SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8:4213-4226
Published online 6 September 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1337

RESEARCH ARTICLE

Data correlation-based analysis methods for automatic
memory forensic
X. Fu', X. Du?* and B. Luo"*

1 Software Institute, Nanjing University, Nanjing, China
2 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.

ABSTRACT

Memory forensics is an important technique for protecting network security and fighting against computer crimes. It has
developed greatly in the past decade, because memory can provide more reliable information that other evidence sources
do not contain. However, nowadays, when investigating network criminal cases, the Gigabyte (GB) and even Terabyte (TB)
level memory and many such dumps have made memory analysis a difficult task. And investigators usually have to deal with
complex operating system (OS) data structures, which they have little knowledge of. So how to analyze memory evidence
automatically so as to find the hidden criminal behavior and reconstruct the scenario in an understandable way has become
an important problem. This paper presents an automatic memory analysis methodology based on data correlation. Through
analyzing key OS data structures and utilizing a clustering algorithm, this methodology can discover the relationships among
processes, files, users, Dynamic-link library (DLLs), and network connections. By describing these relationships as correlation
graphs, our methods can reorganize these independent memory evidences and disclose their meanings in a high semantic level.
Experiments have proved that these correlation graphs can help investigators find hidden criminal behavior and reconstruct the

criminal scenarios. And as we know, now, little work is in this field. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS

process correlation; memory forensics; event reconstruction; memory evidences analysis; clustering

*Correspondence

Xiaojiang Du, Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U. S. A.

E-mail: dxj@ieee.org
Bin Luo, Software Institute, Nanjing University, China.
E-mail: luobin@nju.edu.cn

1. INTRODUCTION

Memory forensics is the subarea of computer forensics,
which is a kind of important technique for protecting security
of network and fighting against computer crimes. In the past
decade, memory forensics has developed greatly because
memory can provide information that disks do not contain,
such as running processes, network connections, and open
ports. Moreover, although the binary codes can be encrypted
or obfuscated, all illegal processes still have to be executed in
memory and leave some footprints inevitably. So evidence
from memory is more reliable. Because of these advantages,
memory forensics has absorbed more and more attention
recently. However, current work in this field mainly focuses
on how to reliably collect evidence, such as memory dumps.
Little work is about how to analyze the evidence automati-
cally. Nowadays, with the development of computer hard-
ware, the storage capability of memory has grown from
Megabyte (MB) to TB level. Moreover, the widespread use

Copyright © 2015 John Wiley & Sons, Ltd.

of network and cloud computing has made investigators of-
ten face many memory dumps. They usually have to deal
with a large quantity of memory data and complex OS data
structures, which they have little knowledge of. So how to
analyze memory evidence automatically so as to find the hid-
den criminal behavior and reconstruct the criminal scenario
in an understandable way has become an important problem.

This paper presents an automatic memory analysis
methodology based on data correlation. Through analyzing
key OS data structures and utilizing a clustering algorithm,
this methodology can discover the relationships among
processes, files, users, DLLs, and network connections.
The center of these relationships is the process. These rela-
tionships can be divided into two categories, that is, the
relationship between process and process and the relation-
ship between process and other memory data. The first kind
of relationship includes father—son relation, communica-
tion relation, and service relation. And the second kind
of relationship includes process—file relation, process—

4213

Data correlation-based analysis method for memory forensics

DLL relation, process—user relation, and process—network
relation. By describing these relationships as correlation
graphs, our methods can correlate this independent memory
evidence and disclose their meanings in a high semantic
level. Compared with other memory analysis methods,
our methods are the first way that integrates all kinds of data
in memory and presents the relationships among them with
correlation graphs. Some experiments have proved that
these correlation graphs can help investigators find hidden
criminal behaviors and reconstruct the criminal scenarios.

2. RELATED WORK

Current memory analysis methods can be divided into four
categories: the string searching-based method, the memory
scan-based method, the signature-based method, and the
key OS data structure-based method.

The string searching-based method is the earliest mem-
ory analysis method. It was popular in earlier years because
of its simplicity. However, in order to use this method,
investigators must already know some keywords of the
investigated case, for example, the command name or the
process ID. The work of Stevens and Casey [1] is an exam-
ple of this kind of method. In this paper, the historical
records of command lines are searched to analyze the state
of the current system. This method is fit for almost all cases
and can be used as the complement of other analysis
methods, but it needs much manual intervention, and the
results often contain much noise.

The memory scan-based method is a brute force searching
way [2]. It scans each byte in the whole memory so as to
obtain the information required, so the time cost of this
method is high and even intolerable in current situations.

The signature-based method has to predefine some
signatures by certain rules [3]. And then it will scan the
memory based on these signatures to find interesting infor-
mation. In 2006, Schuster presented several such kinds of
methods to analyze processes and networks. The structures
of process and thread were used as the scanning signature,
and the scanning results were compared with the standard
process list to identify the malwares. In addition, they found
the allocation of sockets based on the tag of non-paged pool,
so that the socket list and network connection list could be
obtained [4]. Obviously, its efficiency and accuracy are
higher than the first two methods, but it cannot find the un-
known behaviors that lack signatures, and its performance
also cannot meet the requirement of current big data cases.

The most popular memory analysis method is based on
OS data structure, that is, recovering key OS data struc-
tures from the memory dump and analyzing them to find
interesting evidence. EPROCESS is one of the most
important and useful structures in memory. Memparser
used its ActiveProcessLinks attribute to obtain the process
list [5]. Zhang and Wang [6] used the state information in
EPROCESS to create the timeline of forensics. Besides
EPROCESS, the registry of Windows is also a valuable
database for forensics. Some information about the system

4214

X. Fu, X. Du and B. Luo

could be obtained from registry [7]. In addition, Okolica
and Peterson [8] presented a method to obtain the list of
socket and network connection by analyzing the tcpip.sys.
Ionescu et al. [9] presented a method to identify the DLL
injection attack. This is implemented by traversing the
doubly linked list of DLLs in Process Environment Block.
Dolan-Gavitt [10] and Van Baar and Alink [11] obtained
the DLLs and files based on Virtual Address Descriptors
(VAD). In short, analysis methods based on OS data struc-
tures are accurate and widely used. However, it depends on
the data structures of OS. If the structure changes in different
versions of OS, this kind of method should also be changed.

The method in this paper is also based on OS data struc-
tures. However, compared with other memory analysis
methods, our method is the first way that integrates all
kinds of data in memory and presents the relationships
among them with correlation graphs. Current methods
usually aim at one kind of data structure. This kind of anal-
ysis is isolated and depends on much manual intervention,
and the illegal behavior identification and the event recon-
struction are still completed manually by investigators.
Moreover, no method focuses on the relations between
memory data. Even Volatility [12], the famous forensic
framework, only provides information to investigators.
Our methods can discover the relationships among pro-
cesses, files, users, DLLs, and network connections; and
these relationships are represented as correlation graphs,
which are easy to understand. Our experiments have
proved that these correlation graphs can help investigators
find hidden criminal behaviors and reconstruct the criminal
scenarios.

3. BACKGROUND AND OVERVIEW
3.1. Motivation

Evidence analysis is one of the key phrases in forensics.
The main work in this phrase includes identifying illegal
behaviors from normal ones and reconstructing the criminal
process. However, with the growth of storage capability
and the widespread use of network and cloud computing,
current investigators often have to simultaneously face
many memory dumps that have TB level data and complex
OS data structure. Although some forensic tools such as
Volatility can recover most memory data from memory
dumps, these data are isolated. Investigators still have to
identify criminal evidences and correlate them manually.
In fact, if the relationships among memory data can be
found and represented automatically in the early stage of
analysis, not only event reconstruction but also criminal be-
havior identification will become easier than before. That is
due to the abnormal relationship, such as outlook reading a
password file, that usually implies an illegal behavior. In
addition, once one piece of criminal evidence is obtained,
investigators can find more evidence following the relation-
ships among them. Then the criminal behavior will be more
difficult to hide.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

3.2. Challenge

In order to find the relations among different kinds of infor-
mation, some challenges have to be solved.

(1) There is a larger quantity of data and relationships
in memory, how to select the useful ones?

As the core of computer systems, memory usually con-
tains many kinds of information, for example, the key data
and code of operation system, drivers, and applications.
Moreover, the type, the structure, the location, and the
semantics of this data are often unknown for investigators
and will even change dynamically. The relationships among
this data are also diverse. All these will make the analysis
task more difficult.

(2) How to disclose these relationships reliably?

Even when we know there is a certain relationship
between data (e.g., father—son relation between processes),
how to disclose this relationship reliably and automatically
is still a difficult task, because criminals could tamper with
the key data, which indicate this relation so as to hide
behaviors. Direct kernel object manipulation is one such
example. Hackers tamper the link of process list, and then
the illegal process will not be shown.

(3) How to deal with the implicit relationship?

Some relationships, for example, several processes serv-
ing for the same application, cannot be indicated by memory
data. However, this kind of relationship is very important for
forensics. So how to find these implicit relationships is also
a challenge.

3.3. Methods overview

In computer forensics, the most important information in
memory is process. It represents the software and the
services running in the system. So considering challenge
1, we choose a process-centric strategy for analyzing
memory evidence. The relationships can be dived into
two categories, that is, the relationship between process
and process and the relationship between process and
other memory data. In order to show the first category
of relationship from different aspects, this paper presents
some methods of finding the father—son relation, the com-
munication relation, and the service relation between
processes. For the second category, this paper mainly
analyzes the process—file relation, the process—DLL rela-
tion, the process—user relation, and the process—network
relation. These relationships are chosen because they are
useful for computer forensics. Considering challenges 2
and 3, we have designed a set of correlation methods based
on both OS data structures and the clustering algorithm. For
the relationships that have indicators in memory (usually
certain OS data structures), we will disclose them by

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Data correlation-based analysis method for memory forensics

analyzing these data structures and choose the most reliable
data structures as the indicator. As for the implicit relation-
ships, we will discover them using the clustering algorithm.
Now the most common operating system that the investiga-
tors met is still Windows XP, so our implementation and
experiments are both based on Windows XP SP2.

4. CORRELATION METHODS FOR
PROCESS AND OTHER MEMORY
DATA

4.1. Correlating process and files

Current memory forensic methods are able to find and
recover the files in memory, but they cannot correlate these
files to processes. However, in order to reconstruct the
criminal scenario, investigators often need to know which
process creates, reads, or writes certain files. So this paper
presents an _OBJECT_HEADER-based method for corre-
lating processes and files.

In Window’s memory, each file object is represented by a
_FILE_OBIJECT. It is an important data structure that con-
tains much file-related information, for example, the name
of file. However, it does not contain which process owns this
file. Fortunately, both process and file exist as objects in
memory, and every memory object has an _OBJECT_
HEADER (Figure 1). We can obtain the required informa-
tion from this structure. The size of _OBJECT_HEADER
is always 0x018. In other words, if we look back 0x18
from the base address of each memory object, we can ob-
tain its _OBJECT_HEADER. There is an attribute named
HandleInfoOffset in _OBJECT_HEADER. It stores the
offset of this file’s handle info. According to this offset
and the base address of each memory object, we can
obtain the handle info that is represented by two words.
As for file object, the first word is the address of its owner
process. So we can find the relation between file and
process based on this address.

For example, we can create a test file named test.docx
and look for its owner process. Using the method men-
tioned earlier, we obtained _FILE OBJECT and _OB-
JECT_HEADER of test.docx as in Figure 2. According to
the value of HandleInfoOffset in _OBJECT_HEADER,
we knew that the handle info was in 0x8 bytes before _OB-
JECT_HEADER. After reading the first word of handle

lkd> dtv _OBJECT_HEADER
nt|_OBJECT_HEADER

+0x000 PointerCount : IntdB

+0x004 HandleCount : IntdB

+0x004 HextToFres : Ptr32 Void

+0x008 Type : Ptr32 _OBJECT_TYPE
+0x00c NamelnfoOffset : UChar

+0z00d HandleInfoOffset : UChar

+0x00e QuotalnfoOffset : UChar

+0x00f Flags : UChar

+0=010 ObjectCreatelInfo : Ptr32 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void

+0x014 SecurityDescriptor : Ptr32 Void

+0x018 Body : _QUAD

Figure 1. _OBJECT_HEADER.

4215

Data correlation-based analysis method for memory forensics

X. Fu, X. Du and B. Luo

lkd> dt ntl|_FILE OBJECT BlthfSl!
5

+0x000 Type
+0x002 Size

+0x004 DeviceObject

+0x008 Vpb
+0x00c FsContext

+0x010 FsContext2

Oxzel
+0x014 SectiocnObject Pcnntar :

+0x018 PrivateCachedap
+0x0lc FinalStatus

+0x020 RelatedFileObj ect H

402024 LockOperation
+0x025 DeletePending
+0x026 ReadAccess
+0x027 Writedccess

+0x028 Deletehccess
aredRead

+0x029 Sh

+0x02a Sharedirite
+0x02b SharedDelete

+0x02c Flags
+0x030 FileNane

+0x038 CurrentByteOf Eset t

+0x040 Waiters
+0x044 Busy
+0x048 I.astl.ock
+0x04c Lock
+0x05c Event

0
: 0x=40

i 112

: DxB82048900 _DEVICE_OBJECT
: Ox8lcac0fd _VFPB

.' Oxelbd20d40

bd2228
0x81£d4844 _SECTION_OBJECT_POINTERS
(null)

0
(null)
oo

: Bt
: Dxl *!
: Dxl "

Doml
R

042
UNICODE_STRING ““Documents and Settings“a“#i“experiment“test docx™

__LAHGE_IN'TEGER 0x0

(null}

_KEVENT
ZHEVENT

+0x06c Conplet:.onCom.ext : (null)
lkd» dt nt!_OBJECT_HEADER 81bb2£90-0x018

+0x000 PointerCount : 1

+0x004 HandleCount £
: DxGDOODUDl

402004 NextToFree
+0x008 Type . 0x821ebe?0 _OBJECT_TYPE
+0x00c HameInfoOffset B

+0x00d HandleInfoOffset : Ox8 "'
+0x00e QuotalnfcOffset : 0 ''
+0x00f Flags : O=40 '@"
+0x010 ObjectCreatelnfo :
+0x010 QuotaBlockCharged :
+0=014 SecuntvDesantm‘ :Q
.4 -

0x81d73e30
(null)
+0x018 Bod: UAD

Figure 2. _FILE_OBJECT and
info by little endian, we obtained an object address, that is,
81bc4020. Then we read this address and obtained a pro-
cess named winword (Figure 3), so we know that the owner
process of test.docx is winword.

4.2. Correlating process and DLLs

In Windows, system application programming interface
(APIs) are usually implemented as DLLs. So we can infer
the function of a process by analyzing what DLLs it loads,
which is helpful for investigating malwares in memory.

lkd> db 81bb2{90-0x018-8 L 8§
81bb2£f70 20 40 bc 81 01 00 00 0O
lkd> lobject 81bed020
Object: 81lbcd020 Type:

0x81d73e30 _OBJECT_CREATE_INFORMATION

_OBJECT_HEADER of test.docx.

The DLLs that a process loads are also one kind of
handle. So they can be found with _HANDLE_TABLE
(Figure 4) of a process. _"HANDLE_TABLE has an attri-
bute named HandleTableList that points to a doubly
linked list of handles. This table can be traversed by two
pointers, that is, Flink and Blink. There are many types
of handles, for example, files, processes, registry keys,
and named pipes. In order to find DLLs, we should
traverse the handle table and look for the one whose type
is file and whose name ends with DLL. These handles are
just DLLs the process loads. Because Volatility already
has this function, we use it in our experiment directly.

(821b%9=70) Process

ObjectHeader: 81bcd4008 (old version)

HandleCount: 3 PointerCount: 90
lkd> !process 81bc4020
PROCESS 81bc4020 SessionId: 0 Cid:

DirBase:

Inage: WINWORD.EXE

08£8 Peb: 7££dd000 ParentCid: 0268

0a3c0400 ObjectTable: 1510580 HandleCount: 478.

Figure 3. The value of handle info and the object it points to.

1kd> dt _HANDLE_TABLE

nt!_HANDLE TABLE
+0=000 TableCode
+0=004 QuotaProcess
+0x008 UniqueProcessId
+0=00c HandleTablelock
+0z01c HandleTablelist
+0=x024
+0=028 Debuglnfo

HandleContentionEvent

: Uint4B
. Ptr32 _EPROCESS
: Ptr32 Void

[4]

EX_PUSH LOCK
NTRY
_EX_PUSH_LOCK

_LIST_E

: Ptr32 _HANDLE_TRACE_DEBUG_INFO

+0z02c ExtralnfoPages Int4B

+0=030 FirstFree : Uint4B
+0x034 LastFree : Uint 4B
+0=038 NextHandleNeedlnannl : Uint4B
+0z03c HandleCount : Int4B

+0=040 Flags : Uint4B
+0=040 StrictFIFO : Pos 0, 1 Bit

Figure 4. _HANDLE_TABLE.

4216

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

4.3. Correlating process and users

Knowing who created certain processes is important for
reconstructing the criminal scenario, so it is necessary to
correlate users with processes. Current memory forensic
methods can only obtain the Security ID (SID) of users.
They convert the SID into users’ names. But the latter is
more useful for forensics, and there is also no information
in memory about which user an SID maps into. Fortu-
nately, some clues can be found in register. So this paper
presents a correlation method based on register.

A process is described by _EPROCESS in memory
(Figure 5). _EPROCESS is one of the most important
data structures in memory. It contains an attribute named
Token that points to a _TOKEN structure (Figure 6).
Much security-related information is contained in this
structure, including the SID of users and groups. So we
can obtain the SID of users that own this process using
this structure.

In Windows, each user has a unique SID. However,
according to the information in _TOKEN, we found that
many SIDs map to a process, and most of these SIDs are
the universal identifiers of system, which exist in almost
every process. So they should be filtered at first, and the re-
mainders are the SIDs of users. These universal identifiers
are recorded in Window’s document on system universal
identifiers, so they can be filtered based on this document.
After obtaining the SIDs of users, we could look for the
username of these SIDs in registry. HKLM\SOFTWARE

lkd> dt _EPROCESS
nt |_EPROCESS

+0x000 Pcb : _KPROCESS
+0x06c ProcessLock : _EX_PUSH_LOCK
+0x070 CreateTime _LARGE_INTEGER
+0x078 ExitTine : _LARGE_INTEGER
+0x080 RundownProtect : _EX_RUNDOWN_REF
+0x084 UniqueProcessId : Ptr32 Void
+0x088 ActiveProcessLinks : _LIST_ENTRY
+0x090 Quotallsage [3] Uint4B
+0x09% QuotaPeak : [3] Uint4dB
+0x0a8 ComnitCharge : UintdB

+0x0ac PeakVirtualSize : Uint4B

+0x0b0 VirtualSize : Uint4B

+0x0bd Sess:nn?rncessl:.nks : _LIST_ENTRY
+0x0bc DebugPort Ptr32 Void
+0x0c0 ExceptionPort : Ptr32 Void

+0x0cd ObjectTable : Ptr32 _HANDLE TAELE

+0x0c8 Token : _EX_FAST_REF
+0x0cc WorkingSetlock 2 i .hST HUTEX
+0x0ec WorkingSetFage : Uin

+0x0f0 AddressCreationLock : FAST MUTEX
+0x110 HyperSpacelock : Uint4B

+0x114 ForklInProgress : Ptr32 _ETHREAD
+0x118 HardwareTrigger : Uint4B

+0xllc VadRoot 1 Ptr32 Void
+0x120 VadHint : Ptr32 Void
+0x124 CloneRoot : Ptr32 Void

+0x128 NHumberOfPrivatePages : UintdB

+0x12c NumberOfLockedPages : UintdB

+0x130 Win32Process : Ptr32 Void

+0x134 Job : Ptr32 _EJOB

+0x138 SectionObject : Ptr32 Void

+0x13c SectionBaseAddress : Ptr32 Void

+0x140 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK
+0x144 VorkingSetWatch : Ptr32 _PAGEFAULT HISTORY
+0x148 Win32WindowStation : Ptr3Z Void

+0xl4c InheritedFromUniqueProcessld : Ptr32 Void
+0x150 LdtInformation : Ptr32 Void
+0x154 VadFreeHint : Ptr32 Void
+0x158 VdmObjects : Ptr32 Void
+0x15c DeviceMap : Ptr32 Void
+0x160 PhysicalVadList _LIST_ENTRY
+0x168 PageDirectoryPte : _HARDWARE FTE
+0x168 Filler : Uint8B
Figure 5. _EPROCESS.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Data correlation-based analysis method for memory forensics

lkd> dt _TOKEW
nt|_TOKEN
¥0x000 TokenSource _TOKEN_SOURCE
+0x010 Tokenld _LUID
+0x018 AuthenticationId : _LUID
+0x020 ParentTokenId _LUID

+0x028 ExpirationTime
+0x030 TokenLock
+0x038 AuditPolicy
+0x040 ModifiedId
+0x048 Sessiconld

_SEP_AUDIT_POLICY
. _LUID
: UintdB

+0x04c UserindGroupCount : UintdB

+0x050 RestrictedSidCount : UintdB

+0x054 PrivilegeCount : UintdB

+0x058 VariableLength : Uint4B

+0x05c DynamicCharged : UintdB

+0x060 DynamicAvailable : Uint4B

+0x064 DefaultOvnerIndex : UintdB

+0x068 UserAndGroups . Ptr32 _SID_AWD ATTRIBUTES
+0z06c RestrictedSids : Ptr32 _SID_AND_ATTRIBUTES
+0x070 PrimaryGroup : Ptr32 Void

+0x074 Privileges . Ptr32 _LUID_AND_ATTRIBUTES
+0x078 DynamicPart : Ptr32 Uint4B
+0x07c DefaultDacl : Ptr32 _ACL

TOKEN_TYPE

+0x080 TokenType o
+0x084 Ilpﬂsonat:.unl’.evel S'ECURITY INPERSONATION_LEVEL

+0x088 TokenFlags 2 Umr.d.l‘:l

+0x08c TokenlInUse : UChar

+0x090 ProxyData : Ptr32 _SECURITY_TOKEN_PROXY DATA
+0x094 AuditData Ptr32 SECURITY 'DO{(EII AUDIT DATA
+0x098 OngxmtmgI.ngonﬁesmcm : _LUID

+0x0a0 VariablePart : Uint4B

Figure 6. _TOKEN.

\Microsoft\ WindowsNT\CurrentVersion\ProfileList records
all SIDs in this system. If we search the ProfilelmagePath
attribute of users’ SIDs in the ProfileList, we can extract
the username. So based on the aforementioned method, the
user can be correlated to the process.

For example, we can obtain the SIDs of some processes
as in Figure 7. Among these SIDs, only S-1-5-21-
2052111302-1085031214-682003330-1003 is not the uni-
versal identifier. When we look for this SID in the ProfileList
of registry, the result is as Figures 8 and 9. From the
ProfilelmagePath, we can know that the username is a. So
user a can be correlated with all processes that have the
SID S-1-5-21-2052111302-1085031214-682003330-1003.

4.4. Correlating process and network

Criminals often need to transmit information and instructions
through a network. So knowing which process is related to
certain network information is important for investigators.
Based on this relationship, investigators can know the IP of
the host that communicates with a certain process and even
obtain the content of the communication.

Windows uses _TCPT_OBJECT (Figure 10) to describe
a TCP connection. _'TCPT_OBJECT contains plenty of
network-related information, such as the pointer to next
TCP object, the destination IP of the TCP connection,
the local IP, the remote port, the local port, and the Pid
of the process that creates this connection. So we can cor-
relate the process and TCP connection based on Pid.
_TCPT_OBJECT has a special tag TCPT (0x54435054),
so we can locate this data structures with a signature-
based scanning method. In addition, the next TCP
object can be obtained following the next attribute in
_TCPT_OBJECT. So we can find all the TCP connec-
tions and correlate them according to processes. Because
Volatility already has this function, so we use it in our
experiment.

4217

Data correlation-based analysis method for memory forensics

] Profilelist
$-1-5-18

ThunderPlatform (2608):
ThunderPlatform (2608) :
ThunderPlatform (2608):
ThunderPlatform (2608):
ThunderPlatform (2608) :
ThunderPlatform (2608) :
ThunderPlatform (2608):
ThunderPlatform (2608):
ThunderPlatform (2608):
(4036) :
(40386) :
(4036) :
YLLivelD. exe (4036):
MLLivelD. exe (4036):
YLLivelD. exe (4036):
YLLiveUD. exe (4036):
YLLivelD, exe (4036):
XLLivelD. exe (4036):

¥LLivelD. exe
YLLivelD. exe
KLLivellD. exe

WINWORD. EXE (2296) :
WINWORD. EXE (2298) :
WINWORD. EXE (2296) :
WINWORD. EXE (2296) :
WINWORD. EXE (2296) :
WINWORD. EXE (22986) :
WINWORD. EXE (2296) :
WINWORD. EXE (2298) :
WINKORD. EXE (2296) :

IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268):
IEXPLORE.EXE (3268) :
QQExternal. exe (1928):
QQExternal.exe (1928):
QQExternal.exe (1928):
QQExternal. exe (1928):

5-1-5-21-2052111302-1085031214-682003330-1003

§-1-5-21-2052111302-1085031214-682003330-513 (Domain Users)

$5-1-1-0 (Everyone)

$-1-5-32-544 (Administrators)

5-1-5-32-545 (Users)

$-1-5-4 (Interactive)

S-1-5-11 (Authenticated Users)

§-1-5-5-0-63753 (Logon Sessicon)

S-1-2-0 (Local (Users with the ability to log in locally))
5-1-5-21-2052111302-1085031214-682003330-1003
§-1-5-21-2052111302-1085031214-682003330-513 (Domain Users)
§-1-1-0 (Everyone)

§-1-5-32-544 (Administrators)

S-1-5-32-545 (Users)

S-1-5-4 (Interactive)

$-1-5-11 (Authenticated Users)

§-1-5-5-0-63753 (Logon Session)

8-1-2-0 (Local (Users with the ability to log in locally))

§-1-5-21-2052111302-1085031214-682003330~-1003

§-1-5-21-2052111302-1085031214-682003330-513 (Domain Users)

5-1-1-0 (Everyone)

S-1-5-32-544 (Admin%strators)

$-1-5-11 (Authenticated Users)

§-1-5-5-0-63753 (Logon Session)

$-1-2-0 (Local (Users with the ability to log in locally))
S$-1-5-21-2052111302-1085031214-682003330-1003
$-1-5-21-2052111302-1085031214-682003330-513 (Domain Users)
S-1-1-0 (Everyone)

8-1-5-32-544 (Administrators)

$-1-5-32-545 (Users)

§-1-5-4 (Interactive)

S-1-5-11 (Authenticated Users)

§-1-5-5-0-63753 (Logon Session)

8-1-2-0 (Local (Users with the ability to log in locally))
1 3-1-5-21-2052111302-1085031214-682003330-1003
5-1-5-21-2052111302-1085031214-682003330-513 (Domain Users)
S-1-1-0 (Everyone)

§-1-5-32-544 (Administrators)

QQExternal. exe (1928): 5-1-5-32-545 (Users)

QQExternal. exe

§-1-5-21-2052111302-1085031214-682003330-1003
(0] 5-1-5-21-2052111302-1085031214-682003330-500

(1928): 5-1-5-4 (Interactive)

Figure 7. The SIDs of some processes.

In Windows, processes are able to communicate in differ-
ent ways. This paper chooses three most popular commu-
nication methods to correlate processes, that is, shared

memory, file mapping, and pipeline.

X. Fu, X. Du and B. Luo

Figure 8. The SIDs in ProfileList.

5. CORRELATION METHODS FOR
PROCESS AND PROCESS

5.1. Communication relation between
processes

The communication relation between processes is an im-
portant relationship for reconstructing a criminal scenario.

5.1.1. Correlating processes by shared memory.

Shared memory means certain memory blocks exist in
the virtual address space of several processes, so they can
communicate by sharing these blocks. As we know, al-
though this relation is useful for forensics, there are still no
memory forensic tools that consider it. This is probably
due to _EPROCESS having no knowledge of this relation,
and other data structures also cannot indicate it directly. In
this paper, we present a way to identify this relation. It
mainly includes three steps.

B il e

[aB) @A) REG_SZ GHERRE)

[aB]CentralProfile REG SZ

[R¥]FLags REG_DHORD 0:00000000 (0)

ﬂptimi zedLogo. .. REG_DWORD 0x0000000b (11)

@Profildmge?ath REG_EXPAWD_SZ #SystemDrive®\Documents and Settings\a
[8¥]ProfileloadTi... REG_IWORD 0x01c£5TTE (30365567)

[8¥]Profileloadli... REG_IMORD 0x7229dfeB (1915346918)

[8¥]RefCount REG_DHORD 0x00000017 (23)

[@%)RurLogonSerip. .. REG_IMORD 0x00000000 (3)

[a8)sia REG_BINARY D1 05 00 00 00 00 00 05 15 0D 00 00 c6 bb 50 Ts
[BE)state REG_DHORD 0x00000100 (256) |

Figure 9. THE detailed information of S-1-56-21-2052111302-1085031214-682003330-1003.

4218

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

'_TCPT_OBJECT' : [0x20, { \
"Next' : [0x0, ['pointer', ['_ICPT_OBJECI']]], \
'RemotelphAddress' : [Oxc, ['unsigned long']]l, \
'LocallpAddress' : [0x10, ['unsigned leng'l], \
'RemotePort' : [0x14, ['unsigned short']l]l, \
'LocalPort' : [Oxlé, ['unsigned short']], \
'Pid' : [0x18, ['unsigned long']], \

Flen

Step 1.

Step 2.

Figure 10. _TCPT_OBJECT.

Obtaining the VAD tree of the process being in-
vestigated. _EPROCESS has an attribute named
VadRoot that points to the address of VAD
tree’s root node. Every node in VAD tree is an
_MMVAD structure (Figure 11), which de-
scribes one block of virtual address space
assigned to this process. The StartingVpn and
EndingVpn attributes are the starting and end-
ing addresses of this block. The LeftChild and
RightChild attributes point to the left and right
child nodes of the current node. So the VAD
tree can be built using these pointers. It should
be noted that every VAD node is either pri-
vate or mapped. A private VAD node means
that the virtual address space this node de-
scribes is private to the process. A mapped
VAD node means that the virtual address
space this node describes is shared with other
processes, so when we correlate processes by
shared memory, we only consider this kind
of VAD node.

Obtaining the shared memory block by the File
Pointer attribute of VAD node. From Figure 11,
we can find that _"MMVAD has a ControlArea
attribute that points to a _CONTROL_AREA
structure. _CONTROL_AREA (Figure 12) de-
scribes the control information of this VAD
node. It includes the pointers to files, shared
memory, buffered data, and so on. The
FilePointer attribute in _CONTROL_AREA is
a pointer to _FILE OBJECT. After observing
all the VAD nodes a process contains, we find
that the value of FilePointer falls into two cat-
egories. Firstly, it is a normal hex address in
most cases. That means it points to a file that
can be obtained with this address. In rare

cases, FilePointer is null. According to the
lkd> dt _MMVAD
nt |_MMVAD
+0z000 StartingVpn : Uint4B
+0x2004 EndingVpn : Uint4B
+0x008 Parent : Ptr32 _MMVAD
+0x00c LeftChild : Ptr32 _MMVAD
+0z010 RightChild : Ptr32 HH‘JAD
+0x014 u ; __unnam
+0x018 Controlirea : Ptr3z CONTROI AREA
+0x0lc FirstPrototypePte : Ptr32 _MMPTE
+02020 LastContiguousPte : Ptr32 _MMPTE
+0x2024 u2 ;. __unnaned

Figure 11. _MMVAD.

Data correlation-based analysis method for memory forensics

1lkd> dt

_CONTROL_AREA

nt|_CONTROL_AREA

F0=000
+0x=004
+0x00c
+0=010
+0=014
+0=018
+0=01a
+0x01c

+0x020 u

+0x=024
+0x028
+0x02c
+0x02e

Step 3.

: Ptr32 _SEGMENT
Dereferencelist _LIST_ENTRY
HunberOfSectionReferences : Uint4B
HunbexrQOfPinReferences : Uint4B
HumbexrOf HappedViews : Uint4B
HumberOfSubsections : Uint2B
FlushInProgressCount : Uint2B
NunberQfUserReferences : UintdB

Segment

: __unnamed
FilePointer : Ptr32 _FILE_OBJECT
VaitingForDeletion : Ptr32 _EVENT_COUNTER
HodifiedWriteCount : Uint2B
HunbexrOfSystemCacheVievs : Uint2B

Figure 12. _CONTROL_AREA.

Windows official documents, that means
_CONTROL_AREA describes a block of
shared memory, and this block is used to com-
municate between processes. In other words, if
we find that the _FILE_OBJECT attribute of
the VAD node points to a block of shared mem-
ory, we can infer that the owner process of this
VAD node is communicating or waiting to
communicate with other processes with this
shared memory.

Correlating processes based on _SEGMENT
attribute. From Figure 12, we can find that
_CONTROL_AREA has a Segment attribute that
points to a _SEGMENT structure (Figure 13).
_SEGMENT has two attributes named ul and
u2. We find that if FilePointer is null, then ul
points to the process that created this shared
memory. We also observe that the values of ul
can be divided into two kinds. (i) It is equal to
the address of the VAD node’s owner process,
which means that this process is the creator of this
shared memory. (i) It is different from the
address of the VAD node’s owner process. This
means that it points to a process that creates
this shared memory and communicates with
the VAD node’s owner process with this
shared memory. So we can correlate the two
processes.

For example, we want to test which processes the pro-

cess Word

communicates with by shared memory. Firstly,

we obtain the VAD node of the process Word (Figure 14).
Then for all mapped VAD nodes, we choose the one
whose address is 820e1c80 and obtain its _MMVAD and

nt |_SEGMENT
+0x000 ControlArea : Ptr32 _CONTROL_AREA
+0x004 TotalWNumnberOfPtes : Uint4B
+0x008 NonExtendedPtes : UintdB
+0x00c WritableUserReferences : Uint4B
+02010 SizeQfSegment : Uint8B
402018 SegmentPteTemplate : _MHPTE
+0=020 HumherOmem:.ttsdPagas : Uint4B
+0x2024 ExtendInfo Ptr32 _MMEXTEND_INFO
+02028 SystemInageBase . Ptr32 Void
+0z02c BasedAddress : Ptr32 Void
+0x030 ul : __unnamed
+0x034 u2 1 unnaned
+0x038 PrototypePte) Ptr32 _MMPTE
+0x040 ThePtes : [1] _MHMPTE

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Figure 13. _SEGMENT.

4219

Data correlation-based analysis method for memory forensics

%rkd> vad 8206bcf0

D level start end commi t

81cBbcd8 (19) 10 10 1 Private READWRITE
820a3eb8 (20) 20 20 1 Private READWRITE
81£524e0 (18) 30 12f 30 Private READWRITE
820e1c80 (20) 130 132 0 Napped READONLY
820a7348 (19) 140 140 0 Mapped READONLY
81dBdeald (20) 150 24f 199 Private READWRITE
81b66ce0 (17) 250 25f 7 Private READWRITE
8212bbe8 (20) 260 26f 0 Napped READWRITE
81b96138 (19) 270 285 0 Napped READONLY
81b%ebal (20) 290 Zec 0 Napped READONLY
81f51b60 (18) 2d0 310 0 Mapped READONLY
81ef9550 (20) 320 325 0 Mapped READONLY
820c3£48 (19) 330 370 0 Napped READONLY
81470038 (16) 380 38f 9 Private READWRITE
81a0e240 (19) 390 392 0 Napped READONLY
81¢d8270 (18) 3al 3af 16 Private READWRITE
81¢87a80 (19) 3b0 3bl 0 Mapped READONLY
81a0f248 (17) 3c0 3cl 0 Napped READONLY
81£22288 (19) 3d0 497 0 Napped EXECUTE_REA
820c4a68 (18) 4a0 5a2 0 Napped READONLY
82029£30 (19) 5b0 5bf 16 Private READWRITE
81f3eccd (15) 5c0 8bf 0 Mapped EXECUTE,
81e684d0 (18) 8c0 8¢c0 1 Private READWRITE
81fe9cl8 (17) 840 240 1 Private READWRITE
81b%elb8 (18) 8e0 Bef 16 Private READWRITE
82083be8 (16) 8£0 9la 43 Private READWRITE
81£9al58 (18) 920 921 0 Napped READONLY

Figure 14. The VAD node of process word.

_CONTROL_AREA based on the aforementioned method.
The result is shown in Figure 15. We find that the value of
FilePointer is null, which means that this node is a block
of shared memory.

Then we check the ul attribute in _SEGMENT. The
result is shown in Figure 16. We obtain the object accord-
ing to the value of ul and find that the type of this object is
a process, and the name of this process is csrss. The
detailed information is shown in Figures 17 and 18.

After checking all mapped VAD nodes of Word, we can
obtain all the processes that communicate with Word by
shared memory. They can be presented using the correla-
tion graph in Figure 19.

5.1.2. Correlating processes by file mapping.

File mapping communication means that a process
regards a file as memory blocks in its address space, so it
can read and write the contents of this file by simple
pointer operations instead of complex file Input/Output
(I/0) operations. Windows allows several processes to
access the same file mapping object. Each process can

lkd> dt nt!_MHVAD 820elcE8l

+0x000 StartingVpn : 0=130
+0x004 EndingVpn ;0132
+0x008 Parent : DxB820a7348 _MMVAD
+0x00c LeftChild ¢ (null)
+0x010 RightChild : (null)

+0=x014 u
+0=x018 Controlirea
+0x0lc FirstPrototypePte :
+0x020 LastContiguousPte : Oxelb0le30 _MMPTE
+0=x024 w2 : __ unnamed

lkd> dt nt! CONTROL_AREA 0x81d73d88
+0=x000 Segnent : Dxelb0ldel _SEGMENT
+0x004 Dereferencelist : _LIST_ENTRY [O0x0 - 0=x0]
+0x00c HumberOfSectionReferences : 1
+0=x010 HumberOfPfnReferences : 0
+0x014 HumberOfMappedViews : 0Oxll
+0x018 NumberOfSubsections : 1
+0x01la FlushInProgressCount : 0
+0x01lc HumberOfUserReferences @ 0xl2

: __unnamed
: D0=x81d73d88 _CONTROL_AREA
Oxelb0le20 _MMFTE

+0=020 u : __unnamed
+0x024 FilePointer : (null)
+0=028 WaitingForDeletion : (null)

+0x02c ModifiedWriteCount : 0
+0x02e NumberOfSystemCacheViews : 0

Figure 15. _"MMVAD and _CONTROL_AREA of selected VAD
node.

4220

X. Fu, X. Du and B. Luo

lkd> dt nt!_SEGMENT Orelb0Oldel
+0=000 ControlhArea : 0=B81d73d88 _CONTROL_AREA
+0x2004 TotalNumberOfPtes : 3
+0x008 NonExtendedPtes : 3
+0200c WritablelUserReferences : 0
+0x010 SizeOfSegment : 0=3000
+0x018 SegmentPteTemplate : _MMPTE
+0x020 NumberOfCommittedPages : 3
+0x024 ExtendInfo : (null)

+02028 SystemImageBase (null)

+0x02c BasedAddress (null)

+0=030 ul __unnamed

+0=034 w2 : __unnamed

+0=038 PrototypePte : Dxelb0le20 _MMPTE
+0x040 ThePtes : [1] _MMPTE

lkd> dd Oxelb0lde0 + 0=030

elb01lel0 81bl42c0 01760000 elb0le20 00000000
elb01e20 181bd163 80000000 181bel63 80000000
elb01e30 17794123 80000000 0001040c 61626453
elb0led40 1c060401 B208d9%a8 elb24cf8 elb24cfl
elb01e50 e25c3eal e16c4748 e1b01e58 e1b01e58
elb01le60 00000000 00010002 81c3deB0 00000000
elb01e70 00010406 6dA95346 0c070401 61564d43
elb01e80 002c0000 D0166b76 B00000D4 00000000

Figure 16. _SEGMENT and the value of u1.

lkd> lobject 81bl42c0

Object: 81bl42c0 Type: (821b%70) Process
ObjectHeader: 81bl42a8 (old wversion)
HandleCount: 3 PointerCount: 205

Figure 17. The object type in address 81b142c0.

receive a pointer in its address space and use this pointer
to read or write the same file. By this way, several pro-
cesses can communicate with each other. As far as we
know, there is no memory forensic tool considering this
kind of communication. In order to identify this communi-
cation, this paper presents a correlating method based on
the process—file relation we mentioned in Section 4.1.
Firstly, the processes and files in memory are correlated
by the method in Section 4.1. Secondly, if several pro-
cesses are correlated with the same files, there should be
file mapping-based communication between them.

5.1.3. Correlating processes by named pipelines.

Pipeline is a communication channel that has two ends.
The processes holding the handle of two ends can commu-
nicate through this channel. There are two types of pipe-
lines, that is, named pipelines and anonymous pipelines.
The latter has no name and cannot be obtained from the
memory, so this paper only focuses on named pipelines.
We can obtain the pipeline based on the handle informa-
tion of the process and then correlate them. We have not
found other forensic methods that consider this relation.

A name is given to the named pipeline after it is created.
Then any process using this pipeline could open it using
this name to obtain the handle. So at first, we obtain the
handle list of each process and then obtain the name of
the pipeline in this list. The handle list of each process is
described by _.HANDLE_TABLE, which is pointed to by
the ObjectTable attribute in _EPROCESS. The correlating
method is similar to the method in Section 4.2. Firstly, the
handle list of each process is obtained and traversed. All
handles of type named pipeline will be filtered. Then based
on the information of these handles, we can extract the
name of the pipeline. Finally, the processes that use the
same named pipeline can be found and correlated.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

lkd>» !|process 81bl42c0

PROCESS 81bl42c0 Sessionld: 0 Cid: 0270
0a3c0040 ObjectTable: =1645858

DirBase:
Image: csrss.exe

Data correlation-based analysis method for memory forensics

Peb: 7££{df000 ParentCid: 0228
HandleCount: 545.

VadRoct 81£521a8 Vads 159 Clone 0 Private 408. Modified 11344. Locked 0.

Devicelap =1004428

Token

Elap=edTimne

UsexTine

KernelTine
QuotaPoolUsage[PagedPool]
QuotaPoolUsage[HonPagedPool]
Working Set Sizes (now.min,nax)
PeakWorkingSetSize
VirtualSize

PeakVirtualSize

PageFaul tCount
MemoryPriority

BasePriority

CommitCharge

elB8d4908
06:48:05.479
00:00:02.484
00:00:07.140
2089986

9000
(ggg 50, 345) (1768KB, 200KB, 1380KB)

Figure 18. The detailed information of process in address 81b142c0.

CSrIss Smss

@WORD

Figure 19. The shared memory correlation graph of word and other processes.

0xB20c2£90 1044 0x13f4

0x12019f File

\Device\NamedPipe\lsarpc

Figure 20. NamedPipe.

For example, a handle of type named pipeline is shown
in Figure 20.

And a correlation graph of processes communicating by
named pipeline is shown in Figure 21.

5.2. Father-son relation between processes

In Windows, every process has one father and several
sons except the idle process. Now almost all memory fo-
rensic tools can list the running process in memory. How-
ever, most of them can only provide the list but never
correlate these processes. Although Volatility has a pstree
command, which can present processes in father—son rela-
tion, it misses the hidden processes. So this method is not
complete for forensics. This paper presents a novel
method that not only can correlate father and son pro-
cesses but also will not miss hidden processes. It mainly
includes two steps.

Step 1. Finding all running processes in memory. A sim-
ple way to obtain the process list is based on the
ActiveProcessLinks attribute of _EPROCESS. It
is a doubly linked list that can point to the next
and the previous processes in the list. However,
criminals can remove their processes from this

list with direct kernel object manipulation tech-
nique, so it is unreliable to obtain the process list
this way. Fortunately, every process obtains its
space from the memory pool with a pool tag, that
is, Proc, so we can find all processes more reli-
ably by scanning this tag. This paper obtains the
process list using this method.

The UniqueProcessld and InheritedFromUnique
Processld in_ EPROCESS represent the ID of
the current process and its father. So according
to the two IDs, father and son can be correlated.
For example, for the process list in Figure 22, we
can generate a father—son correlation graph
shown in Figure 23.

Step 2.

5.3. Service relation between processes

In addition to the obvious relationships such as father—son
and communication relations, there are also some implicit
relationships between processes. For example, some pro-
cesses seem to be independent, but in fact, they cooperate
with and serve the same application. We call this kind of
relationship a service relation. It has not been used in other

==

TPAntoComSve208

[\DmceNnmﬂlP:pe\E\"Eﬂ'bOﬂ

|\Dﬁwe\Naﬂ:lequ:e\m‘sw | Devi ipeneliN

ipel2 |

Figure 21.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

A correlation graph of processes communicating by named pipeline.

4221

Data correlation-based analysis method for memory forensics

Offset(V) Nome PID FPPID Thds

0x810b1660 System 4 o 58 379 —
Oxff2ab020 smss. exe 544 q 3 Y
Oxfflecdad csrss. exe 608 544 10 410

0xfflecdTs winlogon exe
0xEF24T020 services. exe
xf255020 lsass, exe 688 632 21 405

0xff218230 vmacthlp. exe B4d 6TR 1 37
0x30ff88d3 svchost. exe BEE &T6 29 336
Ux£E21T560 svchost. exe 436 676 11 288
0x80fof910 svchost. exe 1028 676 &8 1424
Oxff224558 svchost. exe 1088 576 a3
UxfF205bE0 svchost. exe 1148 676 15 217
0xffldTdal spoolsv. exe 1432 676 14 145
0x££1bEL2E vmtoolsd, exe 1668 &76 5 225
Oxff1£dc88 VilpgradeHelper 1788 €76 L] 112
Oxff143b28 TPAuthConnSve. & 1968 676 5 106
0xffI5aTed alg. exe 216 676 8 120
0x££364310 weentfy. exe BB 1028 1 40
Oxff38L5f8 TPAutoConnect. e 1084 1968 1 68
0x30£60da0 wusuclt. exe 1732 1028 T 189
0xf£3865d0 explorer. exe 1724 1708 13 326
Ox££3667e8 ViwareTray. exe 432 1724 1 60
Oxf£374980 Vilwarelser. exe 452 1724 8 207
0x30f34588 wusuclt. exe 468 1028 4 142
0xf£EZ24020 cod. exe 124 1668 o

Hnds Sess Wowfd Start

X. Fu, X. Du and B. Luo

Exit

o
2010-08-11 06:06:21 UTC+0000
2010-08-11 06:06:23 UTC#+0000
2010-08-11 06:06:23 UTC+0000
%g-ﬂ =11 06:06:24 UTC+0000

~08-11 06:06:24 UTC+0000
2000-08-11 06:06:24 UTC+(000
2010-08-11 06:06:24 UTC#0000

0

o

o

o

0

o

o

o

0

a 106

0 2010-08-11 06:06:26 UTC+0000
0 2010-08-11 06:06:26 UTC+0000
0
0
o
o
0
0
o
o
o
0
o

010-08~11 06:06:

010-08-11 06:06:38 UTC+0000
2010-08-11 06:06:39 UTC+0000
2010-08~11 06:06:49 UTC+0000
2010-08-11 06:06:52 UTC+0000
2010-08-11 06:07:44 UTC+(000
20010-08-11 06:09:29 UTC+0000
2010-08-11 06:09:31 UTC+0000
2010-08-11 06

109:32 UTC+0000
2010-08-11 06:09:37 UTC#0000

0 2010-08-15 19:17:55 UTC+0000 2010-03-15 19:17:56 UTC+0000

Figure 22. A process list obtained by Scanning Proc tag.

Figure 23. A father—son correlation graph.

memory forensic methods. However, based on this rela-
tionship, investigators can classify processes, infer the goal
of certain unknown process, and even identify criminal
behaviors.

5.3.1. Correlating processes based on name.

At first, we find this kind of relation using a simple
method, that is, the similarity of process name. Generally,
application developers will give their processes similar
names, such as the same prefix or suffix. For example,
when QQ, a famous instant communication tool in China,
is running, there are four processes in memory, that is,
QQ, QQProtect, QQExternal, and TxPlatform. Three of
them have the same prefix. So we can correlate them by
the similarity of name. However, the process TxPlatform
is missed by this method. So correlating based on name
is simple but not accurate. Another more accurate method
is still needed.

5.3.2. Correlating processes based on DLLs.
Processes often load some DLLs to obtain certain system

services or execute certain tasks. In other word, the list of

DLLs that a process loads can tell us what this process could

4222

probably do. Moreover, after analyzing about 100 applica-
tions, we find that the processes serve for the same application
that usually loads similar DLLs, so we can cluster processes
based on DLLs. In this paper, we cluster processes using
the Density-based spatial clustering of applications with noise
(DBSCAN) algorithm, which is an efficient density-based
clustering algorithm. The main steps are as follows.

Firstly, for each process, we should obtain the list of
DLLs it loaded. This can be implemented by the method in
Section 4.2.

Secondly, the processes are clustered using the DBSCAN
based on their DLLs. DBSCAN is a density-based clustering
algorithm because it finds a number of clusters starting from
the estimated density distribution of the corresponding
nodes. DBSCAN is also one of the most common clustering
algorithms. We choose this algorithm because of its high
efficiency and the number of clusters need not be predefined.
The framework of our clustering method is shown in
Figure 24. It mainly includes four steps (More details can
be found in our paper [13]).

Step 1. Selecting key DLLs. In order to improve the
performance of cluster, the DLL set is refined.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

Get Appropriate
—= Parameter Settings — Cluster and Output
by Enumeration

Select Key DLLs
Accordingly

Modeling of N-tuples

Figure 24. The framework of our clustering method.

The total number of DLLs in Windows is
almost 2000, so if all of them are chosen as
clustering attributes, the performance would
be unbearable. So we select some key DLLs
as the base of clustering. This selection follows
two rules: (i) the DLLs loaded by processes
frequently should be selected and (ii)) DBSCAN
requires that all samples should be independent.
However, there are many dependencies between
DLLs. Soif DLL A depends on DLL B, that is, if
A is loaded then B must be loaded, then only A is
selected as representation. Based on the two rules
and after verifying with a training set, about 300
DLLs are selected as key DLLs.

Step 2. Modeling each process into an N-tuple based on
the key DLLs. The N-tuple is defined as fol-
lows. Experiments show that after modeling
each process into an N-tuple, the speed of clus-
tering is improved greatly.

Definition 1. An N-tuple is a sequence of 1s or Os, where n
is a non-negative integer and indicates the number of 1s or
0s in the tuple.

Definition 2. The N-tuple of a process means N key DLLs
are organized as an ordered set. If any key DLL is found
in this process, the corresponding bit in the tuple is set to
1; otherwise, it is set to 0.

Step 3. Obtaining appropriate parameter settings by
enumeration. DBSCAN’s definition of a clus-
ter is based on the notion of density reachabil-
ity. Basically, a point q is directly density
reachable from a point p if it is not farther away
than a given distance ¢ (i.e., it is part of its e-
neighborhood) and if p is surrounded by suffi-
ciently many points such that one may consider
p and q to be part of a cluster. DBSCAN re-
quires two parameters: ¢ (eps) and the mini-
mum number of points required to form a
dense region (minPts). It starts with an arbi-
trary starting point that has not been visited.

1:
AlipaySecSve.e pid: 1876
Command line :

TaobaoProtect. pid: 3712
Command line

Data correlation-based analysis method for memory forensics

This point’s e-neighborhood is retrieved, and
if it contains sufficiently many points, a cluster
is started. Otherwise, the point is labeled as
noise. In our implementation, the ¢ is set to 4
and minPts is set to 2. After enumerating al-
most all possible parameters’ value and testing
the effect, we found that this is the best choice
for our methods.

Step 4. Clustering and outputting the result. For exam-
ple, after clustering the processes in our test
system, we obtained a cluster shown in Fig-
ure 25. We find two processes, that is,
AlipaySecSvc and TaobaoProtect, that belong
to this cluster. In fact, although they have dif-
ferent names, they both serve for the same ap-
plication Alipay. From this example, we can
see that our clustering method can overcome
the shortage of the method in Section 5.3.1.
So they can be wused together in real
investigation.

6. EVALUATION

In order to evaluate the effectiveness of our method, we
simulated two different investigation cases. Both of them
ran in VMware, so the memory dumps we obtained in
the experiments were all vmenm files. The operating system
we used in the experiments was Windows XP SP2. Now
the goal of our evaluations is only proving the feasibility
and effectiveness of our methods; so in our experiments,
we used both the prototype developed by ourselves and
some functions of current forensic tools (such as Volatil-
ity). In the future, we will develop our independent plug
based on Volatility so as to analyze memory evidence
automatically.

6.1. Investigation case 1

This scenario was a simulation of the spy or identity theft
on a computer. Suppose that a criminal has obtained the
username and password of a certain user on a computer,
and he logs onto this computer using this account. He
already knows that there is a file that contains all kinds
of passwords of this user on this computer. So he searches
this computer and finds a file named password, then he
sends this file to his email address using outlook.

In order to investigate this case, we will use the father—
son relation, process—user relation, and process—file rela-
tion mentioned before.

“C:\Program Files\alipay\alieditplus\AlipaySecSvc. exe”

: “C:\Program Files\alipay\SafeTransaction‘\TacbaoProtect. exe”

Figure 25. An example of clustering.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

4223

Data correlation-based analysis method for memory forensics

Firstly, the processes were correlated by father—son
relation. We obtained the complete process list, which
includes the hidden ones using the psscan command in
Volatility. Then we correlated these processes based on
father—son correlating method in prototype. Part of the re-
sult is shown in Figure 26.

Then the processes were correlated with users. We first
obtained the relation between processes and SID using the
getsids command in Volatility. In order to find the true
user, we filtered the universal identifiers of system. S-1-
5-21-2052111302-1085031214-682003330-1003 is the
only remaining SID. After searching this SID in registry,
we found that the username is A. The final result of
process—user correlating is shown in Figure 27. We find
that many processes are correlated with A.

Finally, the processes were correlated with files. This
can be implemented with the help of windbg, which is a
debug tool provided by Microsoft. According to the

X. Fu, X. Du and B. Luo

correlation graph in Figure 27, the processes created by
user A (such as word, QQ, and outlook) will be analyzed
first. Using the method mentioned in Section 4.1, we
found that process outlook was correlated with file pass-
word (Figure 28).

Based on the aforementioned correlation graphs, we can
infer that file password was sent as an attachment by out-
look. Because user A is the owner of process outlook,
and A is the only account in system, we can infer that this
account may be misused by the criminal.

6.2. Investigation case 2

This scenario was a simulation of the malware installation
on a computer. Suppose that a criminal has obtained the
username and password of a certain user on a computer
and logs onto this computer using this account. Then he

Figure 26. The father—son relation graph in case 1.

‘\{meolsp

< QQExemal

User A

- PSS A A — .
xp]orcr\ (TXPIalronl> <IfAuloC0nnfE/> '\/\\;Vuauql\ C Thundcﬁ)

//

_ -

- —
y e .
(ouiooc) (XeLiveu’

v

</}hunderPlutfon; /)

Figure 27. The user—process correlation graph in case 1.

processor number 0, process BlalSdal

PROCESS Slal9dal SessionId: 0 (id: 02£4

Peh: 7££d7000 ParentCid: 0268

DirBase: 0a3c0240 CObjectTable: e23ce2f8 HandleCount: 1738.

Image: OUTLOOK.EXE

Ofac: Object: 81d773d0 Grantediccess:

Cbject: 81d773d0 Type: (BZlebe70) File
ObjectHeader: 81d773b8 (old version)

HandleCount: 1 PointerCount:

00100001 Entry: elOfbfs8

Directory Object: 00000000 Namwe: \my)\password.docx

4224

Figure 28. The correlation between process outlook and file password.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

X. Fu, X. Du and B. Luo

Data correlation-based analysis method for memory forensics

0O00O0D4FD 00 OO 00 0O 53 46 S2 2D 00 OO 0D 0O 53 46 52 41 SFR- SFRA
00000500 00 OO0 00 68 00 74 OO0 74 00 70 00 34 00 2F 0O 2F hetvp://
00000510 00 64 00 6C DO 73 00 77 00 2E 0O 62 00 6100 69 dlsw.bali
0000DS20 00 64 00 75 00 2E 00 63 00 6F 00 6D OO 2F 00 73 du.com/ s
0000DS30 00 77 00 2D 00 73 00 65 00 61 00 72 00 63 00 68 2 w-search
00000540 00 2D 00 73 00 70 00 2F 00 73 00 6F 00 66 00 74 -sp/ so £t
0000DSS0 00 2F 00 39 00 64 00 2F 00 31 00 34 00 37 0034 / 9d/ 1474
0000DS60 00 34 00 2F 00 63 00 68 0O 72 00 6F OO 6D DO 65 4/ AdVare
00000570 00 33 00 34 00 2E OO0 30 00 2E 00 31 00 38 00 34 .Win3z .U
00000580 00 37 00 2E 00 31 00 31 00 36 00 6D 00 2E DO 31 def.fvr
00000590 00 00 00 0O 00 00 00 OO 00 00 00 0O OO0 0O DO 0O
Figure 29. A record in Taskdb.
downloads a malware and installs it on this computer. This 11‘“‘:33533‘%55&“}59353’1“““ 0x130
: : +0=004 ingVpn =1
malware will Tun wk‘lenever' the system is started. 105008 Docny 082027348 _MHVAD
In order to investigate this case, we will use the commu- +0x00c LeftChild (null)
. . . +0x010 RightChild {null)
nication relation, process—user relation, process—file rela- +0x014 u _ unnamed
. : 10018 Controlirea 0x81d73d88 _CONTROL_AREA
tion, and process—network relation. +0x01c FirstPrototypePte : Oxelblie20 _MMETE
Firstly, the processes are correlated by father—son rela- :g:ggg &;S‘CD““G“D“SP". : uﬁ:},gﬂéﬁ“ —MMPTE
tion and then they are correlated with users. The method lkd> dt nt!_CONTROL_AREA 0x81d73d8s
. . . . +0=000 Segnent : Oxelb0lde0 _SEGMENT
is the same as case 1, so we will not provide the details +02004 Dereferencelist "LIST ENTRY [0x0 — 0x0]
: +0x00c NumberOfSectionReferences : 1
here. In the next step, the processes were correlated W}th +0%010 NumberOfPénReferences . 0
files. We found that process Thunder was correlated with +02014 NumberOfMappedViews : 0xll
A .) +0x018 NumberOfSubsections : 1
a file taskdb. We obtained this file on this computer and +0x01a FlushInProgressCount : 0
di ine Winh Th It is sh in Fi 29 +0x01c NumberOfUserReferences : Oxl2
opened it using Winhex. The result is shown in Figure 29. +0x020 u - innaned
+0x024 FilePointer (null)
We found that taskdb was the database for Thunder. It 105028 VaitingFosDeletion . (aull)
stored all the downloading tasks of Thunder. Moreover, +0=02c ModifiedUriteCount :
+0x02e NumberOfSystemCacheViews : 0

from these records, we found that a file named adware.
win32.undef.fvr was downloaded by Thunder.

Then we correlated processes by shared memory com-
munication. We found that several processes communi-
cate with Process IEXPLORER, including Thunder. The
correlating steps are as follows. Firstly, the VAD nodes
of IEXPLORER were obtained (Figure 30). Secondly,
for mapped VAD nodes, we found the node whose
FilePointer was null by checking its _MMVAD and
_CONTROL_AREA (Figure 31). That means this node

process: IEXPLORER

1kd> !vad 81b3£0e0

VAD level start end commi t

8le651e8 (3) 54b0 55af 2 Private READWRITE
81e80450 (2) 550 S6af 2 Private READWRITE
81£04588 (1) 56b0 56d1 34 Private READWRITE
8lalff10 (2) 56e0 572¢ 77 Private READWRITE
81c917e0 (3) 5730 5740 0 Mapped READONLY
81cd20b8 (4) 5750 5750 1 Private READWRITE
81£d9bd8 (0) 5770 Sb6f 925 Private READWRITE
81cBach8 (1) 5670 5b71 0 Mapped READONLY
81f3eedd (3) 5b80 ScTf 12 Private READWRITE
81f5ddad (4) 5¢80 5c88 9 Private READWRITE
8lbcldés (5) 5¢90 Sed? 72 Private READWRITE
81¢328e0 (6) Sced Scel 2 Private READWRITE
820dc6al (2) 5¢f0 Scfl 0 Mapped READONLY
81c¢d9d98 (-1) 5400 5£8b 652 Private READWRITE
81c4a358 (4) 5£90 608f 2 Private READWRITE
81e85e88 (3) 6090 B18f 2 Private READWRITE
81d85b£8 (2) 6190 628f 255 Private READWRITE
81d882¢8 (6) 6290 638F 2 Private READWRITE
81c2d8c8 (5) 6390 640c 0 NMapped READWRITE
8lbcha3d (6) 6410 648c 0 Mapped READWRITE
82039418 (4) 6490 658f 2 Private READWRITE
81cfT0e0 (3) 6590 668f 12 Private READWRITE
81b384c8 (4) 6690 6620 0 Mapped READONLY
81638468 (1) 66d0 66e0 0 Mapped READONLY
81a18480 (3) 6650 6650 1 Private READWRITE
8209£3b0 (2) 6700 6TEF 3 Private READWRITE
81b2dced (3) 6300 6800 0 Mapped READONLY
81c8dab8 (4) 6810 684f 6 Private READWRITE
81e768c8 (0) 6850 6850 0 Mapped READONLY
8157698 (4) 6360 6860 0 Mapped READONLY

Figure 30. The VAD node of IEXPLORER.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Figure 31. VAD and ControlArea.

represents a block of shared memory. Thirdly, the _SEG-
MENT structure was checked to obtain the value of
ulattribute (Figure 32). As mentioned in Section 5.1.1,
ul points to the process that created this shared memory.
So we obtained an address 81b142c0. After executing the

lkd> dt nt!_SEGMENT Ozelb01lde0
+0=000 ControlhArea : 02B81d73d88 _CONTROL_AREA
+02004 TotalNumberOfPtes : 3
+02008 NonExtendedPtes 3
+0x00c WritablelUserReferences : 0
+0x010 SizeOfSegment 03000
+0x018 SegmentPteTemplate : _MMPTE
+0=020 NumberOchmnlttadPages I
+0x024 ExtendInfo (null)
+0x2028 SystemImageBase (null)
+0x02c Basediddress (null)
+0=030 ul __unnamed
402034 w2 __unnamed
+0x038 PrototypePte Orelb0le20 _MMPTE
+0x040 ThePtes [1] _MMPTE
lkd» dd Oxzelb01de0
elb0lell 81bl42c0 elb0le20 00000000
elb0le20 181bd163 181bel63 80000000
elb0le30 17794123 0001040c 51626453
el624cf8 elb24cis

elblledld 1c060401

elb01e50 e25c3eal elb01e58 =1b01e58

elb0les0 00000000 81c3dcB80 00000000
0c070401 61564d43

elb01e70 00010406
elb0le80 002c0000 80000004 00000000

+ 0=030
01760000
80000000
80000000
8208d9a8
elécd748
00010002
6d695346
00166b76

Figure 32. The value of u1 in _SEGMENT.

lkd> !object 81bl42c0

Object: 81bl42c0 Type: (821b%e70) Process
ObjectHeader: 81bl42a8 (old version)
HandleCount 3 PointerCount: 205

Figure 33. The result of lobject.

4225

Data correlation-based analysis method for memory forensics

IEXPLORER

X. Fu, X. Du and B. Luo

TPAutoConnect

Figure 34. The communication correlation graph based on shared memory for IEXPLORER.

command !object in windbg, we found that this address
really stored a process (Figure 33), which was Thunder.
That means IEXPLORER communicated with Thunder
using shared memory. So we can infer that the criminal
may have opened a website using IE and downloaded a
malware adware.win32.undef.fvr using Thunder.

In fact, many processes communicated with IEXPLORER
using shared memory. The correlation graph is shown in
Figure 34.

Then the processes are correlated with the network.
We obtained the TCP connections created by Thunder
using the connscan command in Volatility. From the
result, we can obtain the IP address of the downloading
tasks.

Finally, in order to confirm whether adware.win32.
undef.fvr was a malware, we check the Task Scheduler in
this system, and we found that this program will run when-
ever this system starts. After searching for the introduction
of adware.win32.undef.fvr on the Internet, we confirm it is
a malware.

7. CONCLUSION

This paper presents an automatic memory analysis meth-
odology based on data correlation. Through analyzing
key OS data structures and utilizing a clustering algo-
rithm, this methodology can discover the relationships
among processes, files, users, DLLs, and network connec-
tions. Then it organizes this data into correlation graphs
so as to disclose the meaning of evidence in a high
semantic level. Compared with only providing informa-
tion to investigators, our experiments have proven that
these correlation graphs can help investigators find
hidden criminal behaviors and reconstruct the criminal
scenarios. The limitation of our methodology is that it
will be affected by the change of OS versions, because
the data structures we based our methods on may change
in different versions. So in the future, we will try to find
another platform-independent methods.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (61100198/F0207, 61100197/

4226

F0207), as well as the US Army Research Office under
the grant WF911NF-14-1-0518.

REFERENCES

1. Stevens RM, Casey E. Extracting windows com-
mand line details from physical memory. Digital
Investigation 2010; 7(5):57-63.

2. Hargreaves C, Chivers H. Recovery of encryption keys
from memory using a linear scan, Proceedings of the
2008 third international conference on availability,
reliability and security(ARES’2008) 2008; 1369-1376.

3. Schuster A. Searching for processes and threads in
Microsoft Windows memory dumps. Digital Investi-
gation 2006; 3(1):10-16.

4. Schuster A. Pool allocations as an information source in
windows memory forensics, Proceedings of IT-incident
management & IT-forensics(IMF’2006) 2006; 104—-115.

5. Bilby D. Low down and dirty: anti-forensic rootkits,
Proceedings of Ruxcon’2006, 2006; 34—41.

6. Zhang R, Wang L, Zhang S. Windows memory analy-
sis based on KPCR, Proceedings of Information
Assurance and Security (IAS°2009) 2009; 677-680.

7. Dolan-Gavitt B. Forensic analysis of the windows regis-
try in memory. Digital Investigation 2008; 5(1):26-32.

8. Okolica J, Peterson GL. Windows operating systems
agnostic memory analysis.
2010; 7(1):48-56.

9. Ionescu A, Russinovich ME, Solomon DA. Microsoft
Windows Internals. USA: Microsoft Press, 2009; 56-89.

10. Dolan-Gavitt B. The VAD tree: a process-eye view of

Digital Investigation

physical memory. Digital Investigation 2007; 4(2):
62-64.

11. Van Baar RB, Alink W, Van Ballegooij AR. Forensic
memory analysis: files mapped in memory. Digital
Investigation 2008; 5(3):52-57.

12. http://code.google.com/p/volatility/, Volatility main-
tained by Volatility Foundation, 2014.

13. Duan YH, Fu X, Luo B, Wang ZQ, Shi J. Detective:
automatically identify and analyze malware processes
in forensic scenarios via dynamic-link libraries.
Proceedings of ICC 2015, 2015; 1-6.

Security Comm. Networks 2015; 8:4213-4226 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://code.google.com/p/volatility/

