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Abstract—One of the most logical applications of face
recognition for authentication is on mobile handset devices.
However, face recognition still faces challenges in providing
environment tolerance: being able to compensate for changes in
light conditions within an environment where authentication is
occurring, due to users carrying their mobile handset devices to
different locations with varying and unpredictable sources of
illumination. Existing face recognition systems operate by finding
fiduciary points relative to the area of the entire face, which
becomes their weakness when they are not used in applications
where light conditions are fixed and controlled. This research
investigates Local Binary Patterns (LBP), an image encoding
technique whose origins lie in texture analysis, in order to
overcome the problems faced by existing face recognition systems
and provide tolerance to variable light conditions. This research
aims to utilize LBP on modern mobile handset device hardware
that is “off-the-shelf’: utilizing only the most basic and widely
available onboard imaging hardware and processing capability
provided on mobile handset devices of the present day. We have
performed rigorous experimentation with LBP both on large
databases of images of human faces, as well as developing mobile
handset software that was deployed to real users and tested in a
field environment. Our experimentation indicates that LBP is
capable of being used to develop face recognition systems that
provide environment tolerance, potentially finding practical use
as a component of mobile device authentication applications.

Keywords—computer vision; face recognition;
extraction; mobile computing; authentication.
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It's one of the most prominent clichés of the smartphone
revolution: “Oh one day you will just be able to hold your
phone up to your face and it will recognize you and unlock!”
Call it the flying car cliché of the predicted future of mobile
handset software. However, while the nature of clichés would
expect us to acknowledge these predictions as nothing but
futuristic pipe dreaming, instead face recognition technology is
something that we have come very close to achieving in a
practical-enough context that we can squeeze it into practical
applications and make it work for us. But, one major obstacle
still stands in our way — compensation for variable
environment conditions: bright light or dim light, inside or
outside. The purpose of this research is not only to discover
face recognition systems that are environment tolerant, but also
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to make such a system compact enough to operate on mobile
handset devices in a practical application.

The notion of enviornment tolerant computerized face
recognition is a task that transcends across a broad landscape
of scientific and mathematic discipline. To fully understand
face recognition, we must understand the lineage of past
research efforts that has guided our own research to come to
the conclusions that it has. We need to understand why the
most logical-seeming approaches have historically been the
least effective. To come to understanding required us to take a
very broad survey across the topic's entire research history.

After we discover a face recognition system that is suitable
for fulfilling our objective of environment tolerance, we are
then faced with the additional challenge of getting such a
solution to operate on a mobile handset device. We must look
at the problem from several facets: on one hand, we need a face
recognition system that is tolerant to changes in the
environment: mobile handset devices, for instance, are carried
by their users to all sorts of places with all sorts of light sources
that have different properties. Face recognition that is
environment tolerant is a challenge that has traditionally been
difficult for face recognition systems to overcome. The
challenge is then amplified when whatever solution we develop
then needs to be constructed to be efficient enough to be able to
operate reliably on the limited resources of a mobile device.

The challenges of our research, therefore, are twofold. We
must survey face recognition technologies in order to discover
approaches to face recognition that are theorized to be tolerant
to environment variability per our definition. We must test and
verify that these methods are acceptably accurate enough that
they may be used for the purpose of authentication. And, we
must find a way to make the method that we choose nimble
enough that we can run it in a standalone configuration on a
mobile handset device. If these challenges can be overcome,
then perhaps mobile phone biometric authentication will finally
be able to have its flying car moment.

II. A REVIEW OF CONTEMPORARY FACE RECOGNITION
LITERATURE

Electronic face recognition is a problem that has been under
scrutiny by researchers and mathematicians for more than 50
years, and to this day we still have not been able to develop a
solution that works reliably under any given set of conditions.
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We need to be able to compensate for the environment —
light conditions, specifically — because if the current weather or
what kind of light fixtures you have in your office can throw
off or disable your recognition system, then how can we ever
be able to trust it at all? It is enough of a challenge to develop
face recognition systems that are accurate and reliable under
sterile light — static light sources that never change in strength,
orientation, or wavelength — so to then find a way to
compensate for variable light creates additional challenges.

A. "The Lay Man's Solution": Geographic Feature Mapping

If one were to ask a data scientist that is not familiar with
face recognition — or any person really, computer scientist or
not — how to do face recognition, you may find that their
answer is somewhat predictable. They will logically conclude
that the solution to the problem is focusing on the details of a
face that we as humans believe we are analyzing when we
personally try to identify faces ourselves. When a human is
trying to identify another person, we may focus our attention
on clearly defined geographic features such as the eyes: how
big they are, what color they are, the position and size of the
nose and lips, or we may focus on other distinguishing features
such as eyebrow size and shape or hair color or some other
clearly interpreted detail about someone's face.

But this approach becomes very complicated very quickly.
Sure, we as humans can identify someone's face: we can
identify their eyes and we can identify their nose and we can
identify where those features are relative to other points, but
we as mammals have a complicated visual cortex that has
evolved over millions of years to deduce where these
abstractions exist from within the overwhelming quantity of
raw visual information that is streaming into our heads at all
hours of the day.

The exact specific biological mechanism as to how this all
works is something that is itself under debate by scientists. So
then, we are presented with a serious problem: we are trying to
create a computer emulation of a human biological mechanism
which we don't know how it really even works in the first
place, and on top of that because it is a computer we expect it
to be more accurate than a human, ideally. Frankly, it's a bit
like trying to build a nuclear reactor while having only a
nineteenth century understanding of nuclear physics!

This does not necessarily mean that it is not possible,
however. Some of the earliest examples of face recognition
research have been guided by the notion that it is possible to
digitally replicate what we perceive as being the human way of
performing face recognition: "the lay man's solution." The
earliest examples studied by our research are systems based on
Hough Circle Transforms (HCT). These early face
recognition systems were built on a hypothesis that a series of
equations that were originally developed for electronically
processing the bubble chamber photographs generated by
1950s-era nuclear physics research could also be used to
recognize and identify human faces.

An early system developed by a team in Southampton,
England in 1985 epitomizes this theory [1]. They postulated
that performing a Sobel edge detection [2] on a grayscale
picture of a face, then using HCT [3] to mark and measure the
distance between the eyes and the eyebrows could be used to
encode and determine identity. In practice, however, our
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Figures 1 & 2: (Left) HCT on a human face. This image was
processed with a Canny edge detector [4] rather than a Sobel
edge detector. HCT was an inefficient method for performing
eye localization. (Right) Iris localization by means of
Timm-Barth method [5] of gradient orientation analysis.

research found that this system is far too simple to provide any
sort of consistency in detecting the landmarks that we are
interested in; oftentimes this system was much more wrong
than right (Figure 1).

But at the time, our research was still in an initial naive
phase of its understanding, and so we therefore searched for
ways of obtaining more accurate detection and marking of
prominent landmarks on the face. We had not yet proven nor
disproven that creating a map of measurements from these
points could effectively encode identity, since our initial
approach to discovering the location of these points —
influenced by the work of the Southampton team — was too
simple, and too inaccurate. Our research therefore focused on
studying more modern eye localization algorithms ... perhaps
more accurate iris localization techniques would enable us to
obtain reliable mappings of the locations of biological
structures on the face. A method for localizing the position of
eyes in a two-dimension image of a face that was captured with
basic RGB imaging hardware, originally developed by a
German team in 2011 for use in gaze tracking [5], was studied
in order to determine whether more accurate mapping of
prominent biological features was even possible (Figure 2).

At it's best performance, our implementation of this eye
localization algorithm was able to correctly identify the
position of both eyes in a picture of a face only about 30% of
the time, and at least one eye about 60% of the time (Figure 3).
And unfortunately, these rather lackluster results came at a
massive time and resource cost (Figure 4). We therefore were
able to conclude that the reason geographic feature mapping is
ineffective is not because we are unable to adequately encode a
person's identity from the measured distance between the
biological structures of the face, but rather because finding
those structures is itself something that is an inherently difficult
challenge to overcome. A whole lot of processing power is
used to achieve relatively mediocre results.

B. Achieving Environment Tolerance through Refined
Resolution: Local Binary Patterns

Realistically, it cannot always be guaranteed that the
environment where authentication is performed is going to be
constant. This is especially true if one were interested in
developing a mobile authentication platform: such is the case
with the ultimate objectives of this research effort.
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Figures 3 & 4: Eye localization implementation and testing.
In the context of face recognition, this system was found to be
inadequate in both it's accuracy (above) and it's utilization of

computing resources (below).

So therefore, the next technological evolution of face
recognition is developing new statistical methods that are
capable of compensating for unpredictable light scenarios;
providing resonably accurate identification performance. Our
research began to study technologies that have been derived
from the study of computerized texture analysis.

One such texture analysis system that shows promise for
use in environment tolerant face recognition is a texture
analysis technique called Local Binary Patterns (LBP). In
LBP one generates a texture map from an input image by
comparing each pixel in an image to a neighborhood of pixels
that immediately surround that pixel [6]. "Classic" LBP
compares the pixels that are directly adjacent to the target
pixel. Newer LBP schemes, called "extended" LBP, have also
been developed that compares each pixel to a neighborhood
whose sample size and distance from the target pixel are
variable parameters [7]. Comparison with each neighbor pixel
is a threshold operation that generates one bit of texture data
for each pixel in the source image, totaling eight bits altogether
for all pixels in the neighborhood. These bits of data combine
to yield an LBP Descriptor for a given pixel, and these LBP
Descriptors combine to yield the texture map (Figure 5).

Figure 5: Application of LBP: before (left) and after (right)
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The original intention of LBP was as a texture analysis tool:
identifying specific local combinations of LBP descriptors in
the texture map could theoretically be used to analytically
identify and label lines, holes, edges, and other specific shapes
that might exist in the input image [8]. In the context of face
recognition research, however, we are not interested in
identifying fiduciary points from textures. Instead, our
methodology aims to take much more of a holistic approach
towards encoding user identity.

III. FACE RECOGNITION USING LOCAL BINARY PATTERNS WITH
SUPPORT VECTOR MACHINES

Some of the earliest systems that utilize LBP in order to
perform face recognition begin to appear around 2004. A
Finnish team first acknowledged the problems faced by face
recognition systems when they are not used in controlled
environments [9]. This paper lays an important piece of
groundwork for our system: when LBP is used in texture
analysis, we are normally concerned with finding specific
regional patterns of descriptors in the texture map. But, in face
recognition we wish to distill the texture map into a single data
structure that acts as a composite representation of the entire
face. So therefore, once we have generated our texture map, we
then want to generate a histogram of the texture map. This
histogram in essence becomes a pseudo-fingerprint of the
person's face, and we use this histogram in order to encode and
store identity.

Histograms are generated using a regional methodology.
We divide the texture map into a grid of regions. Each of these
regions then has a histogram calculated for that region. Once
we have generated histograms for each of the regions, these
regional histograms are then concatenated together in order to
yield a composite histogram of the texture map. This
composite histogram becomes the ultimate data structure that
we use to encode and store identity during enrollment, and later
on to evaluate identity during authentication.

When using LBP to perform face recognition, generating
the composite histogram of the texture map is generally a
common precursor step for all systems that use LBP as the
basis of their system. However, what happens after the
histogram is generated is where the various LBP systems begin
to diverge from each other. The common goal that is trying to
be achieved is to feed the histogram into a statistical model that
enables the system to make a comparison of the histogram
from an unidentified individual against a database of known
people, whose histograms — labeled with their identity — have
been fed into the statistical model as training data during it's
enrollment phase. Early LBP face recognition systems tended
to use nearest-neighbor classifiers such as k-nearest, log-
likelihood, and chi square [9].

However, our research feels that these very simple statistics
models — while suitable for texture analysis — are not suitable
for general-purpose face recognition. Our research focused on
the application of Support Vector Machines (SVM) for use in
this role. One of the works studied by our research that
involved using LBP in combination with SVM to perform face
recognition is a 2008 work by a team based in Israel who were
interested in investigating pair matching [7]. Their work in
evaluating LBP with SVM for face pair matching entailed
using a labeled image database of subjects [10] processed with
LBP, in which a subset of histograms labeled as being a



particular person were used with all histograms in the database
that were labeled as not being a particular person as the
training data for the SVM model. This technique, called One
Versus All, used a very large sample of negative vectors and a
rather small sample of positive vectors in order to train the
SVM. A subset of histograms labeled as being the person
whom the model was trained for, but were not already used to
train the model, were used to test and verify the accuracy of the
trained SVM model.

A. Evaluation of LBP with SVM

The method we designed to begin an evaluation of this face
recognition system was an implementation of "standard" LBP
that distilled texture maps into a composite histogram from
square-shaped subregions evenly distributed across the texture
map. These histograms were then fed into an SVM for
classification. Our initial prototype was developed in Python,
using the OpenCV computer vision library [11] to provide
image manipulation functions and machine learning models.

Deviating from other face recognition research that has
been done in the past, we elected to not use the same face
databases that other research efforts have utilized, such as the
FERET database [12] and the Labeled Faces in the Wild
(LFW) database [10]. For our research, we chose to use the
much lesser known Caltech Front Face database [13], and we
made this choice for several reasons. Firstly, the images in the
Caltech database are very high resolution relative to other well
known databases, about the resolution that could be generated
with modern mobile phone camera hardware. Second, the
database contains at least fifteen to twenty images of one
subject for approximately ten of the 30 subjects in the database,
allowing us to build and test many different combinations of
training sets and testing sets for the same labelled subject. And
thirdly, we chose this database because it contains ample
images of individuals in a variety of environment and light
conditions, from dim nighttime settings to bright indoor
settings to very bright outdoor settings.

One of the first things we sought to determine is to discover
what is the minimum set of training images (positive labeled
and negative labeled) that are needed in order to obtain an
acceptable degree of recognition accuracy. We understand from
reviewing prior research that the positive training image set
and the negative training image set can be asymmetric: they do
not necessarily need to be equal in size. So what is the
optimized, while still adequately minimal, count of how many
positive and negative histograms we should feed this system
during it's training phase?

To find the answer to this question, we performed a series
of experiments. We labeled the Caltech database, giving us sets
of images that are labeled as being images of the same subject.
From those initial labeled sets, we then created additional sets
of images that were either "positive" sets: known to belong to
the subject being tested, and "negative" sets: known to not
belong to the subject under test. For each iteration of this initial
experiment, we used positive set sizes of 4, 6, 8, and 10
images, and we used negative set sizes of 3, 5, 10, 20, 30, and
50 images. These combinations of positive sets and negative
sets were combined together to build the training sets that we
distilled into histograms and used to train an SVM. In total, 24
different training sets were generated per subject tested.
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Figures 6 & 7: (Above) Determining minimum histogram set
size. (Below) “Worst case” SVM training and evaluation.

In each round of the experiment, once the model has been
trained, we then used labelled images that were not included in
the training set in order to evaluate the accuracy of the system.
We tested the trained SVM against five sets of positive images
in order to check positive correctness (a "positive" test), and
we tested against five sets of negative images in order to check
negative correctness (a "negative" test). Each test set contained
10 images. Counting all positive test images and negative test
images with each permutation of training sets, we performed in
total 2400 individual image comparisons. Our goal was to find
the minimum effective set size of training images.

Our expermentation found that the variable that appeared to
have the largest influence on the accuracy of identification was
the number of negative images that were included in the
training set during the SVM training phase. We found that it
was possible to approach a correct identification accuracy of
almost 98% when the SVM was trained with a training set that
contained as few as 4 positive samples of the subject and 10
negative samples (Figure 6). However, we were skeptical about
the results that we received from this preliminary experiment.
98% seems a little too good to be true. We deduced that such a
high accuracy could potentially be attributed to what could be
described as "best case" bias: we had maybe subconsciously
selected images for the training and testing sets that were ideal
and contained relatively uniform light conditions.

So for the next round of experiments, we decided to try and
verify our results by creating what we felt were some "worst
case" scenarios in order to see if the results that we had
obtained during our first series of experiments were actually
realistic. The results from our initial experiment have led us to
believe thusfar that the optimum minimum training set size is 4
positive samples and 10 negative samples. The Caltech
database contains approximately 30 individual subjects, and 19
of these subjects have image sets that contain at least 19
images or more. The next round of experiments that we had



conducted included 10 separate tests per subject: 5 of these
tests focused on correct positive identification and 5 tests
focused on correct negative identification.

Each test was either a positive test or a negative test, and
for each test, each individual subject was tested three times.
For each of these test iterations, the image set that was used
was rotated so the same selection of training images were not
used in any subsequent test, but the total size of the testing set
was always 10. Our goal in doing this is to create multiple
different scenarios of each subject both in training and in
testing in order to give us a very broad evaluation under many
different possible conditions.

We allowed for images to be used that were in a variety of
light conditions: images that were captured both in indoor
environments and in outdoor environments. In total 1140
individual image comparisons were performed in this second
round of experimentation. We strived to eliminate any kind of
best case bias that may have existed in our first series of
experiments. The results of these experiments were just as
impressive as the first series of experiments. A composite
accuracy of 94% was achieved under a variety of light and
environment conditions while still using only four positive and
ten negative images in order to train the SVM to recognize a
subject's face histogram (Figure 7).

IV. THE CHALLENGES OF MOBILE BIOMETRIC
AUTHENTICATION

Our research is not only focused solely on the objective of
performing face recognition that is environment tolerant, but
we also aim to deploy the technology onto mobile devices in a
standalone configuration. Therefore, further developing this
LBP with SVM concept to fill this role presents us with
additional challenges unique to mobile app development.

A. Energy Availability Limitations

If the objective of our work was to provide face recognition
in a fixed location — say, one that we could bolt a desktop
computer to — then energy availability becomes a non-issue: we
could use as many different algorithms as we like and make
them work as aggressively as possible in order to achieve the
best possible result. But our objective is to perform face
recognition on mobile handset devices, so therefore we are
limited by the total amount of available energy being provided
by the device's batteries or other energy generating devices.
Therefore, the algorithms that we choose to use must find a
balance between exhaustive statistical operations and power
efficiency in order to be considered viable. We achieved this
objective through our experimentation that aimed to discover
the minimum effective training set size that is needed.

B. Hardware Capability Limitations

We must also take into consideration the hardware
specifications of the device: specifically, what kind of imaging
equipment is broadly available to us. Using a combination of
very high resolution visible spectrum and infrared cameras
would allow us to do sophisticated iris recognition and
matching in order to perform identity verification, however the
most readily available off-the-shelf handset device hardware of
the present day can realistically only promise us a medium
resolution camera, and maybe perhaps a simple rangefinder on
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newer devices, but not much else. Our method for performing
face recognition must take into consideration that we are
targeting off-the-shelf hardware that is broadly available, so
therefore we have only so sophisticated of imaging devices
available: they are not the cutting edge or the highest available
resolution and therefore our method must be able to function
accurately using very general imaging devices; working with
an available image resolution not much higher than a common
laptop webcam.

C. Network Availability Limitations

We also need to consider network availability as a
capability limitation when performing face recognition on a
mobile device. As mentioned in our considerations regarding
energy availability, the sophistication of the system that we
choose to use is limited by the computing and energy resources
that are available on the device. Naturally, one may raise the
suggestion that we could just perform data collection on the
mobile device, then ship that data out over the network to be
processed on a server somewhere, where power and resource
utilization cease to be a concern. However, mobile data service
availability is not guaranteed, and the central back-end server
process that would perform the recognition could suffer a
failure that could potentially affect all users of the system. Both
of these failure conditions are completely unacceptable in the
context of authentication. If the goal of this research is
authentication and identity checking, then we cannot lock
mobile users out of their devices because the network is not
available or the back-end compute application is broken or
offline. Authentication applications must be standalone and
always available as long as the mobile device itself is working.

D. Usability Considerations

The notion that an authentication service must not be
hampered by network unavailability or back-end service
unavailability evolves into the fourth design challenge of our
research: usability. The final product developed must be usable
and easy to understand by the general population. When
enrolling a user, we theoretically could capture thousands of
images of their face from all different angles and build up a
very accurate and comprehensive map of that user's statistically
unique features. However, no user will want to sit for so long
and have so many images taken of their face. Conversely, when
authenticating we may run many different algorithms and try
many different methods for determining identity, but if our face
recognition software is built into an application that controls
access to the mobile device, then users will not tolerate any
unreasonable delay that prevents them from being able to
authenticate successfully and then begin using the device.

V. DEVELOPING A MOBILE FACE RECOGNITION SYSTEM:
CONSTRUCTION, TESTING, AND EVALUATION

Using what we have learned so far about face recognition
and the behavior of LBP with SVM systems, we developed a
mobile application prototype designed to run on an "off the
shelf" Android smartphone: the device contained no special
imaging hardware other than the stock visible spectrum
cameras, and a stock kernel that had not been modified in any
appreciable way. We designed our application following the
usability considerations we had ideintified: we aimed to build a
screen locking application that is both convenient enough that



it would be palpable by the average consumer, while remaining
accurate enough to be considered relatively secure.

Our experimentation up to this point has determined that
we can create an effective asymmetric SVM training set with
as little as four positive samples of a subject to be enrolled and
ten negative samples to create a complete training set.
However, the next question we faced was in regards to the
training protocol: we need to train the user on our system for
this system to recognize them, by virtue of the needs of the
machine learning software that we have elected to use. What
are the best series of training scenarios that we could put the
user in when we capture our positive training examples? LBP
with SVM is capable — theoretically — of compensating for
variable environment conditions, but we postulate that the
ability of this system to tolerate for these variances is affected
by the light conditions of the scenarios that we place the user in
during the training phase. Therefore, we hypothesize that
training protocol design is an important consideration in
optimizing system accuracy.

Now, when we refer to "training scenarios," we are
referring to the light conditions that are present when each of
the positive images for enrollment are captured. By the nature
of how the SVM algorithm operates, it would make sense that
we would want to present the model during training with as
many extremes of light conditions as we possibly can. But how
much of a difference does it really make? It creates a
connundrum for us: we want to build an application that is
usable, and making a user do something other than stand in one
spot during enrollment is conunterintuitive to that goal.
However, if it is justified that user identification becomes more
accurate, then perhaps it might be worthwhile to utilize a more
complex training protocol.

We therefore devised two different training protocols in
order to test our hypothesis. Our fist protocol, the control
protocol, used only one training scenario for all four training
images. The scenario was inside of a windowless office: a plain
white background with white flourescent light positioned
directly overhead (Figure 8). The second training protocol
aimed to evaluate whether the inclusion of variable light
conditions would lead to an increase of system accuracy. We
created four different training secnarios:

Figures 8, 9, 10, & 11: (Clockwise from top left) Training
scenario one: an office with overhead lights and no windows.
Two: a hallway with offset light and no windows. Three: a
hallway with both artificial and natural light. And four: a
mezzanine with a large curtain window.
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1. The first scenario was the control scenario (Figure 8).

A scenario was created that used a dark backdrop with
artificial light positioned at an offsett (Figure 9).

3. A scenario was created that used artificial light
positioned at an offset combined with a backdrop of
natural light channeled through a hallway (Figure 10).

4. A scenario was created that used natural light

projecting through a large glass window wall that was
located behind the camera (Figure 11).

Since our experiments were performed in the middle of
winter in the Northern hemisphere, we noticed that the
properties of the available natural light in the fourth scenario
changed noticeably throughout our testing over the course of
the afternoon, as the sun rapidly traversed across the sky.

A. Evaluation of Training Protocols

Our testing was conducted as such: for each test subject
that we evaluated, the test subject would either be trained using
the control protocol, which trained the user in the first scenario
only, or they would be trained using the experimental protocol,
which would train the user in all four of the scenarios that we
had set up in and around our laboratory. The user would then
be tested by evaluating how well the system performed in each
of these four scenarios: users would be taken to each of these
four locations and asked to use the device in our software's
"authenticate" mode (Figure 12). In addition to performing
"positive" tests, where we would expect the system to correctly
identify the subject as being the person who enrolled, some
participants were also asked to participate in "negative" tests,
where we would train the system with one user and
authenticate with another user, expecting that the system would
correctly identify the subject as not being the enrolled person.

Of course, the biggest problem that we faced in this sort of
realistic field testing was finding willing participants who
wanted to be a part of the study. In total, we were able to coax
and encourage nine participants to be a part of this preliminary
experiment. We ran four positive control tests, two negative
control tests, four positive experimental tests, and two negative
experimental tests. Altogehter, 48 datapoints were collected,
however only 47 datapoints were viable for use due to a
software runtime error that occurred in one of the evaluations
that resulted in the test being unable to continue.

What we found was such: 21 of the 23 control datapoints
that were valid returned a "correct" result: the user was
positively identified during positive tests or correctly denied
during negative tests. This equates to a control accuracy of
91.3%, in line with what we expected to see, given the results
of our earlier Caltech database experimentation. In multi-
scenario training, 24 of the 24 valid datapoints that were
collected returned correct, yielding an accuracy of 100%. Now
naturally, we do not really consider this to be a conclusive
result; we only had nine participants in total and the test was
rather primitive in its construction. However, what we do
believe is that this result implies that an LBP with SVM face
recognition system can be made more accurate if a training
protocl is utilized that exposes users to a variety of different
light conditions both natural and artificial in their source,
allowing this face recognition system to achieve what appears
to be reasonable environment tolerance.



Figure 12: Sample output from our field evaluation sofiware.

VI. DISCUSSION AND CONCLUSION

It is very interesting work for us to be studying face
recognition. It is a technology whose capabilities are often
overstated and its operating principles generally misunderstood
by the public at large. Many assume that face recognition is a
single, homogenous technology that has over the years become
so accurate that it risks causing severe social problems for
society as a whole. But this caricature could not be further
from the truth.

The reaility is that face recognition is still primitive,
desipite the impressive pedigree of historical research efforts
that have been published. It is a very wide range of very
different technologies that all take their own philosophical
approaches to computerizing a mysterious neurological
process.

In one of the strange and weird connundrums of face
recognition, we need to recognize that the problem of
environrment tolerance is not even really what it seems. When
we as humans look at someone's face, we aren't really looking
at their face, as counterintuitive as that sounds. What we are
looking at are subatomic particles of light that have been
reflected off of someone's face and into our eyes, where it gets
converted into an electrical signal and then gets processed
through highly evolved neurological circuitry that is nowhere
near entirely understood by science. These photons are not all
the same: they have varying wavelengths, varying intensities,
and their origins come from all different directions, depending
on what kinds of light sources are nearby. And we as humans
can mentally compensate for that. But we do not really
understand at a scientific level how exactly our brains
accomplish this, so emulating this mechanism with computer
software becomes an intensely difficult challenge.

We have found that feature analysis systems like LBP are
much more tolerant to changes in light conditions because their
fiduciary data are only influenced by local points immediately
around them and not by the entire face area as a whole,
minimizing corruption by environment variability. Our
prototype software is developed around this theory, and our
preliminary experimentation seems to positively indicate that
we are able to achieve acceptable accuracy with real users that
are exposed to real multi-environment conditions.

But our work is not finished yet. We have only marginally
proved that LBP is capable of providing total environment
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tolerance under all possible conditions. Our prototype software
was primitive and our sample user base was small, but the
results we obtained were very encouraging. We believe that
LBP with SVM is an ideal solution for creating a lightweight
face recognition system that is tolerant enough to environment
changes such that it may become viable for use in mobile
authentication applications. We intend to continue to develop
this technology and expose it to harsher and more random light
conditions in order to find where the limits of this system lie.
We hope to give face recognition technology its flying car
moment; to bring us closer to general-case face recogition
becoming a powerful and flexible tool in the biometric
authentication toolbox.
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