . Upon receiving an event F}

from the flow classification function, the detection function
evaluates:

Pr(Fl",---,F,f Hl)
Pr(F]i,~~-,E1’|HO)

D =In Q)

Assume that each flow event F, is independent and
identically distributed, then we have
- I, Pr(F/|H,) & Pr(F|H
D=l (’1|) 2))
I, Pr(Fb |H0) b=1 Pr(Fb |H0)

Since F; is a Bernoulli random variable, let

Pr(F, =1|H,)=1-Pr(F; =0|H,)= 4, (4)
Pr(F, =1|H,)=1-Pr(F, =0|H,)=4, (5)

where A, > 4, because a comprised interface is more likely to

be injected into the low-traffic flows to overload an SDN
controller.

Intuitively, our SPRT-based detection method can be
considered as a one-dimensional random walk. When a low-

traffic flow (¢, <C,,) is observed, the flow event F, =1

max

occurs and the walk moves upward one step. When a normal
flow (¢, > C,) is observed, the flow event F, =0 occurs and

the walk moves downward one step. According to Eq. (3), (4),
and (5), we get:

o Pr(F,j =1] .) .
)l—l +—’ lfcb S Cmax
o Pr(F =1|H,)
' . Pr(F =0|H,) _
D:lfl + i > lfCZ > Cmax
Pr(F, =0|H,) (6)
D +mi, ifd<cC.
_ 0
D +mith i s
"
where D;=1.

We then define the detection function for testing a
compromised interface against a normal interface as follows:
given two boundaries B and 4 where B < 4, on the basis of

the log-probability ratio D!, the SPRT for H, against H, is
given as follows:

D} < B :accept H, and terminate the test.
D! > A :accept H, and terminate the test.
B< D! < A: continue the test process with an additional

observation.

It is suggested in [13] that the values of 4 and B are
reasonable to be set to

[t
B=(1-B)/a

From the above equations, we can conclude that four
parameters o, S, A,, and A are required by the SPRT-based

™

detection method. Among them, « and f limit the false
positive error rate and false negative error rate, respectively,
and give two boundaries (A and B) of the one-dimensional
random walk. 4, and A, are the probability distribution
parameters for the flow events, and affect the number of
observations required for the detection function to reach a
decision (either H, or H,).

—— Training data without attack
—©— Training data with attacks

Proportion in all the data flows

i b B3 & I \ safiflte;

1 1 ‘“‘\ \j MJ\ l

:00 12:00 14:00 16:00 18:00 20:00
Time

0
08:00 10

Fig. 2. Proportion of the low-traffic flows in all the flows for the training data
without attack (March 4th) and with attack (March 11th), respectively. A, and
A, are estimated.

TABLE I DESCRIPTIONS OF SOME OF THE ATTACKS THAT MAY
OVERLOAD THE SDN CONTROLLERS
Attacks Descriptions
neptune A SYN flood on one or more TCP ports.
smurf ICMP requests with the victim's spoofed source IP are
broadcast to a network, to create a reply flood to the victim.
inswee A surveillance sweep sending ICMP requests to numerous IP
P P addresses to detect which nodes are listening on a network.
A surveillance sweep that scans numerous ports to detect
portsweep

which services are open on a single or multiple nodes.

IV. EVALUATION AND DISCUSSION

We chose to use DARPA Intrusion Detection Data Sets to
evaluate our proposed method, as they contain both training
data without/with attacks and testing data with abundant types
of attacks [14], i.e., 201 attack instances of about 56 types of
attacks.

A. Parameters of the Method

As mentioned in Section II, our SPRT-based method
requires four user-defined parameters o, S, A,, and 4, .

Among them, & and # are normally small values limiting the

desired false positive and false negative rates, which are
usually between 0.01 and 0.05 and can be specified by the
users of the detection approach. We set « =0.01 and £ =0.02

in the evaluation.

A, and A, should indicate the probabilities that a low-

traffic flow passes through a normal interface and a
compromised interface, respectively. Thus, it is reasonable for
us to estimate A, and A, using the training data without and

with attacks, respectively. The “outside tcpdump data”, which
provides extensive examples of attacks and background traffic,
was used in our evaluation. The data provides all data packets
transmitted between the nodes inside and outside of a network.

We classified the flows by counting the number of packets
in each flow. If the packet count of a flow was below a
designated threshold, the flow in question was classified as a
low-traffic flow. Otherwise, it was classified as a normal flow.
Afterwards, we calculated the proportion of the low-traffic
flows in all the flows to estimate 4, and 4.

Number of successive observation

Fig. 3. The minimum number of successive observations of low-traffic flows
for detecting a compromised interface.

Without loss of generality, the threshold was set to 3
packets, the packet count of a normal TCP 3-way handshake.
The packets with the same four-tuple, i.e., (source IP, source
port, destination IP, destination port), were considered to
belong to the same flow. The communications between the
adjacent interfaces were filtered because they would not trigger
packet-in messages towards the controllers.

Fig. 2 illustrates the estimation of 4, and 4, . As Fig. 2
shows, the characters of the flows were similar when there
were no DDoS attacks on both days (March 4th and March
11th). However, on March 11th, two attacks named “ neptune”
and “ipsweep” (listed in TABLE I) occurred at 11:04:16 and
16:36:10, respectively. These attacks lead to vast new low-
traffic flows that could overload the controller. Accordingly,
we assigned the mean value and the upper boundary value of
the normal proportion of the low-traffic flows to 4, and 4,,

respectively. Thus, we got 4, =0.33 and 4, =0.6.

In the next section, we will discuss how the values of A,
and A, affect the performance of our SPRT-based method.

B. Promptness

Promptness is an important property of our SPRT-based
DDoS detection method. As we learn from Fig. 2, a large
volume of low-traffic flows will be injected into a
compromised interface when a DDoS attack occurs. This
section evaluates the minimum number of successive
observations of low-traffic flows to detect a compromised
interface when H, is true.

To illustrate the minimum number of successive
observations required to detect a compromised interface, Fig. 3
shows the number of observations as a function of A, and 4, .
As mentioned in the previous sub-section, we set the false
positive rate & =0.01 and the false negative rate f=0.02. As
shown in Fig. 3, it only takes several observations for SPRT to
make a decision. Basically, the greater the difference between
A, and A, , a smaller successive number of observations is

required for our method to reach a detection.

As the DARPA Intrusion Detection Data Sets gave us
A,=033 and A4 =0.6 in our evaluation, our method can

quickly detect a compromised interface after only six
successive observations of low-traffic flows.

We only show the minimum number of required successive
observations in the above discussion. There is a similar trend
for the average number of required observations when H, is

true.

C. Versatility

We evaluated the versatility of our method by submitting it
to the data traces with malicious traffic in the DARPA
Intrusion Detection Data Sets.

Since we assume that a flow rule corresponds to a four-
tuple, the attacks listed in TABLE I may overload an SDN
controller. Notably, these attacks can work at different layers
and have different principles. For example, “neptune” woks at
the transport layer and is a typical denial-of-service attack,
while “ipsweep” woks at the network layer and is not usually
considered a denial-of-service attack. However, the key
characteristic they share is the ability to generate many new

flows, which may lead to the overloading of an SDN controller.

Note that the extent of damage an attack can cause depends
on the match fields of flow rules. For example, “neptune” can
overload a controller when a flow rule corresponds to a four-
tuple, but can hardly overload the controller when a flow rule
only corresponds to the destination IP address of a flow. Our
flow classification function can adaptively classify the flows
according to the match fields of flow rules.

Fig. 4 (a) shows the number of total flows on April 5th. Fig.

4 (b) shows all the denial-of-service attacks and a “portsweep”
attack used in the datasets in chronological order. Although
traditional attack classification methods do not regard
“portsweep” as a DDoS attack, it may be used to generate vast
low-traffic flows and further trigger the DDoS attacks to
overload the SDN controllers. In addition to “portsweep”,
“smurf” and “neptune” launched DDoS attacks against the
SDN controllers on April 5th. As Fig. 4 (c) shows, our method
successullfy detected all three of these attacks, even though
they work at different protocol layers and have different
principles. Additionally the reports return neither false positive
errors nor false negative errors for the attacks without a large
volume of low-traffic flows.

D. Accuracy Comparison and Discussion

For comparison, we discuss three different methods in
detecting the DDoS attacks, which are based on the percentage
of low-traffic flows, the number of low-traffic flows and the
entropy variation of destination IP addresses, respectively. For
simplicity, we refer to them as the percentage-based detection
(PD), the count-based detection (CD) and the entropy-based
detection (ED). They are discussed in the following:

® PD. An interface is considered to be compromised if the
percentage of low-traffic flows is higher than a threshold.
Unlike in our SPRT-base method, which has bounded false
negative and false positive error rates, it is challenging to select

Total number

2) S S P J S Sag™ d
08: 00 10:00 12:00 14:00 16:00 18 00 20:00
(a) The number of total flows

P pod portsWeep smUrf apacHeZ cra;shiis ud;pstorm
S pod ‘apacheZ ‘ | pod neptune dosnuke
=
< f syslogd
08:00 10 OO 12 00 14 00 16:00 18:00 20:00
(b) Attacks actually occurred
° T T T T T
Q | | | | |
2 I I I I I
“q'j | | | | |
a " . . .
08:00 10:00 12:00 14:00 16:00 18:00 20:00
(c) Detected attacks by our method
3 1 = threshold==0.8
g ! ==l threshold==0.5
[a}
08: : : : : : :00
(d) Detected attacks by the percentage-based method
i 1 1 mm threshold==0.2
g ! ! == threshold==1.31
[a}

08:00 10:00 12:00 14:00 16:00 18:00 20:00
(e) Detected attacks by the entropy-based method
Time
Fig. 4. a) The number of total flows; b) Attacks actually occurred; c) Detected
attacks by our method; d) Detected attacks by the percentage-based method; ¢)
Detected attacks by the entropy-based method.

a threshold value for the single parameter of PD. A small
threshold value may result in the false positive errors, while a
large threshold value may result in the false negative errors.

® CD. CD faces the similar problems to PD; that is, it is
also challenging to select an appropriate threshold value for
CD.

® ED. An interface is considered to be compromised if the
entropy of the flows’ destination addresses is lower than a
threshold. As we state in Section I, false negative errors may
occur if the attackers generate vast new flows with the
destination IP addresses evenly distributed. At the same time,
false positive errors may occur if the destination IP addresses
of the normal flows are not evenly distributed.

We evaluated the performance of PD and ED using the
same data trace to compare with our method. For comparison,
we first divided the datasets into mini-timeslots. The mini-
timeslot can be regarded as the hard timeout timer for the flow
entries as well as the detection period of our method. A hard
timeout timer is the duration after which a flow entry is
removed from the flow table in an SDN switch.

Note that it is not necessary for our SPRT-based method to
divide the datasets into mini-timeslots, because the method can
observe continuously until it reaches a decision. In contrast, an
essential component for PD, CD and ED is a window size that
is based on a timeslot or number of packets. This is also a
reason why the SPRT-based method can make a quicker and
more accurate decision than other methods.

Fig. 4 (d) shows the performances of PD with thresholds

0.5 and 0.8, respectively. Note that if the total number of flows
is less than 30 per timeslot in our evaluation, the detection is
not performed due to the low risk and high randomness of the
flows. We can observe that:

First, PD made a false positive error at 12:30 with threshold
0.5. As shown in Fig. 4 (b), no attack really occurred at that
time.

Second, PD made a false negative error with both
thresholds 0.5 and 0.8. Hence, “smurf” was underreported. PD
might have detected “smurf” if we chose a threshold lower
than 0.5. However, this would result in more false positive
errors than were made under a threshold of 0.5.

Thus, we can conclude that it is challenging to choose a
threshold value for the single parameter of PD.

Fig. 4 (e) shows the performances of ED with both
thresholds 0.2 and 1.31, respectively. We can observe that:

First, ED made several false positive errors with threshold
1.31, which is the threshold used in [10]. From Fig. 4 (b), we
can know that ED reported the “pod” attacks. We say these
reports were false positive errors because these “pod” attacks
did not launch attacks against the controller. We can find lots
of ICMP messages that were sent from a single malicious node
to a single host when the “pod” attacks occurred in the datasets.
Thus, ED detected it because the entropy was lower than the
threshold 1.31 during this timeslot. However, our goal is to
detect the DDoS attack against the controller but not the attack
against a host. Because the “pod” attack only requires a single
flow rule and would not generate many requests to the
controller, these reports were false positive reports.

Second, ED made a false negative error with both
thresholds 0.2 and 1.31. Hence, “portsweep” was
underreported. We learn from the datasets that the destination
IP addresses of this attack was almost evenly distributed
because the attackers tried to probe many hosts in the subnet.
Thus, the entropy value was quite high during this timeslot,
although many new flows were generated and vast requests
were sent to the controller.

The results prove what we discuss at the beginning of this
section, i.e., the ED will be ineffective if the normal flows are
not evenly distributed or the malicious flows are evenly
distributed. Note that the “normal flows” mentioned here are
the flows do not trigger attacks against the controller. ED may
be used to detect the denial-of-service attack against a host,
such as “pod”, but it is another issue and out of the scope of
this paper.

V. CONCLUSIONS

In this paper, we present an efficient detection method for a
novel DDoS attack against SDN controllers by vast new low-
traffic flows. The method is based on a powerful statistical tool,
SPRT, which has bounded false negative and false positive

error rates. The method can detect DDoS attacks and further
locate the compromised interfaces the malicious attackers have
connected. Evaluations are performed by submitting the
method to the data traces with abundant types of attacks in the
DARPA Intrusion Detection Data Sets. Compared to the
detection methods based on the percentage, count and entropy
of the flows, the proposed method has some outstanding
properties in terms of promptness, versatility and accuracy.

ACKNOWLEDGMENT

This work was supported in part by the Fundamental
Research Funds for the Central Universities (2014JBM004,
2015JBMO001), in part by Beijing Higher Education Young
Elite Teacher Project (YETP0534), in part by National 973
Program of China (2013CB329100).

REFERENCES

[11 A. Akhunzada, E. Ahmed, A. Gani, M. Khan, M. Imran, and S. Guizani,
“Securing software defined networks: taxonomy, requirements, and
open issues,” IEEE Communications Magazine, vol. 53, pp. 4, pp. 36-44,
2015.

[2] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the second
ACM SIGCOMM workshop on hot topics in software defined
networking, 2013, pp. 55-60.

[3] Open Networking Foundation, “OpenFlow Switch Specification Version
1.5.1,” https://www.opennetworking.org, 2015.

[4] S. Shin, G. Gu, “Attacking software-defined networks: A first feasibility
study,” In Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013, pp. 165-166.

[5] S.T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2046-2069,
2013.

[6] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,”
IETF RFC 4987, 2007.

[7] Q. Yan and F. Yu, “Distributed denial of service attacks in software-
defined networking with cloud computing,” IEEE Communications
Magazine, 2015, vol. 53, no. 4, pp. 52-59.

[8] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability
assessment,” In Proceedings of the second ACM SIGCOMM workshop
on hot topics in software defined networking, 2013, pp. 151-152.

[9] D. Kotani and Y. Okabe, “A packet-in message filtering mechanism for
protection of control plane in openflow networks,” In Proceedings of the
tenth ACM/IEEE symposium on architectures for networking and
communications systems, 2014, USA, pp. 29-40.

[10] S. M. Mousavi, “Early Detection of DDoS Attacks in Software Defined
Networks Controller,” 2014. (Master dissertation, Carleton University
Ottawa)

[11] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” IETF
RFC 3954, 2004.

[12] P. Phaal and M. Lavine, “sFlow version 5,” http://www.sflow.org/sflow
_version_5.txt, July 2004

[13] A. Wald, Sequential Analysis. J. Wiley & Sons, 1947.

[14] MIT Lincoln Laboratory, “Intrusion detection attacks database,”
http://www.1l.mit.edu/ideval/docs/attackDB.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

