
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8:4213–4226

Published online 6 September 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1337
RESEARCH ARTICLE

Data correlation-based analysis methods for automatic
memory forensic
X. Fu1, X. Du2* and B. Luo1*
1 Software Institute, Nanjing University, Nanjing, China
2 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
ABSTRACT

Memory forensics is an important technique for protecting network security and fighting against computer crimes. It has
developed greatly in the past decade, because memory can provide more reliable information that other evidence sources
do not contain. However, nowadays, when investigating network criminal cases, the Gigabyte (GB) and even Terabyte (TB)
level memory and many such dumps have made memory analysis a difficult task. And investigators usually have to deal with
complex operating system (OS) data structures, which they have little knowledge of. So how to analyze memory evidence
automatically so as to find the hidden criminal behavior and reconstruct the scenario in an understandable way has become
an important problem. This paper presents an automatic memory analysis methodology based on data correlation. Through
analyzing key OS data structures and utilizing a clustering algorithm, this methodology can discover the relationships among
processes, files, users, Dynamic-link library (DLLs), and network connections. By describing these relationships as correlation
graphs, our methods can reorganize these independent memory evidences and disclose their meanings in a high semantic level.
Experiments have proved that these correlation graphs can help investigators find hidden criminal behavior and reconstruct the
criminal scenarios. And as we know, now, little work is in this field. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS

process correlation; memory forensics; event reconstruction; memory evidences analysis; clustering

*Correspondence

Xiaojiang Du, Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U. S. A.
E-mail: dxj@ieee.org
Bin Luo, Software Institute, Nanjing University, China.
E-mail: luobin@nju.edu.cn
1. INTRODUCTION

Memory forensics is the subarea of computer forensics,
which is a kind of important technique for protecting security
of network and fighting against computer crimes. In the past
decade, memory forensics has developed greatly because
memory can provide information that disks do not contain,
such as running processes, network connections, and open
ports. Moreover, although the binary codes can be encrypted
or obfuscated, all illegal processes still have to be executed in
memory and leave some footprints inevitably. So evidence
from memory is more reliable. Because of these advantages,
memory forensics has absorbed more and more attention
recently. However, current work in this field mainly focuses
on how to reliably collect evidence, such as memory dumps.
Little work is about how to analyze the evidence automati-
cally. Nowadays, with the development of computer hard-
ware, the storage capability of memory has grown from
Megabyte (MB) to TB level. Moreover, the widespread use
Copyright © 2015 John Wiley & Sons, Ltd.
of network and cloud computing has made investigators of-
ten face many memory dumps. They usually have to deal
with a large quantity of memory data and complex OS data
structures, which they have little knowledge of. So how to
analyze memory evidence automatically so as to find the hid-
den criminal behavior and reconstruct the criminal scenario
in an understandable way has become an important problem.

This paper presents an automatic memory analysis
methodology based on data correlation. Through analyzing
key OS data structures and utilizing a clustering algorithm,
this methodology can discover the relationships among
processes, files, users, DLLs, and network connections.
The center of these relationships is the process. These rela-
tionships can be divided into two categories, that is, the
relationship between process and process and the relation-
ship between process and other memory data. The first kind
of relationship includes father–son relation, communica-
tion relation, and service relation. And the second kind
of relationship includes process–file relation, process–
4213



Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
DLL relation, process–user relation, and process–network
relation. By describing these relationships as correlation
graphs, our methods can correlate this independent memory
evidence and disclose their meanings in a high semantic
level. Compared with other memory analysis methods,
our methods are the first way that integrates all kinds of data
in memory and presents the relationships among them with
correlation graphs. Some experiments have proved that
these correlation graphs can help investigators find hidden
criminal behaviors and reconstruct the criminal scenarios.
2. RELATED WORK

Current memory analysis methods can be divided into four
categories: the string searching-based method, the memory
scan-based method, the signature-based method, and the
key OS data structure-based method.

The string searching-based method is the earliest mem-
ory analysis method. It was popular in earlier years because
of its simplicity. However, in order to use this method,
investigators must already know some keywords of the
investigated case, for example, the command name or the
process ID. The work of Stevens and Casey [1] is an exam-
ple of this kind of method. In this paper, the historical
records of command lines are searched to analyze the state
of the current system. This method is fit for almost all cases
and can be used as the complement of other analysis
methods, but it needs much manual intervention, and the
results often contain much noise.

The memory scan-based method is a brute force searching
way [2]. It scans each byte in the whole memory so as to
obtain the information required, so the time cost of this
method is high and even intolerable in current situations.

The signature-based method has to predefine some
signatures by certain rules [3]. And then it will scan the
memory based on these signatures to find interesting infor-
mation. In 2006, Schuster presented several such kinds of
methods to analyze processes and networks. The structures
of process and thread were used as the scanning signature,
and the scanning results were compared with the standard
process list to identify the malwares. In addition, they found
the allocation of sockets based on the tag of non-paged pool,
so that the socket list and network connection list could be
obtained [4]. Obviously, its efficiency and accuracy are
higher than the first two methods, but it cannot find the un-
known behaviors that lack signatures, and its performance
also cannot meet the requirement of current big data cases.

The most popular memory analysis method is based on
OS data structure, that is, recovering key OS data struc-
tures from the memory dump and analyzing them to find
interesting evidence. EPROCESS is one of the most
important and useful structures in memory. Memparser
used its ActiveProcessLinks attribute to obtain the process
list [5]. Zhang and Wang [6] used the state information in
EPROCESS to create the timeline of forensics. Besides
EPROCESS, the registry of Windows is also a valuable
database for forensics. Some information about the system
4214 Secur
could be obtained from registry [7]. In addition, Okolica
and Peterson [8] presented a method to obtain the list of
socket and network connection by analyzing the tcpip.sys.
Ionescu et al. [9] presented a method to identify the DLL
injection attack. This is implemented by traversing the
doubly linked list of DLLs in Process Environment Block.
Dolan-Gavitt [10] and Van Baar and Alink [11] obtained
the DLLs and files based on Virtual Address Descriptors
(VAD). In short, analysis methods based on OS data struc-
tures are accurate and widely used. However, it depends on
the data structures of OS. If the structure changes in different
versions of OS, this kind of method should also be changed.

The method in this paper is also based on OS data struc-
tures. However, compared with other memory analysis
methods, our method is the first way that integrates all
kinds of data in memory and presents the relationships
among them with correlation graphs. Current methods
usually aim at one kind of data structure. This kind of anal-
ysis is isolated and depends on much manual intervention,
and the illegal behavior identification and the event recon-
struction are still completed manually by investigators.
Moreover, no method focuses on the relations between
memory data. Even Volatility [12], the famous forensic
framework, only provides information to investigators.
Our methods can discover the relationships among pro-
cesses, files, users, DLLs, and network connections; and
these relationships are represented as correlation graphs,
which are easy to understand. Our experiments have
proved that these correlation graphs can help investigators
find hidden criminal behaviors and reconstruct the criminal
scenarios.
3. BACKGROUND AND OVERVIEW

3.1. Motivation

Evidence analysis is one of the key phrases in forensics.
The main work in this phrase includes identifying illegal
behaviors from normal ones and reconstructing the criminal
process. However, with the growth of storage capability
and the widespread use of network and cloud computing,
current investigators often have to simultaneously face
many memory dumps that have TB level data and complex
OS data structure. Although some forensic tools such as
Volatility can recover most memory data from memory
dumps, these data are isolated. Investigators still have to
identify criminal evidences and correlate them manually.
In fact, if the relationships among memory data can be
found and represented automatically in the early stage of
analysis, not only event reconstruction but also criminal be-
havior identification will become easier than before. That is
due to the abnormal relationship, such as outlook reading a
password file, that usually implies an illegal behavior. In
addition, once one piece of criminal evidence is obtained,
investigators can find more evidence following the relation-
ships among them. Then the criminal behavior will be more
difficult to hide.
ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 1. _OBJECT_HEADER.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo
3.2. Challenge

In order to find the relations among different kinds of infor-
mation, some challenges have to be solved.

(1) There is a larger quantity of data and relationships
in memory, how to select the useful ones?

As the core of computer systems, memory usually con-
tains many kinds of information, for example, the key data
and code of operation system, drivers, and applications.
Moreover, the type, the structure, the location, and the
semantics of this data are often unknown for investigators
and will even change dynamically. The relationships among
this data are also diverse. All these will make the analysis
task more difficult.

(2) How to disclose these relationships reliably?

Even when we know there is a certain relationship
between data (e.g., father–son relation between processes),
how to disclose this relationship reliably and automatically
is still a difficult task, because criminals could tamper with
the key data, which indicate this relation so as to hide
behaviors. Direct kernel object manipulation is one such
example. Hackers tamper the link of process list, and then
the illegal process will not be shown.

(3) How to deal with the implicit relationship?

Some relationships, for example, several processes serv-
ing for the same application, cannot be indicated by memory
data. However, this kind of relationship is very important for
forensics. So how to find these implicit relationships is also
a challenge.

3.3. Methods overview

In computer forensics, the most important information in
memory is process. It represents the software and the
services running in the system. So considering challenge
1, we choose a process-centric strategy for analyzing
memory evidence. The relationships can be dived into
two categories, that is, the relationship between process
and process and the relationship between process and
other memory data. In order to show the first category
of relationship from different aspects, this paper presents
some methods of finding the father–son relation, the com-
munication relation, and the service relation between
processes. For the second category, this paper mainly
analyzes the process–file relation, the process–DLL rela-
tion, the process–user relation, and the process–network
relation. These relationships are chosen because they are
useful for computer forensics. Considering challenges 2
and 3, we have designed a set of correlation methods based
on both OS data structures and the clustering algorithm. For
the relationships that have indicators in memory (usually
certain OS data structures), we will disclose them by
Security Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd
DOI: 10.1002/sec
analyzing these data structures and choose the most reliable
data structures as the indicator. As for the implicit relation-
ships, we will discover them using the clustering algorithm.
Now the most common operating system that the investiga-
tors met is still Windows XP, so our implementation and
experiments are both based on Windows XP SP2.
4. CORRELATION METHODS FOR
PROCESS AND OTHER MEMORY
DATA

4.1. Correlating process and files

Current memory forensic methods are able to find and
recover the files in memory, but they cannot correlate these
files to processes. However, in order to reconstruct the
criminal scenario, investigators often need to know which
process creates, reads, or writes certain files. So this paper
presents an _OBJECT_HEADER-based method for corre-
lating processes and files.

In Window’s memory, each file object is represented by a
_FILE_OBJECT. It is an important data structure that con-
tains much file-related information, for example, the name
of file. However, it does not contain which process owns this
file. Fortunately, both process and file exist as objects in
memory, and every memory object has an _OBJECT_
HEADER (Figure 1). We can obtain the required informa-
tion from this structure. The size of _OBJECT_HEADER
is always 0x018. In other words, if we look back 0x18
from the base address of each memory object, we can ob-
tain its _OBJECT_HEADER. There is an attribute named
HandleInfoOffset in _OBJECT_HEADER. It stores the
offset of this file’s handle info. According to this offset
and the base address of each memory object, we can
obtain the handle info that is represented by two words.
As for file object, the first word is the address of its owner
process. So we can find the relation between file and
process based on this address.

For example, we can create a test file named test.docx
and look for its owner process. Using the method men-
tioned earlier, we obtained _FILE_OBJECT and _OB-
JECT_HEADER of test.docx as in Figure 2. According to
the value of HandleInfoOffset in _OBJECT_HEADER,
we knew that the handle info was in 0x8 bytes before _OB-
JECT_HEADER. After reading the first word of handle
4215.



Figure 2. _FILE_OBJECT and _OBJECT_HEADER of test.docx.

Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
info by little endian, we obtained an object address, that is,
81bc4020. Then we read this address and obtained a pro-
cess named winword (Figure 3), so we know that the owner
process of test.docx is winword.
4.2. Correlating process and DLLs

In Windows, system application programming interface
(APIs) are usually implemented as DLLs. So we can infer
the function of a process by analyzing what DLLs it loads,
which is helpful for investigating malwares in memory.
Figure 3. The value of handle inf

Figure 4. _HAND

4216 Secur
The DLLs that a process loads are also one kind of
handle. So they can be found with _HANDLE_TABLE
(Figure 4) of a process. _HANDLE_TABLE has an attri-
bute named HandleTableList that points to a doubly
linked list of handles. This table can be traversed by two
pointers, that is, Flink and Blink. There are many types
of handles, for example, files, processes, registry keys,
and named pipes. In order to find DLLs, we should
traverse the handle table and look for the one whose type
is file and whose name ends with DLL. These handles are
just DLLs the process loads. Because Volatility already
has this function, we use it in our experiment directly.
o and the object it points to.

LE_TABLE.

ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 6. _TOKEN.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo
4.3. Correlating process and users

Knowing who created certain processes is important for
reconstructing the criminal scenario, so it is necessary to
correlate users with processes. Current memory forensic
methods can only obtain the Security ID (SID) of users.
They convert the SID into users’ names. But the latter is
more useful for forensics, and there is also no information
in memory about which user an SID maps into. Fortu-
nately, some clues can be found in register. So this paper
presents a correlation method based on register.

A process is described by _EPROCESS in memory
(Figure 5). _EPROCESS is one of the most important
data structures in memory. It contains an attribute named
Token that points to a _TOKEN structure (Figure 6).
Much security-related information is contained in this
structure, including the SID of users and groups. So we
can obtain the SID of users that own this process using
this structure.

In Windows, each user has a unique SID. However,
according to the information in _TOKEN, we found that
many SIDs map to a process, and most of these SIDs are
the universal identifiers of system, which exist in almost
every process. So they should be filtered at first, and the re-
mainders are the SIDs of users. These universal identifiers
are recorded in Window’s document on system universal
identifiers, so they can be filtered based on this document.
After obtaining the SIDs of users, we could look for the
username of these SIDs in registry. HKLM\SOFTWARE
Figure 5. _EPROCESS.

Security Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd
DOI: 10.1002/sec
\Microsoft\ WindowsNT\CurrentVersion\ProfileList records
all SIDs in this system. If we search the ProfileImagePath
attribute of users’ SIDs in the ProfileList, we can extract
the username. So based on the aforementioned method, the
user can be correlated to the process.

For example, we can obtain the SIDs of some processes
as in Figure 7. Among these SIDs, only S-1-5-21-
2052111302-1085031214-682003330-1003 is not the uni-
versal identifier. When we look for this SID in the ProfileList
of registry, the result is as Figures 8 and 9. From the
ProfileImagePath, we can know that the username is a. So
user a can be correlated with all processes that have the
SID S-1-5-21-2052111302-1085031214-682003330-1003.
4.4. Correlating process and network

Criminals often need to transmit information and instructions
through a network. So knowing which process is related to
certain network information is important for investigators.
Based on this relationship, investigators can know the IP of
the host that communicates with a certain process and even
obtain the content of the communication.

Windows uses _TCPT_OBJECT (Figure 10) to describe
a TCP connection. _TCPT_OBJECT contains plenty of
network-related information, such as the pointer to next
TCP object, the destination IP of the TCP connection,
the local IP, the remote port, the local port, and the Pid
of the process that creates this connection. So we can cor-
relate the process and TCP connection based on Pid.
_TCPT_OBJECT has a special tag TCPT (0x54435054),
so we can locate this data structures with a signature-
based scanning method. In addition, the next TCP
object can be obtained following the next attribute in
_TCPT_OBJECT. So we can find all the TCP connec-
tions and correlate them according to processes. Because
Volatility already has this function, so we use it in our
experiment.
4217.



Figure 8. The SIDs in ProfileList.

Figure 7. The SIDs of some processes.

Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
5. CORRELATION METHODS FOR
PROCESS AND PROCESS

5.1. Communication relation between
processes

The communication relation between processes is an im-
portant relationship for reconstructing a criminal scenario.
Figure 9. THE detailed information of S-1-5-21-2

4218 Secur
In Windows, processes are able to communicate in differ-
ent ways. This paper chooses three most popular commu-
nication methods to correlate processes, that is, shared
memory, file mapping, and pipeline.
5.1.1. Correlating processes by shared memory.
Shared memory means certain memory blocks exist in

the virtual address space of several processes, so they can
communicate by sharing these blocks. As we know, al-
though this relation is useful for forensics, there are still no
memory forensic tools that consider it. This is probably
due to _EPROCESS having no knowledge of this relation,
and other data structures also cannot indicate it directly. In
this paper, we present a way to identify this relation. It
mainly includes three steps.
052111302-1085031214-682003330-1003.

ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 10. _TCPT_OBJECT.

Figure 12. _CONTROL_AREA.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo

Se
DO
Step 1. Obtaining the VAD tree of the process being in-
vestigated. _EPROCESS has an attribute named
VadRoot that points to the address of VAD
tree’s root node. Every node in VAD tree is an
_MMVAD structure (Figure 11), which de-
scribes one block of virtual address space
assigned to this process. The StartingVpn and
EndingVpn attributes are the starting and end-
ing addresses of this block. The LeftChild and
RightChild attributes point to the left and right
child nodes of the current node. So the VAD
tree can be built using these pointers. It should
be noted that every VAD node is either pri-
vate or mapped. A private VAD node means
that the virtual address space this node de-
scribes is private to the process. A mapped
VAD node means that the virtual address
space this node describes is shared with other
processes, so when we correlate processes by
shared memory, we only consider this kind
of VAD node.

Step 2. Obtaining the shared memory block by the File
Pointer attribute of VAD node. From Figure 11,
we can find that _MMVAD has a ControlArea
attribute that points to a _CONTROL_AREA
structure. _CONTROL_AREA (Figure 12) de-
scribes the control information of this VAD
node. It includes the pointers to files, shared
memory, buffered data, and so on. The
FilePointer attribute in _CONTROL_AREA is
a pointer to _FILE_OBJECT. After observing
all the VAD nodes a process contains, we find
that the value of FilePointer falls into two cat-
egories. Firstly, it is a normal hex address in
most cases. That means it points to a file that
can be obtained with this address. In rare
cases, FilePointer is null. According to the
Figure 11. _MMVAD.

curity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd
I: 10.1002/sec
Windows official documents, that means
_CONTROL_AREA describes a block of
shared memory, and this block is used to com-
municate between processes. In other words, if
we find that the _FILE_OBJECT attribute of
the VAD node points to a block of shared mem-
ory, we can infer that the owner process of this
VAD node is communicating or waiting to
communicate with other processes with this
shared memory.

Step 3. Correlating processes based on _SEGMENT
attribute. From Figure 12, we can find that
_CONTROL_AREAhas a Segment attribute that
points to a _SEGMENT structure (Figure 13).
_SEGMENT has two attributes named u1 and
u2. We find that if FilePointer is null, then u1
points to the process that created this shared
memory. We also observe that the values of u1
can be divided into two kinds. (i) It is equal to
the address of the VAD node’s owner process,
whichmeans that this process is the creator of this
shared memory. (ii) It is different from the
address of the VAD node’s owner process. This
means that it points to a process that creates
this shared memory and communicates with
the VAD node’s owner process with this
shared memory. So we can correlate the two
processes.

For example, we want to test which processes the pro-
cess Word communicates with by shared memory. Firstly,
we obtain the VAD node of the process Word (Figure 14).

Then for all mapped VAD nodes, we choose the one
whose address is 820e1c80 and obtain its _MMVAD and
Figure 13. _SEGMENT.

4219.



Figure 14. The VAD node of process word.

Figure 16. _SEGMENT and the value of u1.

Figure 17. The object type in address 81b142c0.

Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
_CONTROL_AREA based on the aforementioned method.
The result is shown in Figure 15. We find that the value of
FilePointer is null, which means that this node is a block
of shared memory.

Then we check the u1 attribute in _SEGMENT. The
result is shown in Figure 16. We obtain the object accord-
ing to the value of u1 and find that the type of this object is
a process, and the name of this process is csrss. The
detailed information is shown in Figures 17 and 18.

After checking all mapped VAD nodes of Word, we can
obtain all the processes that communicate with Word by
shared memory. They can be presented using the correla-
tion graph in Figure 19.

5.1.2. Correlating processes by file mapping.
File mapping communication means that a process

regards a file as memory blocks in its address space, so it
can read and write the contents of this file by simple
pointer operations instead of complex file Input/Output
(I/O) operations. Windows allows several processes to
access the same file mapping object. Each process can
Figure 15. _MMVAD and _CONTROL_AREA of selected VAD
node.

4220 Secur
receive a pointer in its address space and use this pointer
to read or write the same file. By this way, several pro-
cesses can communicate with each other. As far as we
know, there is no memory forensic tool considering this
kind of communication. In order to identify this communi-
cation, this paper presents a correlating method based on
the process–file relation we mentioned in Section 4.1.
Firstly, the processes and files in memory are correlated
by the method in Section 4.1. Secondly, if several pro-
cesses are correlated with the same files, there should be
file mapping-based communication between them.

5.1.3. Correlating processes by named pipelines.
Pipeline is a communication channel that has two ends.

The processes holding the handle of two ends can commu-
nicate through this channel. There are two types of pipe-
lines, that is, named pipelines and anonymous pipelines.
The latter has no name and cannot be obtained from the
memory, so this paper only focuses on named pipelines.
We can obtain the pipeline based on the handle informa-
tion of the process and then correlate them. We have not
found other forensic methods that consider this relation.

A name is given to the named pipeline after it is created.
Then any process using this pipeline could open it using
this name to obtain the handle. So at first, we obtain the
handle list of each process and then obtain the name of
the pipeline in this list. The handle list of each process is
described by _HANDLE_TABLE, which is pointed to by
the ObjectTable attribute in _EPROCESS. The correlating
method is similar to the method in Section 4.2. Firstly, the
handle list of each process is obtained and traversed. All
handles of type named pipeline will be filtered. Then based
on the information of these handles, we can extract the
name of the pipeline. Finally, the processes that use the
same named pipeline can be found and correlated.
ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 18. The detailed information of process in address 81b142c0.

Figure 19. The shared memory correlation graph of word and other processes.

Figure 20. NamedPipe.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo
For example, a handle of type named pipeline is shown
in Figure 20.

And a correlation graph of processes communicating by
named pipeline is shown in Figure 21.

5.2. Father–son relation between processes

In Windows, every process has one father and several
sons except the idle process. Now almost all memory fo-
rensic tools can list the running process in memory. How-
ever, most of them can only provide the list but never
correlate these processes. Although Volatility has a pstree
command, which can present processes in father–son rela-
tion, it misses the hidden processes. So this method is not
complete for forensics. This paper presents a novel
method that not only can correlate father and son pro-
cesses but also will not miss hidden processes. It mainly
includes two steps.

Step 1. Finding all running processes in memory. A sim-
ple way to obtain the process list is based on the
ActiveProcessLinks attribute of _EPROCESS. It
is a doubly linked list that can point to the next
and the previous processes in the list. However,
criminals can remove their processes from this
Figure 21. A correlation graph of processes

Security Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
list with direct kernel object manipulation tech-
nique, so it is unreliable to obtain the process list
this way. Fortunately, every process obtains its
space from the memory pool with a pool tag, that
is, Proc, so we can find all processes more reli-
ably by scanning this tag. This paper obtains the
process list using this method.

Step 2. The UniqueProcessId and InheritedFromUnique
ProcessId in_EPROCESS represent the ID of
the current process and its father. So according
to the two IDs, father and son can be correlated.
For example, for the process list in Figure 22, we
can generate a father–son correlation graph
shown in Figure 23.
5.3. Service relation between processes

In addition to the obvious relationships such as father–son
and communication relations, there are also some implicit
relationships between processes. For example, some pro-
cesses seem to be independent, but in fact, they cooperate
with and serve the same application. We call this kind of
relationship a service relation. It has not been used in other
communicating by named pipeline.

4221



Figure 22. A process list obtained by Scanning Proc tag.

Figure 23. A father–son correlation graph.

Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
memory forensic methods. However, based on this rela-
tionship, investigators can classify processes, infer the goal
of certain unknown process, and even identify criminal
behaviors.

5.3.1. Correlating processes based on name.
At first, we find this kind of relation using a simple

method, that is, the similarity of process name. Generally,
application developers will give their processes similar
names, such as the same prefix or suffix. For example,
when QQ, a famous instant communication tool in China,
is running, there are four processes in memory, that is,
QQ, QQProtect, QQExternal, and TxPlatform. Three of
them have the same prefix. So we can correlate them by
the similarity of name. However, the process TxPlatform
is missed by this method. So correlating based on name
is simple but not accurate. Another more accurate method
is still needed.

5.3.2. Correlating processes based on DLLs.
Processes often load some DLLs to obtain certain system

services or execute certain tasks. In other word, the list of
DLLs that a process loads can tell us what this process could
4222 Secur
probably do. Moreover, after analyzing about 100 applica-
tions, we find that the processes serve for the same application
that usually loads similar DLLs, so we can cluster processes
based on DLLs. In this paper, we cluster processes using
the Density-based spatial clustering of applications with noise
(DBSCAN) algorithm, which is an efficient density-based
clustering algorithm. The main steps are as follows.

Firstly, for each process, we should obtain the list of
DLLs it loaded. This can be implemented by the method in
Section 4.2.

Secondly, the processes are clustered using the DBSCAN
based on their DLLs. DBSCAN is a density-based clustering
algorithm because it finds a number of clusters starting from
the estimated density distribution of the corresponding
nodes. DBSCAN is also one of the most common clustering
algorithms. We choose this algorithm because of its high
efficiency and the number of clusters need not be predefined.
The framework of our clustering method is shown in
Figure 24. It mainly includes four steps (More details can
be found in our paper [13]).

Step 1. Selecting key DLLs. In order to improve the
performance of cluster, the DLL set is refined.
ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 24. The framework of our clustering method.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo
The total number of DLLs in Windows is
almost 2000, so if all of them are chosen as
clustering attributes, the performance would
be unbearable. So we select some key DLLs
as the base of clustering. This selection follows
two rules: (i) the DLLs loaded by processes
frequently should be selected and (ii) DBSCAN
requires that all samples should be independent.
However, there are many dependencies between
DLLs. So if DLLA depends on DLLB, that is, if
A is loaded then Bmust be loaded, then only A is
selected as representation. Based on the two rules
and after verifying with a training set, about 300
DLLs are selected as key DLLs.

Step 2. Modeling each process into an N-tuple based on
the key DLLs. The N-tuple is defined as fol-
lows. Experiments show that after modeling
each process into an N-tuple, the speed of clus-
tering is improved greatly.

Definition 1. An N-tuple is a sequence of 1 s or 0 s, where n
is a non-negative integer and indicates the number of 1 s or
0 s in the tuple.

Definition 2. The N-tuple of a process means N key DLLs
are organized as an ordered set. If any key DLL is found
in this process, the corresponding bit in the tuple is set to
1; otherwise, it is set to 0.

Step 3. Obtaining appropriate parameter settings by
enumeration. DBSCAN’s definition of a clus-
ter is based on the notion of density reachabil-
ity. Basically, a point q is directly density
reachable from a point p if it is not farther away
than a given distance ε (i.e., it is part of its ε-
neighborhood) and if p is surrounded by suffi-
ciently many points such that one may consider
p and q to be part of a cluster. DBSCAN re-
quires two parameters: ε (eps) and the mini-
mum number of points required to form a
dense region (minPts). It starts with an arbi-
trary starting point that has not been visited.
Figure 25. An exam

Security Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd
DOI: 10.1002/sec
This point’s ε-neighborhood is retrieved, and
if it contains sufficiently many points, a cluster
is started. Otherwise, the point is labeled as
noise. In our implementation, the ε is set to 4
and minPts is set to 2. After enumerating al-
most all possible parameters’ value and testing
the effect, we found that this is the best choice
for our methods.

Step 4. Clustering and outputting the result. For exam-
ple, after clustering the processes in our test
system, we obtained a cluster shown in Fig-
ure 25. We find two processes, that is,
AlipaySecSvc and TaobaoProtect, that belong
to this cluster. In fact, although they have dif-
ferent names, they both serve for the same ap-
plication Alipay. From this example, we can
see that our clustering method can overcome
the shortage of the method in Section 5.3.1.
So they can be used together in real
investigation.
6. EVALUATION

In order to evaluate the effectiveness of our method, we
simulated two different investigation cases. Both of them
ran in VMware, so the memory dumps we obtained in
the experiments were all vmem files. The operating system
we used in the experiments was Windows XP SP2. Now
the goal of our evaluations is only proving the feasibility
and effectiveness of our methods; so in our experiments,
we used both the prototype developed by ourselves and
some functions of current forensic tools (such as Volatil-
ity). In the future, we will develop our independent plug
based on Volatility so as to analyze memory evidence
automatically.

6.1. Investigation case 1

This scenario was a simulation of the spy or identity theft
on a computer. Suppose that a criminal has obtained the
username and password of a certain user on a computer,
and he logs onto this computer using this account. He
already knows that there is a file that contains all kinds
of passwords of this user on this computer. So he searches
this computer and finds a file named password, then he
sends this file to his email address using outlook.

In order to investigate this case, we will use the father–
son relation, process–user relation, and process–file rela-
tion mentioned before.
ple of clustering.

4223.



Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
Firstly, the processes were correlated by father–son
relation. We obtained the complete process list, which
includes the hidden ones using the psscan command in
Volatility. Then we correlated these processes based on
father–son correlating method in prototype. Part of the re-
sult is shown in Figure 26.

Then the processes were correlated with users. We first
obtained the relation between processes and SID using the
getsids command in Volatility. In order to find the true
user, we filtered the universal identifiers of system. S-1-
5-21-2052111302-1085031214-682003330-1003 is the
only remaining SID. After searching this SID in registry,
we found that the username is A. The final result of
process–user correlating is shown in Figure 27. We find
that many processes are correlated with A.

Finally, the processes were correlated with files. This
can be implemented with the help of windbg, which is a
debug tool provided by Microsoft. According to the
Figure 26. The father–son r

Figure 27. The user–process c

Figure 28. The correlation between p

4224 Secur
correlation graph in Figure 27, the processes created by
user A (such as word, QQ, and outlook) will be analyzed
first. Using the method mentioned in Section 4.1, we
found that process outlook was correlated with file pass-
word (Figure 28).

Based on the aforementioned correlation graphs, we can
infer that file password was sent as an attachment by out-
look. Because user A is the owner of process outlook,
and A is the only account in system, we can infer that this
account may be misused by the criminal.
6.2. Investigation case 2

This scenario was a simulation of the malware installation
on a computer. Suppose that a criminal has obtained the
username and password of a certain user on a computer
and logs onto this computer using this account. Then he
elation graph in case 1.

orrelation graph in case 1.

rocess outlook and file password.

ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



Figure 29. A record in Taskdb.

Figure 31. VAD and ControlArea.

Data correlation-based analysis method for memory forensicsX. Fu, X. Du and B. Luo
downloads a malware and installs it on this computer. This
malware will run whenever the system is started.

In order to investigate this case, we will use the commu-
nication relation, process–user relation, process–file rela-
tion, and process–network relation.

Firstly, the processes are correlated by father–son rela-
tion and then they are correlated with users. The method
is the same as case 1, so we will not provide the details
here. In the next step, the processes were correlated with
files. We found that process Thunder was correlated with
a file taskdb. We obtained this file on this computer and
opened it using Winhex. The result is shown in Figure 29.
We found that taskdb was the database for Thunder. It
stored all the downloading tasks of Thunder. Moreover,
from these records, we found that a file named adware.
win32.undef.fvr was downloaded by Thunder.

Then we correlated processes by shared memory com-
munication. We found that several processes communi-
cate with Process IEXPLORER, including Thunder. The
correlating steps are as follows. Firstly, the VAD nodes
of IEXPLORER were obtained (Figure 30). Secondly,
for mapped VAD nodes, we found the node whose
FilePointer was null by checking its _MMVAD and
_CONTROL_AREA (Figure 31). That means this node
Figure 30. The VAD node of IEXPLORER.

Security Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd
DOI: 10.1002/sec
represents a block of shared memory. Thirdly, the _SEG-
MENT structure was checked to obtain the value of
u1attribute (Figure 32). As mentioned in Section 5.1.1,
u1 points to the process that created this shared memory.
So we obtained an address 81b142c0. After executing the
Figure 32. The value of u1 in _SEGMENT.

Figure 33. The result of !object.

4225.



Figure 34. The communication correlation graph based on shared memory for IEXPLORER.

Data correlation-based analysis method for memory forensics X. Fu, X. Du and B. Luo
command !object in windbg, we found that this address
really stored a process (Figure 33), which was Thunder.
That means IEXPLORER communicated with Thunder
using shared memory. So we can infer that the criminal
may have opened a website using IE and downloaded a
malware adware.win32.undef.fvr using Thunder.

In fact, many processes communicated with IEXPLORER
using shared memory. The correlation graph is shown in
Figure 34.

Then the processes are correlated with the network.
We obtained the TCP connections created by Thunder
using the connscan command in Volatility. From the
result, we can obtain the IP address of the downloading
tasks.

Finally, in order to confirm whether adware.win32.
undef.fvr was a malware, we check the Task Scheduler in
this system, and we found that this program will run when-
ever this system starts. After searching for the introduction
of adware.win32.undef.fvr on the Internet, we confirm it is
a malware.
7. CONCLUSION

This paper presents an automatic memory analysis meth-
odology based on data correlation. Through analyzing
key OS data structures and utilizing a clustering algo-
rithm, this methodology can discover the relationships
among processes, files, users, DLLs, and network connec-
tions. Then it organizes this data into correlation graphs
so as to disclose the meaning of evidence in a high
semantic level. Compared with only providing informa-
tion to investigators, our experiments have proven that
these correlation graphs can help investigators find
hidden criminal behaviors and reconstruct the criminal
scenarios. The limitation of our methodology is that it
will be affected by the change of OS versions, because
the data structures we based our methods on may change
in different versions. So in the future, we will try to find
another platform-independent methods.
ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (61100198/F0207, 61100197/
4226 Secur
F0207), as well as the US Army Research Office under
the grant WF911NF-14-1-0518.
REFERENCES

1. Stevens RM, Casey E. Extracting windows com-
mand line details from physical memory. Digital
Investigation 2010; 7(5):57–63.

2. Hargreaves C, Chivers H. Recovery of encryption keys
from memory using a linear scan, Proceedings of the
2008 third international conference on availability,
reliability and security(ARES’2008) 2008; 1369–1376.

3. Schuster A. Searching for processes and threads in
Microsoft Windows memory dumps. Digital Investi-
gation 2006; 3(1):10–16.

4. Schuster A. Pool allocations as an information source in
windows memory forensics, Proceedings of IT-incident
management & IT-forensics(IMF’2006) 2006; 104–115.

5. Bilby D. Low down and dirty: anti-forensic rootkits,
Proceedings of Ruxcon’2006, 2006; 34–41.

6. Zhang R, Wang L, Zhang S. Windows memory analy-
sis based on KPCR, Proceedings of Information
Assurance and Security (IAS’2009) 2009; 677–680.

7. Dolan-Gavitt B. Forensic analysis of the windows regis-
try in memory. Digital Investigation 2008; 5(1):26–32.

8. Okolica J, Peterson GL. Windows operating systems
agnostic memory analysis. Digital Investigation
2010; 7(1):48–56.

9. Ionescu A, Russinovich ME, Solomon DA. Microsoft
Windows Internals. USA: Microsoft Press, 2009; 56–89.

10. Dolan-Gavitt B. The VAD tree: a process-eye view of
physical memory. Digital Investigation 2007; 4(2):
62–64.

11. Van Baar RB, Alink W, Van Ballegooij AR. Forensic
memory analysis: files mapped in memory. Digital
Investigation 2008; 5(3):52–57.

12. http://code.google.com/p/volatility/, Volatility main-
tained by Volatility Foundation, 2014.

13. Duan YH, Fu X, Luo B, Wang ZQ, Shi J. Detective:
automatically identify and analyze malware processes
in forensic scenarios via dynamic-link libraries.
Proceedings of ICC 2015, 2015; 1–6.
ity Comm. Networks 2015; 8:4213–4226 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://code.google.com/p/volatility/

